GEO-REFERENCING RADAR PLOT DATA for the TRAFFIC INFORMATION SERVICE BROADCAST Jeffrey D

Total Page:16

File Type:pdf, Size:1020Kb

GEO-REFERENCING RADAR PLOT DATA for the TRAFFIC INFORMATION SERVICE BROADCAST Jeffrey D GEO-REFERENCING RADAR PLOT DATA FOR THE TRAFFIC INFORMATION SERVICE BROADCAST Jeffrey D. Giovino, The MITRE Corporation’s Center for Advanced Aviation Systems Development (CAASD), McLean, Virginia Abstract Background The Federal Aviation Administration (FAA) has gained some significant early operational ADS-B and TIS-B experience with the Traffic Information Service The FAA is enhancing the legacy radar Broadcast (TIS-B), both on the East Coast of the surveillance system with ADS-B. ADS-B provides United States, and in the Anchorage, Alaska area. Global Positioning System (GPS) positions of TIS-B, for the first time, puts geo-referenced radar aircraft for separation by controllers. It also data directly in the cockpit where, for a number of provides the unique capability of displaying reasons, the customer can be more sensitive to surveillance data received air-to-air on a cockpit inaccuracy and other anomalies than the traditional display for use by the pilot. During the initial period user (i.e., the air traffic controller). of ADS-B equipage, the FAA plans to supplement The Broadcast of Automatic Dependent this cockpit display capability with TIS-B. TIS-B is Surveillance (ADS-B) is the air-to-air transmission the ground-to-air uplink of primarily radar derived of aircraft position and velocity information. In surveillance data. Supplementing ADS-B with TIS- order for ground surveillance radar data and ADS-B B will allow the ADS-B equipped pilot to see the data to integrate seamlessly in the cockpit, a “truly remaining aircraft that have not yet equipped with geo-referenced” radar alignment technique is ADS-B. In short, the cockpit display will depict needed for radar to ADS-B correlation. Successful both ADS-B air-to-air and TIS-B (derived from synergy between ADS-B and radar requires accrued RADAR) from the ground uplink. Other sources of radar registration. Incorrect geo-referencing can TIS-B exist, such as the rebroadcast of ADS-B and result in a number of anomalies that can be difficult multi-lateration. These non-radar sources of TIS-B for both designers and pilots to deal with are beyond the scope of this paper. appropriately. This paper describes the process of geo- Need for Geo-Referencing Radar Data referencing radar data, describes some real world Radar measurements consist of range and limitations of the radar sensors, the anomalies that azimuth (ρ, θ ) plots. Range, or rho, is the distance can be encountered and their cause, techniques for from the radar antenna which is derived from mitigating these anomalies, and finally, this paper measuring the time between the transmitted and discusses one of the radar alignment techniques received radio frequency (RF) pulses. Azimuth, or used for the system providing TIS-B in Anchorage theta, generally, is the direction the antenna sail is for the FAA’s Capstone program. facing. Pressure altitude may also be available in This paper will attempt to bridge the gap the Mode C reply to a radar interrogation. Rho, between the ground systems and airborne systems. theta, pressure altitude (ρ, θ, h ) coordinates, Given the insight into the processing performed on relative to a radar, are very different from the ADS- the ground, the avionics developers may adapt or B GPS coordinates depicted in latitude, longitude, create new ways to overcome these issues. and both geometric and pressure altitudes. Simple geometry is used to convert from the radar centric polar coordinate system to the WGS- 84 coordinate system used by ADS-B. However, many subtleties exist in both physical and temporal dimensions. These subtleties are overcome through With the advent of ADS-B, two fundamental massaging the conversion algorithm with learned changes will take place: values in order to get the radar plot data as close to truth as possible. These variables are defined in the 1) The plot data will now needs to be truly “radar alignment technique” section of this paper. geo-referenced for the first time, matching the capability inherent in ADS-B as defined by WGS- Radar Alignment is the process of obtaining 84. the radar specific geographic attributes used to geo- reference the radar plot data. From an avionics and 2) Discontinuities at ARTCC boundaries pilots perspective, radar alignment is the process cannot be tolerated. All surveillance radars must used to determine the parameters necessary for be truly geo-referenced across ARTCC bounds. converting radar plot data to the same coordinates as used by ADS-B. From a ground infrastructure and Air Traffic Control (ATC) perspective, radar Limitations and Anomalies alignment is what enables adjacent radar plots to be TIS-B is used primarily for an aid to visual correlated as well as correlating the