Subsumption and Complementation As Data Fusion Operators

Total Page:16

File Type:pdf, Size:1020Kb

Subsumption and Complementation As Data Fusion Operators Subsumption and Complementation as Data Fusion Operators ∗ y Jens Bleiholder Sascha Szott Melanie Herschel Hasso-Plattner-Institut Konrad-Zuse-Zentrum Universität Tübingen Potsdam, Germany für Informationstechnik Berlin Tübingen, Germany [email protected] Berlin, Germany melanie.herschel@uni- potsdam.de [email protected] tuebingen.de Frank Kaufer Felix Naumann Hasso-Plattner-Institut Hasso-Plattner-Institut Potsdam, Germany Potsdam, Germany [email protected] [email protected] potsdam.de potsdam.de ABSTRACT Categories and Subject Descriptors The goal of data fusion is to combine several representations of one H.2.5 [Database Management]: Heterogeneous Databases real world object into a single, consistent representation, e.g., in data integration. A very popular operator to perform data fusion is the minimum union operator. It is defined as the outer union and the General Terms subsequent removal of subsumed tuples. Minimum union is used in Algorithms other applications as well, for instance in database query optimiza- tion to rewrite outer join queries, in the semantic web community in Keywords implementing SPARQL’s OPTIONAL operator, etc. Despite its wide applicability, there are only few efficient implementations, and un- minimum union, complement union, data integration, data quality til now, minimum union is not a relational database primitive. This paper fills this gap as we present implementations of sub- 1. INTRODUCTION sumption that serve as a building block for minimum union. Fur- thermore, we consider this operator as database primitive and show Data integration is the process of providing users of an integrated how to perform optimization of query plans in presence of sub- information system with a unified view of several data sources. sumption and minimum union through rule-based plan transforma- Three main challenges in data integration are (1) to transform the tions. Experiments on both artificial and real world data show that data stored in the sources to the target schema (schema match- our algorithms outperform existing algorithms used for subsump- ing [22] and mapping [14]), (2) to match object representations tion in terms of runtime and they scale to large volumes of data. from different sources representing the same real-world object (du- In the context of data integration, we observe that performing plicate detection [8]), and (3) to combine several existing repre- data fusion calls for more than subsumption and minimum union. sentations of one real world object into a single consistent repre- Therefore, another contribution of this paper is the definition of sentation (data fusion [3]). In this last step, which is the focus of the complementation and complement union operators. Intuitively, this paper, special care must be taken when handling data conflicts these allow to merge tuples that have complementing values and between the different object representations. thus eliminate unnecessary null-values. We focus on two alternative operators, namely minimum union and complement union. Both aim at resolving a special type of data conflict, called uncertainty. Intuitively, the operators consider cases where a concrete value in one tuple conflicts with a NULL value of ∗Research was partially performed while at Hasso-Plattner-Institut. another tuple, and replaces the NULL value with the NON-NULL yResearch was partially performed while at Hasso-Plattner-Institut value when merging the tuples. and IBM Almaden. Minimum union combines an outer union with the removal of tuples that are contained in other tuples, so called subsumed tu- ples [12]. For instance, tuple t1 = (a; b; c) subsumes tuple t2 = (a; b; ?), where ? denotes a NULL value. When