Custom-Tailored Molecules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Determinants of Channelrhodopsin Ion Selectivity
Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity Andre Berndta,1, Soo Yeun Leea,1, Jonas Wietekb,1, Charu Ramakrishnana, Elizabeth E. Steinbergc,d, Asim J. Rashide, Hoseok Kimf, Sungmo Parke, Adam Santoroe, Paul W. Franklande, Shrivats M. Iyera, Sally Paka, Sofie Ährlund-Richterf, Scott L. Delpa, Robert C. Malenkac,d, Sheena A. Josselyne, Marie Carlénf, Peter Hegemannb, and Karl Deisserotha,c,g,2 aDepartment of Bioengineering, Stanford University, Stanford, CA 94305; bInstitute for Biology, Experimental Biophysics, Humboldt Universität zu Berlin, D-10115 Berlin, Germany; cDepartment of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305; dNancy Pritzker Laboratory, Stanford University, Stanford, CA 94305; eProgram in Neurosciences and Mental Health, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada M5G 1X8; fDepartment of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden; and gHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2012. Contributed by Karl Deisseroth, November 30, 2015 (sent for review November 16, 2015; reviewed by Lily Yeh Jan and Anatol Kreitzer) The structure-guided design of chloride-conducting channelrhodop- Converging lines of work recently achieved the latter goal; resolving sins has illuminated mechanisms underlying ion selectivity of this the high-resolution structure of channelrhodopsin (7) allowed a remarkable family of light-activated ion channels. The first gener- principled structure-guided approach to engineering for chloride ation of chloride-conducting channelrhodopsins, guided in part by selectivity by testing an electrostatic model for pore function (8, 9). -
From Channelrhodopsins to Optogenetics ACCESS
Perspective OPEN From channelrhodopsins to optogenetics ACCESS From channelrhodopsins to optogenetics We did not expect that research on the and identified the role of Ca2þ influx in forming a single protein complex (Braun molecular mechanism of algal phototaxis flagellar beat frequency changes (Halldal, & Hegemann, 1999). or archaeal light-driven ion transport 1957, Schmidt & Eckert, 1976). Then Oleg In parallel, biophysicists had character- might interest readers of a medical Sineshchekov from Moscow State Uni- ized the precise nature of light-regulated journal when we conceived and per- versity recorded electrical light responses ion transport across cellular membranes. formed our experiments a decade ago. On from Haematococcus pluvialis, an alga Some of these studies started with the other hand, it did not escape our known for the production of the anti- investigations on animal rhodopsin and attention that channelrhodopsin is helping oxidant Astaxanthine (Litvin et al, 1978). even suggested rhodopsin-mediated an ever-increasing number of researchers Oleg used a suction pipette technique light-induced calcium entry with rhodop- to address their specific questions. For applied at the time by Dennis Baylor for sin itself as the carrier for calcium (Cone, example, the channelrhodopsin approach recording photocurrents from bovine 1972). Several decades later, we know is used to study the molecular events photoreceptor rods and cones. But Oleg’s that animal-type rhodopsins are G pro- during the induction of synaptic plasticity publication gave no hints about the type tein-coupled receptors indirectly modu- or to map long-range connections from of photoreceptor involved. Kenneth W. lating ion channel activity via signalling one side of the brain to the other, and to Foster however, a physicist at Mount molecules. -
Optogenetics: Using Light to Control the Brain by Edward S. Boyden, Ph.D
Optogenetics: Using Light to Control the Brain By Edward S. Boyden, Ph.D. Courtesy of the MIT McGovern Institute, Julie Pryor, Charles Jennings, Sputnik Animation, and Ed Boyden. Editor’s note: The brain is densely packed with interconnected neurons, but until about six years ago, it was difficult for researchers to isolate neurons and neuron types to determine their individual roles in brain processes. In 2004 however, scientists, including author Edward S. Boyden, Ph.D., found that the neural expression of a protein, channelrhodopsin-2 (ChR2), allowed light to activate or silence brain cells. This technology, now known as optogenetics, is helping scientists determine the functions of specific neurons in the brain, and could play