plot data with acquisition. TIS-B will give a pilot access to a ADS-B. This correlation process is what allows an wealth of powerful information. This means that ATC tracker to maintain a single track from pilots will want to use this information as part of multiple surveillance sources, such as, adjacent their decision making processes, even though, they overlapping surveillance radars and ADS-B sensors make these decisions without TIS-B today. This can be beneficial during instances, such as maintaining Radar Processing for ATC Use traffic awareness in an airport traffic pattern. It can also be a detriment. If this advisory information was Historically, each Air Route Traffic Control misleading, it might lead a pilot to deviate course Center (ARTCC) receives radar plots from the inappropriately to avoid traffic that is not really available radars in their respective air space. This there. ATC controllers are trained to identify such data is then converted to the local system plane for anomalies when they occur. They also have the tracking, flight plan association, and controller benefit of large scale displays. For the pilot display. With this technique, the radar alignment however, this is new territory. Both avionics parameters would only be adjusted enough for designers and pilots may encounter several smooth transition between the adjacent radars that anomalies, including: provide coverage for one ARTCC. The radars are aligned to each other and not to truth. The ATC display context is a little more forgiving than what Shadows is needed for TIS-B on a cockpit display. A pilot A “shadow” is the term used when a TIS-B using the cockpit display to visually acquire report is up-linked representing a target that has crossing traffic 1 mile ahead using a 5 mile range already transmitted its ADS-B position. The scale will generally be more sensitive to latency and avionics display depicts two targets flying in close positional errors than an air traffic controller proximity. The aircraft generating the ADS-B separating traffic at 3 miles using a 30 mile (or position receives its own TIS-B report which might larger) range scale. Furthermore, due to the be interpreted as an immediate danger. coarseness of the surveillance radar plot resolution, The TIS-B service will not contain messages the alignment process does not need to be that represent a target that has already transmitted completely thorough. It only needs to be good its ADS-B position. If implemented perfectly, this enough to fall within the radar error in will eliminate the existence of shadows. It will also measurement. This is completely acceptable, since ease the transition from primarily radar surveillance all of the data is still accurate relative to adjacent to ADS-B surveillance. As aircraft equipage of radar plots. If one is off, relative to the ATC ADS-B reaches completion, there is significantly automation system plane, they all are off by the less need for the TIS-B service. Therefore as time same amount and there is no separation concern. progresses, the load on the data-link channel will smoothly migrate from a majority of TIS-B messages to a majority of ADS-B messages. This perform noise filtering and position estimation on transition will keep the data-link channel utilization raw data. For trackers that do not have access to consistent in time. Doppler velocity, such as ATC trackers, this filtering process can not keep up with aircraft accelerations. Even a simple turn is acceleration in Pop ups one dimension. Current ATC Tracker filters treat A “pop up” occurs when a non ADS-B target acceleration as noise. This anomaly manifests itself climbs into coverage of a ground RADAR. The as a lag in the velocity vector and the reported track ground tracker will initiate its first track and start position is in error tangential to the turn. The figure transmitting. To the avionics this target will appear below shows an exaggeration of this condition. out of the blue. It is possible for this target to annoyingly appear and disappear while on the fringes of radar coverage RUNWAY Non-Transponder Equipped Aircraft Actual aircraft flight path At least in the near-term, TIS-B service will TIS-B report position and vector not include radar returns without mode-C (altitude) or radar returns only from primary, skin paint, radar. This means the pilot may find themselves near another aircraft that does not appear on the Figure 1. Tracker positional lag in a turn avionics display. In extreme cases this anomaly can result in If primary only, or non Mode C, returns are substantial position errors that could be seen by a included in the TIS-B service, the accuracy of the pilot. The example above is a tight turn in the position will be severely reduced. This means that, pattern on approach. The avionics display will show at close range, the target might be incorrectly the aircraft arcing well beyond the approach depicted on the display.
