Multivariate Confidence Intervals

Total Page:16

File Type:pdf, Size:1020Kb

Multivariate Confidence Intervals Multivariate Confidence Intervals∗ Jussi Korpelay Emilia Oikarineny Kai Puolam¨akiy Antti Ukkoneny Abstract a summary. However, most of these approaches focus on describing a single univariate distribution over real Confidence intervals are a popular way to visualize and analyze data distributions. Unlike p-values, they can convey numbers. Also, the precise definition of a confidence information both about statistical significance as well as interval varies slightly across disciplines and application effect size. However, very little work exists on applying domains. confidence intervals to multivariate data. In this paper we define confidence intervals for multivariate data that extend In this paper we focus on confidence areas: a gen- the one-dimensional definition in a natural way. In our eralization of univariate confidence intervals to multi- definition every variable is associated with its own confidence variate data. All our intervals and areas are such that interval as usual, but a data vector can be outside of a few of these, and still be considered to be within the confidence they describe ranges of data and are of minimal width. area. We analyze the problem and show that the resulting In other words, they contain a given fraction of data confidence areas retain the good qualities of their one- within their bounds and are as narrow as possible. By dimensional counterparts: they are informative and easy to interpret. Furthermore, we show that the problem of choosing a confidence area with minimal size we essen- finding multivariate confidence intervals is hard, but provide tially locate the densest part of the distribution. Such efficient approximate algorithms to solve the problem. confidence areas are particularly effective for visually Keywords multivariate statistics; confidence intervals; showing trends, patterns, and outliers. algorithms Considering the usefulness of confidence intervals, it is surprising how little work exists on applying confi- dence intervals on multivariate data [11]. In multivari- 1 Introduction ate statistics confidence regions are a commonly used approach, see e.g., [6], but these methods usually require Confidence intervals are a natural and commonly used making assumptions about the underlying distribution. way to summarize a distribution over real numbers. Moreover, unlike confidence areas, most conference re- In informal terms, a confidence interval is a concise gions cannot be described simply with an upper and way to express what values a given sample mostly a lower bound, e.g., confidence regions for multivariate contains. They are used widely, e.g., to denote ranges Gaussian data are ellipsoids. Thus, these approaches of data, specify accuracies of parameter estimates, or in do not fully capture two useful characteristics of one- Bayesian settings to describe the posterior distribution. dimensional confidence intervals: a) easy interpretabil- A confidence interval is given by two numbers, the lower ity and b) lack of assumptions about the data. and upper bound, and parametrized by the percentage The simplest approach to construct multivariate of probability mass that lies within the bounds. They confidence intervals is to compute one-dimensional in- are easy to interpret, because they can be represented tervals separately for every variable. While this naive visually together with the data, and convey information approach satisfies conditions a) and b) above, it is easy both about the location as well as the variance of a arXiv:1701.05763v1 [stat.AP] 20 Jan 2017 to see how it fails in general. Assume, e.g., that we sample. have 10 independently distributed variables, and have There is a plethora of work on how to estimate computed for each variable a 90% confidence interval. the confidence interval of a distribution based on a This means that when considering every variable indi- finite-sized sample from that distribution, see [7] for vidually, only 10% of the distribution lies outside of the ∗This work was supported by Academy of Finland (decision respective interval, as desired. But taken together, the 288814) and Tekes (Revolution of Knowledge Work). probability that an observation is outside at least one of This document is an extended version of [10] to appear in the the confidence intervals is as much as 1 − 0:910 = 65%. Proceedings of the 2017 SIAM International Conference on Data Mining (SDM 2017). This probability, however, depends strongly on the cor- Implementation of the algorithms (Sec. 5) and code to re- relations between the variables. If the variables were produce Figs. 1 and 5 are provided at https://github.com perfectly correlated with a correlation coefficient of ±1, /jutako/multivariate-ci.git the probability of an observation being outside all con- yFinnish Institute of Occupational Health, Helsinki, Finland fidence intervals would again be 10%. In general the 1 ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ●● ● ● ● ●●● ● ● ●●●● ● ● ● ● ● ● ●●● ●●●● ● ● ● ● ● ● ●● ● ●●● ● ● ● ●●●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ●●●● ● ● ●● ● ●● y ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ● ●● ● ● ●●● ● ●● ● ● L=0 ● ● ● ● ● ● ● ● ●● Naive ● ● ● ● ● ● L=25 ● ● ● ● ● L=25 L = 1 Naive L = 0 L=0 naive | | x y x Figure 1: Examples 1 and 2. Please see text for details. LEFT: Local anomalies in time series (solid black line) are easier to spot when computing the confidence area using the proposed method (orange lines) as opposed to existing approaches (green lines). RIGHT: Our approach results in a confidence area (orange \cross") that is a better representation of the underlying distribution than existing approaches (green rectangle). correlation structure of the data affects in a strong and confidence intervals. In the special case l = 0, this new hard-to-predict way on how the naive confidence inter- definition coincides with the MWE problem [11]. The vals should be interpreted in a multivariate setting. following examples illustrate further properties and uses Ideally a multivariate confidence area should retain of the new definition. the simplicity of a one-dimensional confidence interval. It should be representable by upper and lower bounds for each variable and the semantics should be the Example 1: local anomalies in time series. same: each observation is either inside or outside the confidence area, and most observations of a sample The left panel of Fig. 1 presents a number of time series should be inside. Particularly important is specifying over m = 80 time points, shown in light gray, together when an observation in fact is within the confidence with three different types of 90% confidence intervals, area, as we will discuss next. shown in green, purple and orange, respectively. In Confidence areas for time series data have been this example, \normal" behavior of the time series is defined [9, 11] in terms of the minimum width envelope exemplified by the black dash-dotted curve that exhibits (MWE) problem: a time series is within a confidence no noteworthy fluctuation over time. Two other types area if it is within the confidence interval of every of time series are shown also in black: a clear outlier variable. While this has desirable properties, it can, (dashed black line), and a time series that exhibits however, result in very conservative confidence areas normal behavior most of the time, but strongly deviates if there are local deviations from what constitutes from this for a brief moment (solid black line). \normal" behavior. The definition in [11] is in fact too In the situation shown, we would like the confidence strict by requiring an observation to be contained in all interval to only show what constitutes \normal" behav- variable-specific intervals. ior, i.e., not be affected by strong local fluctuations or Thus, here we propose an alternative way to define outliers. Such artifacts can be caused, e.g., by mea- the confidence area: a data vector is within the confi- surement problems, or other types of data corruption. dence area if it is outside the variable-specific confidence Alternatively, such behavior can also reflect some inter- intervals at most l times, where l is a given integer. esting anomaly in the data generating process, and this This formulation preserves easy interpretability: the should not be characterized as \normal" by the confi- user knows that any observation within the confidence dence interval. In Fig. 1 (left) the confidence area based area is guaranteed to violate at most l variable-specific on MWE [11], is shown by the green lines; recall the MWE interval corresponds to setting l = 0. While it is 2 unaffected by the outlier, it strongly reacts to local fluc- Contributions tuations. The naive confidence area, i.e., one where we The basic problem definition we study in this paper have computed confidence intervals for every time point is straightforward: for m-dimensional data and the individually, is shown in purple. It is also affected by parameters α 2 [0; 1] and integer l, find a confidence local peaks, albeit less than the l = 0 confidence area. interval for each of the variables so that the 1 − α Finally, the proposed method is shown in orange. The fraction of the observations lie within the confidence area is computed using l = 25, i.e., a time series is still area, defined so that the sum of the length of the within the confidence area as long as it lies outside in at intervals is minimized, and an observation can break most 25 time points. This variant focuses on what we at most l of the variable-specific confidence intervals. would expect to be normal behavior in this case. Our We make the following contributions in this paper: new definition of a confidence area is thus nicely suited for finding local anomalies in time series data. • We formally define the problem of finding a mul- tivariate confidence area, where observations have to satisfy most but not all of the variable-specific confidence intervals. • We analyze the computational complexity of the Example 2: representing data distribu- problem, and show that it is NP-hard, but admits tions. an approximation algorithm based on a linear pro- gramming relaxation.