a significant role in treating medical issues as diverse as sleep disorders and vision impairment. Article available online at http://dana.org/news/cerebrum/detail.aspx?id=34614 1 The brain is an incredibly densely wired computational circuit, made out of an enormous number of interconnected cells called neurons, which compute using electrical signals. These neurons are heterogeneous, falling into many different classes that vary in their shapes, molecular compositions, wiring patterns, and the ways in which they change in disease states. It is difficult to analyze how these different classes of neurons work together in the intact brain to mediate the complex computations that support sensations, emotions, decisions, and movements—and how flaws in specific neuron classes result in brain disorders. Ideally, one would study the brain using a technology that would enable the control of the electrical activity of just one type of neuron, embedded within a neural circuit, in order to determine the role that that type of neuron plays in the computations and functions of the brain. -
Optogenetic Investigation of Neural Circuits in Vivo
Review Optogenetic investigation of neural circuits in vivo Matthew E. Carter and Luis de Lecea Neurosciences Program and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA The recent development of light-activated optogenetic probes are activated by light (‘opto-’) and are genetically- probes allows for the identification and manipulation of encoded (‘-genetics’), allowing for the direct control specific neural populations and their connections in of specific populations of cells in vitro and in vivo awake animals with unprecedented spatial and temporal (Figure 1) [19–23]. The unprecedented spatial and tempo- precision. This review describes the use of optogenetic ral precision of these tools has allowed substantial progress tools to investigate neurons and neural circuits in vivo. in elucidating the structure and function of previously We describe the current panel of optogenetic probes, intractable neural circuits. methods of targeting these probes to specific cell types This review highlights the use of optogenetic probes to in the nervous system, and strategies of photostimulat- investigate neural circuits in vivo. We survey the diversity of ing cells in awake, behaving animals. Finally, we survey optogenetic tools in behavioral neuroscience, discussing the application of optogenetic tools to studying func- common strategies of cell-type specific targeting and in vivo tional neuroanatomy, behavior and the etiology and light delivery. We also describe common and theoretical treatment of various neurological disorders. methods for investigating neural circuits in awake, behav- ing animals and review some of the optogenetic studies that Optogenetics represent important progress in our understanding of neu- The mammalian brain is composed of billions of neurons ral circuits in normal behavior and disease. -
Han-Optogenetic-Review-ACS-2012.Pdf
Review pubs.acs.org/chemneuro In Vivo Application of Optogenetics for Neural Circuit Analysis Xue Han Biomedical Engineering Department, Boston University, Boston, Massachusetts, United States ABSTRACT: Optogenetics combines optical and genetic methods to rapidly and reversibly control neural activities or other cellular functions. Using genetic methods, specific cells or anatomical pathways can be sensitized to light through exogenous expression of microbial light activated opsin proteins. Using optical methods, opsin expressing cells can be rapidly and reversibly controlled by pulses of light of specific wavelength. With the high spatial temporal precision, optogenetic tools have enabled new ways to probe the causal role of specific cells in neural computation and behavior. Here, we overview the current state of the technology, and provide a brief introduction to the practical considerations in applying optogenetics in vivo to analyze neural circuit functions. KEYWORDS: Channelrhodopsin, archaerhodopsin, halorhodopsin, cell type specificity ptogenetics is a new field being rapidly established upon algae), and others that mediate a variety of cellular functions O the first demonstration of precise activation of neurons (for reviews on opsin structure and function, see refs 9 and 10). expressing a light-activated microbial opsin, channelrhodopsin- Most sensory rhodopsins function through recruiting intra- 2, with pulses of blue light in 2005.1 Microbial (type I) opsins cellular signaling molecules without direct ion transport are classes of monolithic light activated proteins, encoded by function. However, channelrhodopsins can mediate phototaxis small genes of under a kilobase long. Three major classes of as a light-gated cation channel at high light intensity and as a microbial opsins have been adapted to optogenetically control calcium channel at low light intensity.11 cellular functions, channelrhodopsins, halorhodopsins, and Microbial opsins share sequence homology and are archaerhodopsins (Figure 1). -