Recommended publications
  • Alaska Aviation Infrastructure and Funding Challenges—Meeting Future Safety, Capital and Technological Needs
    S. HRG. 109–530 ALASKA AVIATION INFRASTRUCTURE AND FUNDING CHALLENGES—MEETING FUTURE SAFETY, CAPITAL AND TECHNOLOGICAL NEEDS FIELD HEARING BEFORE THE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION UNITED STATES SENATE ONE HUNDRED NINTH CONGRESS SECOND SESSION JULY 5, 2006 Printed for the use of the Committee on Commerce, Science, and Transportation ( U.S. GOVERNMENT PRINTING OFFICE 29–336 PDF WASHINGTON : 2006 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2250 Mail: Stop SSOP, Washington, DC 20402–0001 VerDate 0ct 09 2002 11:25 Aug 22, 2006 Jkt 029336 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 S:\WPSHR\GPO\DOCS\29336.TXT JACKF PsN: JACKF SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION ONE HUNDRED NINTH CONGRESS SECOND SESSION TED STEVENS, Alaska, Chairman JOHN MCCAIN, Arizona DANIEL K. INOUYE, Hawaii, Co-Chairman CONRAD BURNS, Montana JOHN D. ROCKEFELLER IV, West Virginia TRENT LOTT, Mississippi JOHN F. KERRY, Massachusetts KAY BAILEY HUTCHISON, Texas BYRON L. DORGAN, North Dakota OLYMPIA J. SNOWE, Maine BARBARA BOXER, California GORDON H. SMITH, Oregon BILL NELSON, Florida JOHN ENSIGN, Nevada MARIA CANTWELL, Washington GEORGE ALLEN, Virginia FRANK R. LAUTENBERG, New Jersey JOHN E. SUNUNU, New Hampshire E. BENJAMIN NELSON, Nebraska JIM DEMINT, South Carolina MARK PRYOR, Arkansas DAVID VITTER, Louisiana LISA J. SUTHERLAND, Republican Staff Director CHRISTINE DRAGER KURTH, Republican Deputy Staff Director KENNETH R. NAHIGIAN, Republican Chief Counsel MARGARET L. CUMMISKY, Democratic Staff Director and Chief Counsel SAMUEL E. WHITEHORN, Democratic Deputy Staff Director and General Counsel LILA HARPER HELMS, Democratic Policy Director (II) VerDate 0ct 09 2002 11:25 Aug 22, 2006 Jkt 029336 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 S:\WPSHR\GPO\DOCS\29336.TXT JACKF PsN: JACKF C O N T E N T S Page Hearing held on July 5, 2006 ................................................................................
    [Show full text]
  • Evaluation of the Alaska Interagency Aviation Safety Initiative
    Evaluation of the Alaska Interagency Aviation Safety Initiative Prepared for: National Institute for Occupational Safety and Health Matt Berman Stephanie Martin Alexandra Hill Institute of Social and Economic Research University of Alaska Anchorage September 2005 Evaluation of the Alaska Interagency Aviation Safety Initiative 1. Introduction Aviation crashes are the leading cause of occupational fatalities in Alaska. From 1990 through 1999, aviation crashes in Alaska caused 106 work-related pilot deaths. This rate is nearly five times the rate for U.S. pilots as a whole.1 In 2000, Congress passed legislation aimed at reducing the number of occupational aviation fatalities in Alaska by 50 percent for the years 2000 through 2009. This legislation created an interagency initiative—the Alaska Aviation Safety Initiative—to improve safety in Alaska through the combined efforts of the Federal Aviation Administration (FAA), the National Transportation and Safety Board (NTSB), the NOAAs National Weather Service (NWS), and the National Institute for Occupational Safety and Health (NIOSH).2 The original proposal for the initiative was developed in September 1999, at the invitation of Alaska’s Senator Ted Stevens and the recommendation of Jim Hall, Chairman of the National Transportation Safety Board (NTSB). The initiative began as a three-year renewable commitment (FY 2000-2002) with NIOSH acting as the lead agency. Congress appropriated approximately $800,000 per year to fund the initiative. The four agencies have designated senior staff to function as the Alaska leadership team for the initiative. The team meets quarterly to plan, coordinate, and evaluate programs.3 The objectives of the Alaska Aviation Safety Initiative (the Initiative) are: • To reduce the number of aircraft crashes and deaths; • To promote aviation safety within the air transportation industry in Alaska through epidemiologic risk analysis of aircraft crashes; and • To evaluate aviation safety interventions.