applying subsumption, t2 is removed. This operator has been widely used Permission to make digital or hard copies of all or part of this work for in the literature [11, 12, 14], however it lacks efficient and gener- personal or classroom use is granted without fee provided that copies are ally applicable implementations of the subsumption part, a gap this not made or distributed for profit or commercial advantage and that copies paper aims to fill. bear this notice and the full citation on the first page. To copy otherwise, to Complement union combines object representations by first com- republish, to post on servers or to redistribute to lists, requires prior specific puting the outer union and then combining tuples that complement permission and/or a fee. EDBT 2010, March 22–26, 2010, Lausanne, Switzerland. each other. Consider above t2 and a tuple t3 = (a; ?; c): t2 and Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00 t3 complement each other and combine to a single tuple (a; b; c) 513 Amazon.com: Comme Si de Rien N'Etait: Carla Bruni: Music 9/1/09 2:05 PM Result 2 when complementation is applied. To the best of our knowledge, B001AY2P26 Amazon.com: Comme Si de Rien N'Etait: Carla Bruni: Music 9/1/09 2:05 PM FREE 2-Day Shipping on college essentials this is the first proposal of an operator with these semantics. Hello. Sign in to get personalized recommendations. New customer? Start here. Sponsored by Canon Printers FREE 2-Day Shipping on college essentials Hello. Sign in to get personalized recommendations. New customer? Start here. Sponsored by Canon Printers Your Amazon.com | Today's DealsYour | Gifts & Wish Amazon.com Lists | Gift Cards | Today'sYour Account Deals | Help | Gifts & Wish Lists | Gift Cards Your Account | Help Police Hospital Shop All Departments Search Music Cart Wish List tid Name DOB Sex Address tid Name DOB Sex Blood ShopMusic All DepartmentsAdvanced Search Browse Genres New ReleasesSearchTop Sellers Music DealsMusicMusic You Should Hear Music Essentials MP3 Downloads Cart Wish List Result 1 See buying choices for this item toResult see if it's one of3 the millions that are eligible for Amazon Prime. 1 Miller 7/7/59 m 12 Main 4 Peters 1/1/53 AB ⊥ B001B9ZSO2 B001B16PGK Miller 12 Main Music Comme Si de RienAdvanced N'Etait [IMPORT] Search Browse Genres New Releases Top Sellers Music Deals Music You Should Hear Music Essentials MP3 Downloads 2 ⊥ ⊥ 5 Peters 1/1/53 m ⊥ Carla Bruni 8 used & new from $19.98 (24 customer reviews) | More about this product 3 Peters 1/1/53 m 34 First 6 Miller ⊥ f B See buying choices for this item to see if it's one of the millions that are eligible for Amazon Prime. Have one to sell? (1) Schema matching + outer union 7 Miller 7/7/59 m O Available from these sellers. + duplicate detection 5 new from $19.98 3 used from $36.00 Available to Download Now oid tid Name DOB Sex Address Blood Buy the MP3 album for $9.49 at the AmazonComme MP3 Si de Rien N'Etait [IMPORT] 1 1 Miller 7/7/59 m 12 Main ⊥ Downloads store. Carla Bruni Buy the MP3 album for $9.49 8 used & new from $19.98 1 2 Miller ⊥ ⊥ 12 Main ⊥ Result 5 Result 4 (24 customer reviews) | More about this product Free MP3 Samplers and Up to 30% off CDs See larger image and other views Download over two dozen free MP3 samplers and shop 2 3 Peters 1/1/53 m 34 First B001BN1V9O B001JINDU6hundreds of CDs at up to 30% off at our World Music Festival Share with Friends ⊥ event. Savings available for a limited time only. Shop now. 2 4 Peters 1/1/53 ⊥ ⊥ AB Have one to sell? Amazon.com:(a) Comme Relationship Si De Rien N'Etait: Carla Bruni: Music between five representations9/1/09 2:56 PM of the 2008 Share your own customer images Available from these sellers. 