Perfecting Chr2
RESEARCH HIGHLIGHTS NEUROSCIENCE Perfecting ChR2 Two new reports describe variants of chan- but in a typical neurobiology experiment nelrhodopsin 2 with improved properties. the channel is thought to transport mostly Channelrhodopsin 2 (ChR2) has been a sodium ions. If one were to slightly increase godsend tool to study brain function. This the number of calcium ions transported, protein—originally found in tiny algae— the group reasoned, this could result in is a membrane-ion channel that opens up improvements in the channel’s performance in response to pulses of light, producing a for neuronal activation. change in the membrane potential of charged By modifying one residue in wild-type cells. Algae use ChR2 to signal the presence ChR2, the group generated a mutant with of light and trigger their swimming away or higher calcium permeability, called ‘CatCh’ toward it in the pond; neuroscientists, after (Kleinlogel et al., 2011). In nonneuronal ‘transplanting’ ChR2 into neurons, use it to Image of a neuron expressing the TC mutant, and cells, CatCh’s modest preference for cal- provoke light-triggered action potentials in its spiking trace. Image courtesy of T. Oertner. cium ions elicits approximately three times cells embedded deep in brain tissue. Not sur- higher currents and a slight slowdown of its prisingly, some of ChR2’s natural properties As with previous higher-current ChR2 kinetics compared to wild-type ChR2. But are not exactly ideal for this purpose. mutants, however, the closure of the TC surprisingly, when expressed in neurons, In particular, the channel’s small cur- mutant’s ion channel after a light stimulus is the group saw a nearly 70-fold increase in rents and slow kinetics still limit the poten- slightly slowed down. -
Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity
New Research Sensory and Motor Systems Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity Na Young Jun1 and Jessica A. Cardin2,3 https://doi.org/10.1523/ENEURO.0222-18.2019 1Department of Ophthalmology, Yale University, New Haven, CT 06520, 2Department of Neuroscience, Yale University, New Haven, CT 06520, and 3Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520 Abstract Several recently developed Channelrhodopsin (ChR) variants are characterized by rapid kinetics and reduced desensitization in comparison to the widely used ChR2. However, little is known about how varying opsin properties may regulate their interaction with local network dynamics. We compared evoked cortical activity in mice expressing three ChR variants with distinct temporal profiles under the CamKII promoter: Chronos, Chrimson, and ChR2. We assessed overall neural activation by measuring the amplitude and temporal progres- sion of evoked spiking. Using ␥-range (30–80 Hz) local field potential (LFP) power as an assay for local network engagement, we examined the recruitment of cortical network activity by each tool. All variants caused light-evoked increases in firing in vivo, but each demonstrated different temporal patterning of evoked activity. In addition, the three ChRs had distinct effects on cortical ␥-band activity. Our findings suggest the properties of optogenetic tools can substantially affect their efficacy in vivo, as well their engagement of circuit resonance. Key words: Channelrhodopsin; Chrimson; Chronos; cortex; ␥ oscillations; optogenetics Significance Statement Genetically modified opsins are some of the most widely used experimental tools in modern neuroscience. However, although these tools are well characterized at the single-cell level, little is known about how the varying properties of the opsins affect their interactions with active neural networks in vivo. -
On the Technology Prospects and Investment Opportunities for Scalable Neuroscience