    [Show full text]
  • Capstone Program Plan (Draft)
    DRAFT Federal Aviation Administration Alaskan Region Capstone Program Management Office 801 B Street, Suite 500 Anchorage, Alaska 99501 Capstone Program Plan DRAFT Version 3.0 12 June 2001 ALASKAN REGION Investment in Safety DRAFT PREAMBLE This document is designed as an umbrella program plan for the Federal Aviation Administration (FAA) Alaskan Region Capstone Program. The term umbrella, as it is used here, means the contents are intended to create high level objectives from which detailed work plans can be developed and accomplished. Each organization that accepts tasking under a particular objective or element takes with it the responsibility for developing a work plan, generating procedures for participants to use their element, and for recording and reporting the progress made toward validation. To accommodate future developments facilitated by the Capstone Program efforts, the number and the date of each successive program plan version is printed on the cover. This Capstone Program Plan version 3.0 is complimentary to Versions 1.0 and 2.0. These previous versions established the initial Capstone avionics and ground infrastructure. Version 3.0 documents the activities supporting the infrastructure in the Bethel/Yukon-Kuskokwim delta area, planning for expansion to Juneau/Southeast Alaska, and establishing ties to future implementation work, with the main focus on FY 2001. DRAFT EXECUTIVE SUMMARY The Capstone Program accelerates efforts to improve aviation safety and efficiency through a multi-year introduction of current and emerging concepts and technologies. According to information published by the National Institute for Occupational Safety and Health, accident rates in Alaska are elevated up to 400 percent above the national average.
    [Show full text]
  • 2005 Impact of Capstone Phase 1
    Enclosure 1 The Impact of Capstone Phase 1 Post-Transition Annual Report - 2005 July 2006 The MITRE Corporation’s Center for Advanced Aviation System Development Aviation Technology Division The contents of this material reflect the views of the author and/or the Director of the Center for Advanced Aviation System Development. Neither the Federal Aviation Administration nor the Department of Transportation makes any warranty or guarantee, or promise, expressed or implied, concerning the content or accuracy of the views expressed herein. © 2006 The MITRE Corporation. All rights reserved. The Impact of Capstone Phase 1 Post-Transition Annual Report – 2005 Acknowledgements The authors of this report gratefully acknowledge information provided by the following organizations or groups: Airlines, Operators and Pilots in the Y-K Delta; Johns Hopkins University, Applied Physics Laboratory Points of Contact University of Alaska Anchorage, Aviation Technology Division Paul Herrick, Associate Dean, Community and Technical College University of Alaska Anchorage 3211 Providence Drive Anchorage, Alaska 99504 Telephone: 907 786-6411 Fax: 907 786-6401 Email: [email protected] MITRE, Center for Advanced Aviation Systems Development Patrick Murphy, Safety Management 7515 Colshire Drive McLean, Virginia, 22102 Telephone: 703 983-7080 Fax: 703 983-6653 Email: [email protected] Page 2 of 141 © 2006 The MITRE Corporation. All rights reserved. The Impact of Capstone Phase 1 Post-Transition Annual Report – 2005 1 Introduction................................................................................................................. 5 1.1 Capstone Phase 1 Program ................................................................................. 5 1.2 Importance of Aviation in the Yukon-Kuskokwim Delta................................... 6 1.3 Traffic in the Y-K Delta...................................................................................... 6 1.4 Historical Accidents in the Y-K Delta...............................................................