2 5 Peters 1/1/53 m ⊥ ⊥ Amazon.com: Comme Si de Rien N'Etait: Carla Bruni: Music 9/1/09 2:05 PM Miller f B Listen to samples 1 6 ⊥ ⊥ ImportAmazon.com: Comme Si CD De Rien N'Etait: “Comme Carla Bruni: Music si de RienFREE n’Etait” 2-Day Shipping on college essentials by Carla9/1/09 2:56 PM Bruni. Hello. Sign in to get personalized recommendations. New customer? Start here. FREE 2-Day Shipping on college essentials SponsoredHello. by Canon Sign inPrinters to get personalized recommendations. New customer? Start here. Amazon's Carla Bruni Store Sponsored by Canon Printers (2.1) Fusion using 1 7 Miller 7/7/59 m O (2.2) Fusion using Your Amazon.com | Today's Deals | Gifts & Wish Lists | Gift Cards Your Account | Help ⊥ Dashed arrows signify that the source isYour Amazon.com subsumed | Today's Deals | Gifts by & Wish Liststhe | Gift Cards Your Account | Help FindFREE all 2-Day the ShippingCDs, MP3s, on college and vinyl, essentials plus photos, videos, biographies, discussions, and more. Shop All Departments SearchHello.Music Sign in to get personalized recommendations. New customer?Shop Start All here Departments . Cart SearchSponsoredWishMusic List by Canon Printers Cart Wish List subsumption complementation 5 new from $19.98 3 used from $36.00 Your Amazon.com | Today's Deals | Gifts & Wish Lists | Gift Cards Your Account | Help Musictarget, whereasAdvanced Search Browse solid Genres New Releases edgesTop Sellers Music represent Deals MusicMusic You Should Hear› complementation.VisitMusic Amazon'sEssentialsAdvancedMP3 SearchCarla Downloads BruniBrowse GenresStore New Releases Top Sellers Music Deals Music You Should Hear Music Essentials MP3 Downloads oid tid Name DOB Sex Address Blood oid tid Name DOB Sex Address Blood Shop All DepartmentsThis item is not eligibleSearch for AmazonMusic Prime, but millions of other items are. Join Amazon Prime today. Already a member? Sign in.See buyingCart choices forWish this item List to see if it's one of the millions that are eligible for Amazon Prime. Available to Download Now 1 1+2 Miller 7/7/59 m 12 Main ⊥ 1 1+7 Miller 7/7/59 m 12 Main O Music AdvancedComme Search SiBrowse De GenresRien N'EtaitNew Releases [IMPORT]Top Sellers Music Deals Music You Should Hear Music EssentialsComme MP3Si deDownloads Rien N'Etait [IMPORT] Buy the MP3 album for $9.49 at the Amazon MP3 Get it for less! Carla Bruni (Artist) Carla Bruni 8 used & new from $19.98 This item is not eligible for Amazon Prime, but millions of other items are.
Recommended publications
  • TOPOLOGY and ITS APPLICATIONS the Number of Complements in The
    TOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 55 (1994) 101-125 The number of complements in the lattice of topologies on a fixed set Stephen Watson Department of Mathematics, York Uniuersity, 4700 Keele Street, North York, Ont., Canada M3J IP3 (Received 3 May 1989) (Revised 14 November 1989 and 2 June 1992) Abstract In 1936, Birkhoff ordered the family of all topologies on a set by inclusion and obtained a lattice with 1 and 0. The study of this lattice ought to be a basic pursuit both in combinatorial set theory and in general topology. In this paper, we study the nature of complementation in this lattice. We say that topologies 7 and (T are complementary if and only if 7 A c = 0 and 7 V (T = 1. For simplicity, we call any topology other than the discrete and the indiscrete a proper topology. Hartmanis showed in 1958 that any proper topology on a finite set of size at least 3 has at least two complements. Gaifman showed in 1961 that any proper topology on a countable set has at least two complements. In 1965, Steiner showed that any topology has a complement. The question of the number of distinct complements a topology on a set must possess was first raised by Berri in 1964 who asked if every proper topology on an infinite set must have at least two complements. In 1969, Schnare showed that any proper topology on a set of infinite cardinality K has at least K distinct complements and at most 2” many distinct complements.