On the Technology Prospects and Investment Opportunities for Scalable Neuroscience Thomas Dean1,2,3 Biafra Ahanonu3 Mainak Chowdhury3 Anjali Datta3 Andre Esteva3 Daniel Eth3 Nobie Redmon3 Oleg Rumyantsev3 Ysis Tarter3 1 Google Research, 2 Brown University, 3 Stanford University Contents 1 Executive Summary 1 2 Introduction 4 3 Evolving Imaging Technologies 6 4 Macroscale Reporting Devices 10 5 Automating Systems Neuroscience 14 6 Synthetic Neurobiology 16 7 Nanotechnology 20 8 Acknowledgements 28 A Leveraging Sequencing for Recording — Biafra Ahanonu 28 B Scalable Analytics and Data Mining — Mainak Chowdhury 32 C Macroscale Imaging Technologies — Anjali Datta 35 D Nanoscale Recording and Wireless Readout — Andre Esteva 38 E Hybrid Biological and Nanotechnology Solutions — Daniel Eth 41 F Advances in Contrast Agents and Tissue Preparation — Nobie Redmon 44 G Microendoscopy and Optically Coupled Implants — Oleg Rumyantsev 46 H Opportunities for Automating Laboratory Procedures — Ysis Tarter 49 i 1 Executive Summary Two major initiatives to accelerate research in the brain sciences have focused attention on devel- oping a new generation of scientific instruments for neuroscience. These instruments will be used to record static (structural) and dynamic (behavioral) information at unprecedented spatial and temporal resolution and report out that information in a form suitable for computational analysis. We distinguish between recording — taking measurements of individual cells and the extracellu- lar matrix — and reporting — transcoding, packaging and transmitting the resulting information for subsequent analysis — as these represent very different challenges as we scale the relevant technologies to support simultaneously tracking the many neurons that comprise neural circuits of interest. We investigate a diverse set of technologies with the purpose of anticipating their devel- opment over the span of the next 10 years and categorizing their impact in terms of short-term [1-2 years], medium-term [2-5 years] and longer-term [5-10 years] deliverables. -
Luminopsins Integrate Opto- and Chemogenetics by Using Physical and Biological Light Sources for Opsin Activation
Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation Ken Berglunda,b, Kara Clissoldc, Haofang E. Lic, Lei Wend,e, Sung Young Parkd, Jan Gleixnera, Marguerita E. Kleina, Dongye Luc, Joseph W. Barterc, Mark A. Rossic, George J. Augustined,e, Henry H. Yina,c,f,1, and Ute Hochgeschwendera,g,h,1 aDepartment of Neurobiology, Duke University, Durham, NC 27710; bDepartment of Neurosurgery, Emory University, Atlanta, GA 30322; cDepartment of Psychology and Neuroscience, Duke University, Durham, NC 27708; dCenter for Functional Connectomics, Korea Institute of Science and Technology, 39-1 Hawolgokdong, Seongbukgu, Seoul 136-791, Republic of Korea; eLee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553; fCenter for Cognitive Neuroscience, Duke University, Durham, NC 27708; gNeuroscience Program, Central Michigan University, Mt Pleasant, MI 48859; and hCollege of Medicine, Central Michigan University, Mt Pleasant, MI 48859 Edited by Richard W. Tsien, NYU Neuroscience Institute, New York, NY, and approved December 11, 2015 (received for review June 9, 2015) Luminopsins are fusion proteins of luciferase and opsin that allow peripheral bloodstream, luciferin reaches a target in the brain interrogation of neuronal circuits at different temporal and spatial because it crosses the blood–brain barrier (4). Light is generated by resolutions by choosing either extrinsic physical or intrinsic bi- the luciferase and then activates the opsin, resulting in activation ological light for its activation. Building on previous development (in case of channelrhodopsins) or inhibition (in case of proton or of fusions of wild-type Gaussia luciferase with channelrhodopsin, chloride pumps) of the target neurons. -
Novel Luciferase–Opsin Combinations for Improved Luminopsins