Recommended publications
  • Confidence Intervals for the Population Mean Alternatives to the Student-T Confidence Interval
    Journal of Modern Applied Statistical Methods Volume 18 Issue 1 Article 15 4-6-2020 Robust Confidence Intervals for the Population Mean Alternatives to the Student-t Confidence Interval Moustafa Omar Ahmed Abu-Shawiesh The Hashemite University, Zarqa, Jordan, [email protected] Aamir Saghir Mirpur University of Science and Technology, Mirpur, Pakistan, [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Abu-Shawiesh, M. O. A., & Saghir, A. (2019). Robust confidence intervals for the population mean alternatives to the Student-t confidence interval. Journal of Modern Applied Statistical Methods, 18(1), eP2721. doi: 10.22237/jmasm/1556669160 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Robust Confidence Intervals for the Population Mean Alternatives to the Student-t Confidence Interval Cover Page Footnote The authors are grateful to the Editor and anonymous three reviewers for their excellent and constructive comments/suggestions that greatly improved the presentation and quality of the article. This article was partially completed while the first author was on sabbatical leave (2014–2015) in Nizwa University, Sultanate of Oman. He is grateful to the Hashemite University for awarding him the sabbatical leave which gave him excellent research facilities. This regular article is available in Journal of Modern Applied Statistical Methods: https://digitalcommons.wayne.edu/ jmasm/vol18/iss1/15 Journal of Modern Applied Statistical Methods May 2019, Vol.
    [Show full text]
  • STAT 22000 Lecture Slides Overview of Confidence Intervals
    STAT 22000 Lecture Slides Overview of Confidence Intervals Yibi Huang Department of Statistics University of Chicago Outline This set of slides covers section 4.2 in the text • Overview of Confidence Intervals 1 Confidence intervals • A plausible range of values for the population parameter is called a confidence interval. • Using only a sample statistic to estimate a parameter is like fishing in a murky lake with a spear, and using a confidence interval is like fishing with a net. We can throw a spear where we saw a fish but we will probably miss. If we toss a net in that area, we have a good chance of catching the fish. • If we report a point estimate, we probably won’t hit the exact population parameter. If we report a range of plausible values we have a good shot at capturing the parameter. 2 Photos by Mark Fischer (http://www.flickr.com/photos/fischerfotos/7439791462) and Chris Penny (http://www.flickr.com/photos/clearlydived/7029109617) on Flickr. Recall that CLT says, for large n, X ∼ N(µ, pσ ): For a normal n curve, 95% of its area is within 1.96 SDs from the center. That means, for 95% of the time, X will be within 1:96 pσ from µ. n 95% σ σ µ − 1.96 µ µ + 1.96 n n Alternatively, we can also say, for 95% of the time, µ will be within 1:96 pσ from X: n Hence, we call the interval ! σ σ σ X ± 1:96 p = X − 1:96 p ; X + 1:96 p n n n a 95% confidence interval for µ.