    [Show full text]
  • FAA Capstone Program, Phase II Baseline Report Southeast Alaska
    FAA Capstone Program, Phase II Baseline Report Southeast Alaska Prepared by: Matthew Berman Wayne Daniels Jerry Brian Alexandra Hill Leonard Kirk Stephanie Martin Jason Seger Amy Wiita prepared for: Federal Aviation Administration Alaskan Region April 2003 Institute of Social and Economic Research University of Alaska 3211 Providence Drive Anchorage, Alaska 99508 This page intentionally left blank EXECUTIVE SUMMARY FAA CAPSTONE PROGRAM, PHASE II BASELINE REPORT • SOUTHEAST ALASKA Why This Study? This report describes air safety and aviation infrastructure in southeast Alaska as of December 31, 2002. It establishes a baseline to enable the University of Alaska Anchorage (UAA) to evaluate how the Capstone program affects aviation safety in the region. The Federal Aviation Administration (FAA) contracted with UAA’s Institute of Social and Economic Research and Aviation Technology Division to do a variety of training and evaluation tasks related to the Capstone program. That program is a joint effort of industry and the FAA to improve aviation safety and efficiency in selected regions of Alaska, through government-furnished avionics equipment and improvements in ground infrastructure. The name “Capstone” is derived from the way the program draws together concepts and recommendations in reports from the Radio Telecommunications Conference of America, the National Transportation Safety Board, the Mitre Corporation’s Center for Advanced Aviation System Development, and representatives of the Alaskan aviation industry. The first phase of the program began in southwest Alaska in 1999. Phase II began in March 2003. The Phase II area–the Capstone Southeast Alaska region– includes all of southeast Alaska and extends west along the Gulf of Alaska to Cordova.
    [Show full text]
  • Phase II Summary Report
    Capstone Phase II Implementation and Impact Assessment Summary Report, 2005 September 2006 The MITRE Corporation’s Center for Advanced Aviation System Development Aviation Technology Division 1 Acknowledgement The authors of this report gratefully acknowledge information provided to this report by the following organizations or groups: Airlines, Operators and Pilots in Southeast Alaska; Points of Contact University of Alaska Anchorage, Aviation Technology Division Paul Herrick, Associate Dean, Community and Technical College University of Alaska Anchorage 3211 Providence Drive Anchorage, Alaska 99504 Telephone: 907 786-6411 Fax: 907 786-6401 Email: [email protected] MITRE, Center for Advanced Aviation Systems Development Patrick Murphy, Safety Management 7515 Colshire Drive McLean, Virginia, 22102 Telephone: 703 983-7080 Fax: 703 983-6653 Email: [email protected] Capstone Phase II Implementation Progress Summary Report, 2005 2 Highlights of Capstone Phase II, 2005 During 2005 the Capstone program made some progress toward implementation of capabilities designed to improve commercial aviation in Southeast Alaska. Two thousand and five was the first year that some aircraft in the fleet were fully equipped and that there were sufficient GBTs in service to begin to realize the benefits of Capstone and ADS-B technology. Some of the 2005 Capstone highlights for Southeast Alaska follow: • The Ground Based Transceiver (GBT) network expanded in 2005 with ten GBTs on the developmental network and only four sites still to be brought on line. The continuing process of developing and certifying ground infrastructure components appears to be a factor in the delay of the full implementation of the Capstone Phase II program. • A total of 47 aircraft installations were completed in 2005 bringing the total aircraft equipped to 109.