    [Show full text]
  • Determinacy in Linear Rational Expectations Models
    Journal of Mathematical Economics 40 (2004) 815–830 Determinacy in linear rational expectations models Stéphane Gauthier∗ CREST, Laboratoire de Macroéconomie (Timbre J-360), 15 bd Gabriel Péri, 92245 Malakoff Cedex, France Received 15 February 2002; received in revised form 5 June 2003; accepted 17 July 2003 Available online 21 January 2004 Abstract The purpose of this paper is to assess the relevance of rational expectations solutions to the class of linear univariate models where both the number of leads in expectations and the number of lags in predetermined variables are arbitrary. It recommends to rule out all the solutions that would fail to be locally unique, or equivalently, locally determinate. So far, this determinacy criterion has been applied to particular solutions, in general some steady state or periodic cycle. However solutions to linear models with rational expectations typically do not conform to such simple dynamic patterns but express instead the current state of the economic system as a linear difference equation of lagged states. The innovation of this paper is to apply the determinacy criterion to the sets of coefficients of these linear difference equations. Its main result shows that only one set of such coefficients, or the corresponding solution, is locally determinate. This solution is commonly referred to as the fundamental one in the literature. In particular, in the saddle point configuration, it coincides with the saddle stable (pure forward) equilibrium trajectory. © 2004 Published by Elsevier B.V. JEL classification: C32; E32 Keywords: Rational expectations; Selection; Determinacy; Saddle point property 1. Introduction The rational expectations hypothesis is commonly justified by the fact that individual forecasts are based on the relevant theory of the economic system.
    [Show full text]
  • 180: Counting Techniques
    180: Counting Techniques In the following exercise we demonstrate the use of a few fundamental counting principles, namely the addition, multiplication, complementary, and inclusion-exclusion principles. While none of the principles are particular complicated in their own right, it does take some practice to become familiar with them, and recognise when they are applicable. I have attempted to indicate where alternate approaches are possible (and reasonable). Problem: Assume n ≥ 2 and m ≥ 1. Count the number of functions f :[n] ! [m] (i) in total. (ii) such that f(1) = 1 or f(2) = 1. (iii) with minx2[n] f(x) ≤ 5. (iv) such that f(1) ≥ f(2). (v) that are strictly increasing; that is, whenever x < y, f(x) < f(y). (vi) that are one-to-one (injective). (vii) that are onto (surjective). (viii) that are bijections. (ix) such that f(x) + f(y) is even for every x; y 2 [n]. (x) with maxx2[n] f(x) = minx2[n] f(x) + 1. Solution: (i) A function f :[n] ! [m] assigns for every integer 1 ≤ x ≤ n an integer 1 ≤ f(x) ≤ m. For each integer x, we have m options. As we make n such choices (independently), the total number of functions is m × m × : : : m = mn. (ii) (We assume n ≥ 2.) Let A1 be the set of functions with f(1) = 1, and A2 the set of functions with f(2) = 1. Then A1 [ A2 represents those functions with f(1) = 1 or f(2) = 1, which is precisely what we need to count. We have jA1 [ A2j = jA1j + jA2j − jA1 \ A2j.