    [Show full text]
  • Statistics for Dummies Cheat Sheet from Statistics for Dummies, 2Nd Edition by Deborah Rumsey
    Statistics For Dummies Cheat Sheet From Statistics For Dummies, 2nd Edition by Deborah Rumsey Copyright © 2013 & Trademark by John Wiley & Sons, Inc. All rights reserved. Whether you’re studying for an exam or just want to make sense of data around you every day, knowing how and when to use data analysis techniques and formulas of statistics will help. Being able to make the connections between those statistical techniques and formulas is perhaps even more important. It builds confidence when attacking statistical problems and solidifies your strategies for completing statistical projects. Understanding Formulas for Common Statistics After data has been collected, the first step in analyzing it is to crunch out some descriptive statistics to get a feeling for the data. For example: Where is the center of the data located? How spread out is the data? How correlated are the data from two variables? The most common descriptive statistics are in the following table, along with their formulas and a short description of what each one measures. Statistically Figuring Sample Size When designing a study, the sample size is an important consideration because the larger the sample size, the more data you have, and the more precise your results will be (assuming high- quality data). If you know the level of precision you want (that is, your desired margin of error), you can calculate the sample size needed to achieve it. To find the sample size needed to estimate a population mean (µ), use the following formula: In this formula, MOE represents the desired margin of error (which you set ahead of time), and σ represents the population standard deviation.
    [Show full text]
  • Understanding Statistical Hypothesis Testing: the Logic of Statistical Inference
    Review Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference Frank Emmert-Streib 1,2,* and Matthias Dehmer 3,4,5 1 Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland 2 Institute of Biosciences and Medical Technology, Tampere University, 33520 Tampere, Finland 3 Institute for Intelligent Production, Faculty for Management, University of Applied Sciences Upper Austria, Steyr Campus, 4040 Steyr, Austria 4 Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology (UMIT), 6060 Hall, Tyrol, Austria 5 College of Computer and Control Engineering, Nankai University, Tianjin 300000, China * Correspondence: [email protected]; Tel.: +358-50-301-5353 Received: 27 July 2019; Accepted: 9 August 2019; Published: 12 August 2019 Abstract: Statistical hypothesis testing is among the most misunderstood quantitative analysis methods from data science. Despite its seeming simplicity, it has complex interdependencies between its procedural components. In this paper, we discuss the underlying logic behind statistical hypothesis testing, the formal meaning of its components and their connections. Our presentation is applicable to all statistical hypothesis tests as generic backbone and, hence, useful across all application domains in data science and artificial intelligence. Keywords: hypothesis testing; machine learning; statistics; data science; statistical inference 1. Introduction We are living in an era that is characterized by the availability of big data. In order to emphasize the importance of this, data have been called the ‘oil of the 21st Century’ [1]. However, for dealing with the challenges posed by such data, advanced analysis methods are needed.
    [Show full text]
  • Confidence Intervals
    Confidence Intervals PoCoG Biostatistical Clinic Series Joseph Coll, PhD | Biostatistician Introduction › Introduction to Confidence Intervals › Calculating a 95% Confidence Interval for the Mean of a Sample › Correspondence Between Hypothesis Tests and Confidence Intervals 2 Introduction to Confidence Intervals › Each time we take a sample from a population and calculate a statistic (e.g. a mean or proportion), the value of the statistic will be a little different. › If someone asks for your best guess of the population parameter, you would use the value of the sample statistic. › But how well does the statistic estimate the population parameter? › It is possible to calculate a range of values based on the sample statistic that encompasses the true population value with a specified level of probability (confidence). 3 Introduction to Confidence Intervals › DEFINITION: A 95% confidence for the mean of a sample is a range of values which we can be 95% confident includes the mean of the population from which the sample was drawn. › If we took 100 random samples from a population and calculated a mean and 95% confidence interval for each, then approximately 95 of the 100 confidence intervals would include the population mean. 4 Introduction to Confidence Intervals › A single 95% confidence interval is the set of possible values that the population mean could have that are not statistically different from the observed sample mean. › A 95% confidence interval is a set of possible true values of the parameter of interest (e.g. mean, correlation coefficient, odds ratio, difference of means, proportion) that are consistent with the data. 5 Calculating a 95% Confidence Interval for the Mean of a Sample › ‾x‾ ± k * (standard deviation / √n) › Where ‾x‾ is the mean of the sample › k is the constant dependent on the hypothesized distribution of the sample mean, the sample size and the amount of confidence desired.