    [Show full text]
  • Capstone Test and Evaluation Master Plan for Area Navigation (RNAV) Operations in Southeast Alaska
    Federal Aviation Administration Alaskan Region Capstone Program Office 801 B Street, Suite 300 Anchorage, Alaska 99501 Capstone Test and Evaluation Master Plan for Area Navigation (RNAV) Operations in Southeast Alaska DRAFT 30 September 2003 ALASKAN REGION Investment in Safety Preface The Capstone Program is sponsored by the Federal Aviation Administration’s (FAA’s) Alaskan Region and is conducted in cooperation with the FAA Safe Flight 21 Program. Capstone is a technology focused safety program in Alaska that seeks near-term safety and efficiency gains in aviation by accelerating implementation and use of modern technology. It links multiple programs and initiatives under a common umbrella for planning, coordination, focus, and direction. Capstone develops capabilities and requirements jointly with FAA, the Alaska community and aviation industry in a manner consistent with future National Airspace System (NAS) plans and concepts, and implements in a manner leading to self- equipage. Capstone is taking a phased implementation approach as industry directs and technologies mature. Starting in 1999 under Phase I, Capstone installed Global Positioning System (GPS) and Universal Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS-B) avionics suites in over 150 commercial aircraft, and provided a corresponding ground infrastructure serving the Yukon-Kuskokwim (Y-K) River Delta in and around Bethel, Alaska. During Phase II, which began in 2001 and is focused in Southeast (SE) Alaska, Capstone will incorporate technologies matured in the Y-K Delta, explore the use of other safety technologies, and build on lessons learned to further reduce accidents and fatalities. A main goal for Phase II is to provide a “more useable” Instrument Flight Rules (IFR) infrastructure in SE Alaska consistent with the National Transportation Safety Board (NTSB) safety study recommendation A-95-121.
    [Show full text]
  • Committee on Commerce, Science, and Transportation U.S
    Statement of Tom George Regional Representative Aircraft Owners and Pilots Association Before the COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION U.S. SENATE The Honorable Ted Stevens, Chairman The Honorable Daniel K. Inouye, Ranking Member Concerning Alaska Aviation Infrastructure and Funding Challenges – Meeting Future Safety, Capital, and Technological Needs July 5, 2006 Good morning. Thank you for the invitation to be here today to discuss aviation issues in Alaska. My name is Tom George, and I serve as the Aircraft Owners and Pilots Association’s (AOPA) Regional Representative for Alaska. AOPA represents more than 408,000 pilots and aircraft owners – more than two-thirds of all active pilots in the United States, including over 4,200 members in Alaska. Alaska, more than any other state, relies on general aviation as a major component of its transportation system. That is why some of the aviation funding proposals being debated back in Washington, D.C. would have a profound negative impact on Alaska’s residents. I’d like to share AOPA’s concerns in regards to this issue, highlight the initiatives that are improving aviation safety in the state, and outline the areas needing more attention. Protect the National Aviation System – Preserving the World’s Safest, Most Efficient Aviation System For the past year, debate over how to fund the Federal Aviation Administration (FAA) and its associated programs has been underway. The airlines and the FAA are advocating to replace aviation taxes with a user fee system, including taking the air traffic control system out from under the management oversight and budgetary control of the Congress.
    [Show full text]
  • A Survey of Automatic Dependent Surveillance-Broadcast (ADS-B) and Its Implementation in the United States Genevra Williams
    Journal of Air Law and Commerce Volume 74 | Issue 2 Article 5 2009 GPS for the Sky: A Survey of Automatic Dependent Surveillance-Broadcast (ADS-B) and Its Implementation in the United States Genevra Williams Follow this and additional works at: https://scholar.smu.edu/jalc Recommended Citation Genevra Williams, GPS for the Sky: A Survey of Automatic Dependent Surveillance-Broadcast (ADS-B) and Its Implementation in the United States, 74 J. Air L. & Com. 473 (2009) https://scholar.smu.edu/jalc/vol74/iss2/5 This Comment is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. GPS FOR THE SKY: A SURVEY OF AUTOMATIC DEPENDENT SURVEILLANCE-BROADCAST (ADS-B) AND ITS IMPLEMENTATION IN THE UNITED STATES GENEVRA WILLIAMS* D ESPITE ALL of the modern technological advances that everyday consumers enjoy, the United States' air traffic in- frastructure is relatively antiquated. A typical college student very well may carry a cell phone with a broadband internet con- nection, email, a camera, and Global Positioning (GPS) technol- ogy,1 and yet air traffic controller technology is so basic that it can only get an accurate read on an aircraft's position once every six to twelve seconds.2 "[Y]our child's Xbox video game system is more advanced than the air traffic control system that has been guiding aircraft in and out of increasingly crowded air- space since the 1950s."' 3 Demand for air travel is on the rise.