    [Show full text]
  • Set Difference and Symmetric Difference of Fuzzy Sets
    Preliminaries Symmetric Dierence Set Dierence and Symmetric Dierence of Fuzzy Sets N.R. Vemuri A.S. Hareesh M.S. Srinath Department of Mathematics Indian Institute of Technology, Hyderabad and Department of Mathematics and Computer Science Sri Sathya Sai Institute of Higher Learning, India Fuzzy Sets Theory and Applications 2014, Liptovský Ján, Slovak Republic Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Outline 1 Preliminaries Introduction Earlier work 2 Symmetric Dierence Denition Examples Properties Applications Future Work References Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Classical set theory Set operations Union- [ Intersection - \ Complement - c Dierence -n Symmetric dierence - ∆ .... Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Classical set theory Set operations Union- [ Intersection - \ Complement - c Dierence -n Symmetric dierence - ∆ .... Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Classical set theory Set operations Union- [ Intersection - \ Complement - c Dierence -n Symmetric dierence - ∆ .... Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Classical set theory Set operations Union- [ Intersection - \ Complement - c Dierence -n Symmetric dierence - ∆ .... Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries
    [Show full text]
  • E. A. Emerson and C. S. Jutla, Tree Automata, Mu-Calculus, And
    Tree Automata MuCalculus and Determinacy Extended Abstract EA Emerson and CS Jutla The University of Texas at Austin IBM TJ Watson Research Center Abstract that tree automata are closed under disjunction pro jection and complementation While the rst two We show that the prop ositional MuCalculus is eq are rather easy the pro of of Rabins Complemen uivalent in expressivepower to nite automata on in tation Lemma is extraordinarily complex and di nite trees Since complementation is trivial in the Mu cult Because of the imp ortance of the Complemen Calculus our equivalence provides a radically sim tation Lemma a numb er of authors have endeavored plied alternative pro of of Rabins complementation and continue to endeavor to simplify the argument lemma for tree automata which is the heart of one HR GH MS Mu Perhaps the b est of the deep est decidability results We also showhow known of these is the imp ortant work of Gurevich MuCalculus can b e used to establish determinacy of and Harrington GH which attacks the problem innite games used in earlier pro ofs of complementa from the standp oint of determinacy of innite games tion lemma and certain games used in the theory of While the presentation is brief the argument is still online algorithms extremely dicult and is probably b est appreciated Intro duction y the page supplementofMonk when accompanied b Mon We prop ose the prop ositional Mucalculus as a uniform framework for understanding and simplify In this pap er we present a new enormously sim ing the imp ortant and technically challenging
    [Show full text]
  • Naïve Set Theory Basic Definitions Naïve Set Theory Is the Non-Axiomatic Treatment of Set Theory
    Naïve Set Theory Basic Definitions Naïve set theory is the non-axiomatic treatment of set theory. In the axiomatic treatment, which we will only allude to at times, a set is an undefined term. For us however, a set will be thought of as a collection of some (possibly none) objects. These objects are called the members (or elements) of the set. We use the symbol "∈" to indicate membership in a set. Thus, if A is a set and x is one of its members, we write x ∈ A and say "x is an element of A" or "x is in A" or "x is a member of A". Note that "∈" is not the same as the Greek letter "ε" epsilon. Basic Definitions Sets can be described notationally in many ways, but always using the set brackets "{" and "}". If possible, one can just list the elements of the set: A = {1,3, oranges, lions, an old wad of gum} or give an indication of the elements: ℕ = {1,2,3, ... } ℤ = {..., -2,-1,0,1,2, ...} or (most frequently in mathematics) using set-builder notation: S = {x ∈ ℝ | 1 < x ≤ 7 } or {x ∈ ℝ : 1 < x ≤ 7 } which is read as "S is the set of real numbers x, such that x is greater than 1 and less than or equal to 7". In some areas of mathematics sets may be denoted by special notations. For instance, in analysis S would be written (1,7]. Basic Definitions Note that sets do not contain repeated elements. An element is either in or not in a set, never "in the set 5 times" for instance.