    [Show full text]
  • P Values and Confidence Intervals Friends Or Foe
    P values and Confidence Intervals Friends or Foe Dr.L.Jeyaseelan Dept. of Biostatistics Christian Medical College Vellore – 632 002, India JPGM WriteCon March 30-31, 2007, KEM Hospital, Mumbai Confidence Interval • The mean or proportion observed in a sample is the best estimate of the true value in the population. • We can combine these features of estimates from a sample from a sample with the known properties of the normal distribution to get an idea of the uncertainty associated with a single sample estimate of the population value. Confidence Interval • The interval between Mean - 2SE and Mean + 2 SE will be 95%. • That is, we expect that 95% CI will not include the true population value 5% of the time. • No particular reason for choosing 95% CI other than convention. Confidence Interval Interpretation: The 95% CI for the sample mean is interpreted as a range of values which contains the true population mean with probability 0.95%. Ex: Mean serum albumin of the population (source) was 35 g/l. Calculate 95% CI for the mean serum albumin using each of the 100 random samples of size 25. Scatter Plot of 95% CI: Confidence intervals for mean serum albumin constructed from 100 random samples of size 25. The vertical lines show the range within which 95% of sample means are expected to fall. Confidence Interval • CI expresses a summary of the data in the original units or measurement. • It reflects the variability in the data, sample size and the actual effect size • Particularly helpful for non-significant findings. Relative Risk 1.5 95% CI 0.6 – 3.8 Confidence Interval for Low Prevalence • Asymptotic Formula: p ± 1.96 SE provides symmetric CI.
    [Show full text]
  • Student's T Distribution
    Student’s t distribution - supplement to chap- ter 3 For large samples, X¯ − µ Z = n √ (1) n σ/ n has approximately a standard normal distribution. The parameter σ is often unknown and so we must replace σ by s, where s is the square root of the sample variance. This new statistic is usually denoted with a t. X¯ − µ t = n√ (2) s/ n If the sample is large, the distribution of t is also approximately the standard normal. What if the sample is not large? In the absence of any further information there is not much to be said other than to remark that the variance of t will be somewhat larger than 1. If we assume that the random variable X has a normal distribution, then we can say much more. (Often people say the population is normal, meaning the distribution of the rv X is normal.) So now suppose that X is a normal random variable with mean µ and variance σ2. The two parameters µ and σ are unknown. Since a sum of independent normal random variables is normal, the distribution of Zn is exactly normal, no matter what the sample size is. Furthermore, Zn has mean zero and variance 1, so the distribution of Zn is exactly that of the standard normal. The distribution of t is not normal, but it is completely determined. It depends on the sample size and a priori it looks like it will depend on the parameters µ and σ. With a little thought you should be able to convince yourself that it does not depend on µ.