    [Show full text]
  • System Safety Evaluation, Capstone Phase I Implementation
    Flight Standards Service Alaskan Region, Flight Standards Division Report to the Manager, AAL-200 System Safety Evaluation Capstone Phase 1 Implementation Yukon Kuskokwim Delta, Western Alaska System Safety and Analysis Branch, AAL-240 March 5, 2003 Page 1 of 6 Executive Summary Purpose. To evaluate Alaskan Region, Flight Standards Division effectiveness and participation in the Capstone Phase I implementation and operational approval process. Background. Phase I of the Capstone project has been operational in Western Alaska since 1998. Twenty-seven FAR Part 135 operators have been using Capstone throughout the operating area with equipment installed in approximately 180 individual aircraft. In addition there are 15 Capstone equipped aircraft operating under Part 91. Phase I installations are primarily for VFR operations. An initial purpose of Capstone was to reduce aircraft accidents and fatalities due to controlled flight into terrain (CFIT), and a review of the implementation process by Mitre® Corporation shows an overall safety improvement in the Capstone Phase I operations area. Accident statistics, however, do not show a reduction in CFIT accidents and the safety improvement in Western Alaska could not be directly attributed to Capstone. Data also suggested that not all pilots have been trained effectively in the proper application of Capstone and may not be using the equipment as designed. Capstone Phase II involves the installation of additional advanced avionics and includes plans for IFR operations in Southeast Alaska. Phase II is scheduled to be implemented during the first quarter of calendar year 2003. Equipment installation is currently underway and training program modules are being evaluated for deployment to operators.
    [Show full text]
  • Alaska Iways Architecture Update
    Alaska Iways Architecture Update Task 2 (Part 4 of 6): Chapter 4: Operational Concept FINAL September 5, 2008 Prepared for: Alaska Department of Transportation and Public Facilities Prepared by: Telvent Farradyne Inc. Alaska Iways Architecture Chapter 4: Operational Concept TABLE OF CONTENTS 4 OPERATIONAL CONCEPT ..............................................................................................4-1 4.1 Introduction.........................................................................................................4-1 4.1.1 Purpose....................................................................................................4-1 4.2 Overview of Agency ITS Operations......................................................................4-2 4.2.1 State of Alaska.........................................................................................4-2 4.2.2 Municipality of Anchorage .....................................................................4-10 4.2.3 City of Fairbanks ....................................................................................4-14 4.2.4 City and Borough of Juneau...................................................................4-14 4.2.5 Federal Aviation Administration, Alaska Region ......................................4-14 4.2.6 National Weather Service, Alaska Region Headquarters ..........................4-15 4.2.7 University of Alaska................................................................................4-15 4.2.8 Elmendorf Air Force Base .......................................................................4-15
    [Show full text]
  • D58044.FINAL Combined Master Plan.TMM.0504.Mas.Ec
    FINAL REPORT MAY 2004 HAINES AIRPORT MASTER PLAN FINAL REPORT Prepared for: The Alaska Department of Transportation and Public Facilities Southeast Region Planning 6860 Glacier Highway Juneau, Alaska 99801 and Federal Aviation Administration Airports Division 222 West 7th Avenue, No. 14 Anchorage, Alaska 99513-7587 Prepared by: DOWL Engineers 4040 B Street Anchorage, Alaska 99503 W.O. D58044 May 2004 Haines Airport Master Plan May 2004 TABLE OF CONTENTS Page 1.0 INTRODUCTION............................................................................................................1 2.0 AVIATION FACILITIES INVENTORY........................................................................1 2.1 Airport Overview...........................................................................................................1 2.2 Airfield...........................................................................................................................7 2.3 Landside Facilities .......................................................................................................16 2.4 Maintenance and Operations .......................................................................................21 2.5 Surface Access and Parking.........................................................................................22 2.6 Seaplane Facilities .......................................................................................................23 3.0 AIRSPACE AND AIR TRAFFIC CONTROL..............................................................25
    [Show full text]