    [Show full text]
  • Regularity Properties and Determinacy
    Regularity Properties and Determinacy MSc Thesis (Afstudeerscriptie) written by Yurii Khomskii (born September 5, 1980 in Moscow, Russia) under the supervision of Dr. Benedikt L¨owe, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: August 14, 2007 Dr. Benedikt L¨owe Prof. Dr. Jouko V¨a¨an¨anen Prof. Dr. Joel David Hamkins Prof. Dr. Peter van Emde Boas Brian Semmes i Contents 0. Introduction............................ 1 1. Preliminaries ........................... 4 1.1 Notation. ........................... 4 1.2 The Real Numbers. ...................... 5 1.3 Trees. ............................. 6 1.4 The Forcing Notions. ..................... 7 2. ClasswiseConsequencesofDeterminacy . 11 2.1 Regularity Properties. .................... 11 2.2 Infinite Games. ........................ 14 2.3 Classwise Implications. .................... 16 3. The Marczewski-Burstin Algebra and the Baire Property . 20 3.1 MB and BP. ......................... 20 3.2 Fusion Sequences. ...................... 23 3.3 Counter-examples. ...................... 26 4. DeterminacyandtheBaireProperty.. 29 4.1 Generalized MB-algebras. .................. 29 4.2 Determinacy and BP(P). ................... 31 4.3 Determinacy and wBP(P). .................. 34 5. Determinacy andAsymmetric Properties. 39 5.1 The Asymmetric Properties. ................. 39 5.2 The General Definition of Asym(P). ............. 43 5.3 Determinacy and Asym(P). ................. 46 ii iii 0. Introduction One of the most intriguing developments of modern set theory is the investi- gation of two-player infinite games of perfect information. Of course, it is clear that applied game theory, as any other branch of mathematics, can be modeled in set theory. But we are talking about the converse: the use of infinite games as a tool to study fundamental set theoretic questions.
    [Show full text]
  • Set (Mathematics) from Wikipedia, the Free Encyclopedia
    Set (mathematics) From Wikipedia, the free encyclopedia A set in mathematics is a collection of well defined and distinct objects, considered as an object in its own right. Sets are one of the most fundamental concepts in mathematics. Developed at the end of the 19th century, set theory is now a ubiquitous part of mathematics, and can be used as a foundation from which nearly all of mathematics can be derived. In mathematics education, elementary topics such as Venn diagrams are taught at a young age, while more advanced concepts are taught as part of a university degree. Contents The intersection of two sets is made up of the objects contained in 1 Definition both sets, shown in a Venn 2 Describing sets diagram. 3 Membership 3.1 Subsets 3.2 Power sets 4 Cardinality 5 Special sets 6 Basic operations 6.1 Unions 6.2 Intersections 6.3 Complements 6.4 Cartesian product 7 Applications 8 Axiomatic set theory 9 Principle of inclusion and exclusion 10 See also 11 Notes 12 References 13 External links Definition A set is a well defined collection of objects. Georg Cantor, the founder of set theory, gave the following definition of a set at the beginning of his Beiträge zur Begründung der transfiniten Mengenlehre:[1] A set is a gathering together into a whole of definite, distinct objects of our perception [Anschauung] and of our thought – which are called elements of the set. The elements or members of a set can be anything: numbers, people, letters of the alphabet, other sets, and so on.
    [Show full text]
  • 1 Basics About Sets
    Math 20, Probability Spring 2018 S. Nanda SET THEORY 1 BASICS ABOUT SETS Probability theory uses the language of sets. As we have seen probability is defined and calculated for sets. This is a review of some basic concepts from set theory that are used in this class. Definition: A set is a collection of some items (elements). We often use capital letters to denote a set. To define a set we can list all the elements, or describe what the set contains in curly brackets. For example • a set A consists of the two elements | and ~. We write A = f|; ~g: • a set of positive even integers can be written thus: A = f2; 4; 6; 8;:::g where the ::: stand for all the subsequent even integers. We could also write A = f2k j k 2 Z+g. We always use curly brackets to denote the collection of elements in a set. To say that a belongs to A, we write a 2 A. To say that an element does not belong to a set, we use 2=. For example, we may write 1 2= A if A is the set of even integers. Note that ordering does not matter, so the two sets f|; ~g and f~; |g are equal. Some important sets used in math are given below. • The set of natural numbers, N = f1; 2; 3;:::g: • The set of integers, Z = f:::; −3; −2; −1; 0; 1; 2; 3;:::g: • The set of rational numbers Q. • The set of real numbers R: We can also define a set by mathematically stating the properties satisfied by the elements in the set.