    [Show full text]
  • Multiple Random Variables
    Multiple random variables Multiple random variables We essentially always consider multiple random variables at once. The key concepts: Joint, conditional and marginal distri- −→ butions, and independence of RVs. Let X and Y be discrete random variables. Joint distribution: −→ pXY(x,y) = Pr(X = x and Y = y) Marginal distributions: −→ pX(x) = Pr(X = x) = y pXY(x,y) p (y) = Pr(Y = y) = p (x,y) Y !x XY Conditional distributions! : −→ pX Y=y(x) = Pr(X =x Y = y) = pXY(x,y) / pY(y) | | Example Sample a couple who are both carriers of some disease gene. X = number of children they have Y = number of affected children they have x pXY(x,y) 012345pY(y) 0 0.160 0.248 0.124 0.063 0.025 0.014 0.634 1 0 0.082 0.082 0.063 0.034 0.024 0.285 y 2 0 0 0.014 0.021 0.017 0.016 0.068 3 0 0 0 0.003 0.004 0.005 0.012 4 0 0 0 0 0.000 0.001 0.001 5 0 0 0 0 0 0.000 0.000 pX(x) 0.160 0.330 0.220 0.150 0.080 0.060 Pr( Y = y X = 2 ) | x pXY(x,y) 012 345pY(y) 0 0.160 0.248 0.124 0.063 0.025 0.014 0.634 1 0 0.082 0.082 0.063 0.034 0.024 0.285 y 2 000.014 0.021 0.017 0.016 0.068 3 000 0.003 0.004 0.005 0.012 4 000 0 0.000 0.001 0.001 5 000 0 0 0.000 0.000 pX(x) 0.160 0.330 0.220 0.150 0.080 0.060 y 012345 Pr( Y=y X=2 ) 0.564 0.373 0.064 0.000 0.000 0.000 | Pr( X = x Y = 1 ) | x pXY(x,y) 012345pY(y) 0 0.160 0.248 0.124 0.063 0.025 0.014 0.634 1 0 0.082 0.082 0.063 0.034 0.024 0.285 y 2 0 0 0.014 0.021 0.017 0.016 0.068 3 0 0 0 0.003 0.004 0.005 0.012 4 0 0 0 0 0.000 0.001 0.001 5 0 0 0 0 0 0.000 0.000 pX(x) 0.160 0.330 0.220 0.150 0.080 0.060 x 012345 Pr( X=x Y=1 ) 0.000 0.288 0.288 0.221 0.119 0.084 | Independence Random variables X and Y are independent if p (x,y) = p (x) p (y) −→ XY X Y for every pair x,y.
    [Show full text]
  • History of Biostatistics
    History of biostatistics J. Rosser Matthews University of Maryland, College Park, MD, USA Correspondence to: J. Rosser Matthews Professional Writing Program English Department 1220 Tawes Hall University of Maryland College Park, MD, USA +1 (301) 405-3762 [email protected] Abstract The history of biostatistics could be viewed as an ongoing dialectic between continuity and change. Although statistical methods are used in current clinical studies, there is still ambivalence towards its application when medical practitioners treat individual patients. This article illustrates this dialectic by highlighting selected historical episodes and methodological innovations – such as debates about inoculation and blood - letting, as well as how randomisation was introduced into clinical trial design. These historical episodes are a catalyst to consider assistance of non-practitioners of medicine such as statisticians and medical writers. Methodologically, clinical trials and dialectic by discussing examples from different types of diseases.1 While basically epidemiological studies are united by a antiquity to the emergence of the clinical qualitative, the work is historically population-based focus; they privilege the trial in the mid-20th century. significant because it looked beyond the group (i.e., population) over the clinically individual to suggest a role for larger unique individual. Over time, this pop - Ancient sources: Hippocratic geographic and environmental factors. ulation-based thinking has remained writings and the bible Furthermore, it relied on naturalistic constant; however, the specific statistical Although the Hippocrates writers (active in explanations rather than invoking various techniques to measure and assess group the 5th century BCE) did not employ deities to account for illness and therefore characteristics have evolved.
    [Show full text]
  • Statistical Tests, P-Values, Confidence Intervals, and Power
    Statistical Tests, P-values, Confidence Intervals, and Power: A Guide to Misinterpretations Sander GREENLAND, Stephen J. SENN, Kenneth J. ROTHMAN, John B. CARLIN, Charles POOLE, Steven N. GOODMAN, and Douglas G. ALTMAN Misinterpretation and abuse of statistical tests, confidence in- Introduction tervals, and statistical power have been decried for decades, yet remain rampant. A key problem is that there are no interpreta- Misinterpretation and abuse of statistical tests has been de- tions of these concepts that are at once simple, intuitive, cor- cried for decades, yet remains so rampant that some scientific rect, and foolproof. Instead, correct use and interpretation of journals discourage use of “statistical significance” (classify- these statistics requires an attention to detail which seems to tax ing results as “significant” or not based on a P-value) (Lang et the patience of working scientists. This high cognitive demand al. 1998). One journal now bans all statistical tests and mathe- has led to an epidemic of shortcut definitions and interpreta- matically related procedures such as confidence intervals (Trafi- tions that are simply wrong, sometimes disastrously so—and mow and Marks 2015), which has led to considerable discussion yet these misinterpretations dominate much of the scientific lit- and debate about the merits of such bans (e.g., Ashworth 2015; erature. Flanagan 2015). In light of this problem, we provide definitions and a discus- Despite such bans, we expect that the statistical methods at sion of basic statistics that are more general and critical than issue will be with us for many years to come. We thus think it typically found in traditional introductory expositions.