Received: 1 May 2017 | Revised: 15 August 2017 | Accepted: 16 August 2017 DOI: 10.1002/jnr.24152 RESEARCH ARTICLE Novel luciferase–opsin combinations for improved luminopsins Sung Young Park1 | Sang-Ho Song2,3 | Brandon Palmateer4,5 | Akash Pal4,5 | Eric D. Petersen4,5 | Gabrielle P. Shall4 | Ryan M. Welchko4 | Keiji Ibata6,7 | Atsushi Miyawaki6 | George J. Augustine1,2,3 | Ute Hochgeschwender4,5 1Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea 2Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 3Institute of Molecular and Cell Biology, Singapore 4Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan 5College of Medicine, Central Michigan University, Mt. Pleasant, Michigan 6Laboratory for Cell Function Dynamics, Brain Science Institute, Riken, Saitama, Japan 7School of Medicine, Keio University, Tokyo, Japan Correspondence Ute Hochgeschwender, Neuroscience Abstract Program and College of Medicine, Central Previous work has demonstrated that fusion of a luciferase to an opsin, to create a luminescent Michigan University, 1280 SE Campus opsin or luminopsin, provides a genetically encoded means of manipulating neuronal activity via Drive, CMED 2405, Mount Pleasant, both chemogenetic and optogenetic approaches. Here we have expanded and refined the versatility MI 48859. Email: [email protected] of luminopsin tools by fusing an alternative luciferase variant with high light emission, Gaussia lucif- erase mutant GLucM23, to depolarizing and -
Coherent Control of Optogenetic Switching by Stimulated Depletion
Coherent Control of Optogenetic Switching by Stimulated Depletion Quenching Zachary Quine1, Alexei Goun1, Karl Gerhardt, 2, Jeffrey Tabor2, Herschel Rabitz1 1Department of Chemistry, Princeton University 2Department of Bioengineering, Rice University October 29, 2018 Abstract Optogenetics is a revolutionary new field of biotechnology, achieving optical control over biological functions in living cells by genetically inserting light sensitive proteins into cellular signaling pathways. Applications of optogenetic switches are expanding rapidly, but the technique is hampered by spectral cross-talk: the broad absorption spectra of compatible biochemical chromophores limits the number of switches that can be independently controlled and restricts the dynamic range of each switch. In the present work we develop and implement a non-linear optical photoswitching capability, Stimulated Depletion Quenching (SDQ), is used to overcome spectral cross-talk by exploiting the molecules' unique dynamic response to ultrashort laser pulses. SDQ is employed to enhance the control of Cph8, a photo- reversible phytochrome based optogenetic switch designed to control gene expression in E. Coli bacteria. The Cph8 switch can not be fully converted to it's biologically inactive state (PFR) by linear photos- witching, as spectral cross-talk causes a reverse photoswitching reaction to revert to it back to the active state (PR). SDQ selectively halts this reverse reaction while allowing the forward reaction to proceed. arXiv:1810.11432v1 [q-bio.QM] 26 Oct 2018 The -
Chronic Neurovascular Dysfunction in a Preclinical Model of Repeated Mild Traumatic Brain Injury
Chronic Neurovascular Dysfunction in a Preclinical Model of Repeated Mild Traumatic Brain Injury by Conner Adams A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Medical Biophysics University of Toronto © Copyright by Conner Adams 2018 Chronic Neurovascular Dysfunction in a Preclinical Model of Repeated Mild Traumatic Brain Injury Conner Adams Master of Science Department of Medical Biophysics University of Toronto 2018 Abstract: Outcomes associated with repeated mild traumatic brain injury (mTBI) are considerably worse than those of a single mTBI. Despite higher prevalence relative to moderate injuries, the repeated mTBI’s pathological progression has been understudied. For moderate-to-severe TBI, metabolic mismatch has been identified as a key component in pathological progression, and hence amenable to therapeutic targeting. Here, I present a mouse model of repeated mTBI induced via three controlled cortical impacts delivered at three day intervals for purpose of probing the aspects of the neurovascular coupling in chronic repeated mTBI in Thy1-ChR2 mice. Resting cerebral blood flow and cerebrovascular reactivity were investigated via arterial spin labelling MRI, and intracranial electrophysiological measurements of evoked neuronal responses to optogenetic photostimulation were performed. Immunohistochemistry revealed alterations in vascular organization and astrocyte reactivity. This work provided the first insights into the neurophysiological alterations post repeated mTBI and enables new understanding of the associated cerebrovascular deficits. ii Acknowledgements I would like to thank Bojana for demonstrating true leadership throughout my time in the lab. As my supervisor, she taught me a great deal about science and enforced the importance of character and dedication in all facets of life.