    [Show full text]
  • DETERMINACY for MEASURES 1. Introduction We Say That a Positive
    DETERMINACY FOR MEASURES MISHKO MITKOVSKIy AND ALEXEI POLTORATSKIz Abstract. For a given finite positive measure we determine the minimal information that is needed from its Fourier transform to determine the measure completely. In particular, we show that if the support of a measure doesn't contain a sequence of Beurling-Malliavin interior density d > 0 then the interval of determinacy for this measure must be of length larger than πd. As a consequence, we provide a sharp lower estimate of the rate of oscillation of high pass signals in terms of their spectral gap. This gives a considerably shorter and more informative proof of the estimate previously obtained by A. Eremenko and D. Novikov. 1. Introduction We say that a positive finite measure µ is a-determinate if there exists no other positive finite measure ν such that their Fourier transforms coincide on [−a; a], i. e., Z Z µ^(x) = eixtdµ(t) = eixtdν(t) =ν ^(x) for all x 2 [−a; a]. It is easy to see that this definition does not depend on the interval [−a; a], but only on its length. One of the main problems that we consider here is the following. Problem 1.1. Suppose that we are given a finite positive measure µ. For a given a > 0, how can we tell whether µ is a-determinate? This is the analog of the determinacy part of the classical moment problem. The later problem has received a lot of attention throughout the years. Still it appears that no explicit solution is known yet even in the classical polynomial case.
    [Show full text]
  • A Workshop for High School Students on Naive Set Theory
    A WORKSHOP FOR HIGH SCHOOL STUDENTS ON NAIVE SET THEORY SVEN-AKE WEGNER a April 16, 2014 Abstract. In this article we present the prototype of a workshop on naive set theory designed for high school students in or around the seventh year of primary education. Our concept is based on two events which the author organized in 2006 and 2010 for students of elementary school and high school, respectively. The article also includes a practice report on the two workshops. 1. Introduction Events for high school students or students of elementary school in altering configurations and with different aims are a regular component of modern university teaching portfolio. The importance of events that supplement regular classes on all levels of school education increases constantly. In order to support and encourage interested students and to attract prospective university students the universities and the schools organize events such as open days, information sessions, workshops etc. When planning an event of the above type, it is a natural question, which topic should be discussed and which teaching methods should come into play. In the case of a workshop for high school students at the university the topic should give an insight into academic life. In addition, the university teaching and learning concepts should be applied during the workshop in order to give the participants also an insight in their prospective student life. In the case of a course at high or elementary school, the topics covered by the usual curriculum should be supplemented and the participants should be challenged according to their personal level of performance—possibly in contrast to regular classes.
    [Show full text]
  • Dynamic Determinacy Analysis
    Dynamic Determinacy Analysis Max Schäfer ∗ Manu Sridharan Julian Dolby Frank Tip Nanyang Technological University IBM T.J. Watson Research Center University of Waterloo [email protected] {msridhar, dolby}@us.ibm.com [email protected] Abstract attempts to obtain useful analysis results. In practice, however, pro- We present an analysis for identifying determinate variables and grammers tend to use reflective features in a more disciplined fash- expressions that always have the same value at a given program ion. For instance, Bodden et al. [5] found that Java programs using point. This information can be exploited by client analyses and reflective class loading tend to always load the same classes, so by tools to, e.g., identify dead code or specialize uses of dynamic observing the classes loaded on some test runs, an analysis can gain language constructs such as eval, replacing them with equiva- a fairly complete picture of the program’s reflective behavior. Simi- lent static constructs. Our analysis is completely dynamic and only larly, Furr et al. [13] report that while dynamic features in Ruby are needs to observe a single execution of the program, yet the deter- used pervasively, most uses are “highly constrained” and can be re- minacy facts it infers hold for any execution. We present a formal placed with static alternatives, and Jensen et al. [17] show similar soundness proof of the analysis for a simple imperative language, results for uses of eval in JavaScript. and a prototype implementation that handles full JavaScript. Fi- This paper proposes a general approach for soundly identifying such constrained uses of dynamic language features.
    [Show full text]