    [Show full text]
  • Skewness-Kurtosis Adjusted Confidence Estimators and Significance Tests Wolf-Dieter Richter
    Richter Journal of Statistical Distributions and Applications (2016) 3:4 DOI 10.1186/s40488-016-0042-3 RESEARCH Open Access Skewness-kurtosis adjusted confidence estimators and significance tests Wolf-Dieter Richter Correspondence: [email protected] Abstract Institute of Mathematics, University First and second kind modifications of usual confidence intervals for estimating the of Rostock, Ulmenstraße 69, Haus 3, expectation and of usual local alternative parameter choices are introduced in a way 18057 Rostock, Germany such that the asymptotic behavior of the true non-covering probabilities and the covering probabilities under the modified local non-true parameter assumption can be asymptotically exactly controlled. The orders of convergence to zero of both types of probabilities are assumed to be suitably bounded below according to an Osipov-type condition and the sample distribution is assumed to satisfy a corresponding tail condition due to Linnik. Analogous considerations are presented for the power function when testing a hypothesis concerning the expectation both under the assumption of a true hypothesis as well as under a modified local alternative. A limit theorem for large deviations by S.V. Nagajev/V.V. Petrov applies to prove the results. Applications are given for exponential families. Keywords: Orders of confidence, Orders of modified local alternatives, True non-covering probabilities, Local non-true parameter choice, Covering probabilities, Linnik condition, Osipov-type condition, Skewness-kurtosis adjusted decisions, Order of significance, Error probabilities of first and second kind, Exponential family, Large deviations Mathematics Subject Classification: 62E20; 62F05; 62F12; 60F10 1 Introduction Asymptotic normality of the distribution of the suitably centered and normalized arith- metic mean of i.i.d.
    [Show full text]
  • Confidence Intervals for One Standard Deviation with Tolerance Probability
    PASS Sample Size Software NCSS.com Chapter 641 Confidence Intervals for One Standard Deviation with Tolerance Probability Introduction This procedure calculates the sample size necessary to achieve a specified width (or in the case of one-sided intervals, the distance from the standard deviation to the confidence limit) with a given tolerance probability at a stated confidence level for a confidence interval about a single standard deviation when the underlying data distribution is normal. Technical Details For a single standard deviation from a normal distribution with unknown mean, a two-sided, 100(1 – α)% confidence interval is calculated by 1/ 2 1/ 2 n −1 n −1 s , s χ 2 χ 2 1−α / 2,n−1 α / 2,n−1 A one-sided 100(1 – α)% upper confidence limit is calculated by 1/ 2 n −1 s 2 χα ,n−1 Similarly, the one-sided 100(1 – α)% lower confidence limit is 1/ 2 n −1 s 2 χ1−α ,n−1 For two-sided intervals, the distance from the standard deviation to each of the limits is different. Thus, instead of specifying the distance to the limits we specify the width of the interval, W. 641-1 © NCSS, LLC. All Rights Reserved. PASS Sample Size Software NCSS.com Confidence Intervals for One Standard Deviation with Tolerance Probability The basic equation for determining sample size for a two-sided interval when W has been specified is 1/ 2 1/ 2 n −1 n −1 = − W s 2 s 2 χα / 2,n−1 χ1−α / 2,n−1 For one-sided intervals, the distance from the standard deviation to limits, D, is specified.
    [Show full text]