Received: 1 May 2017 | Revised: 15 August 2017 | Accepted: 16 August 2017 DOI: 10.1002/jnr.24152 RESEARCH ARTICLE Novel luciferase–opsin combinations for improved luminopsins Sung Young Park1 | Sang-Ho Song2,3 | Brandon Palmateer4,5 | Akash Pal4,5 | Eric D. Petersen4,5 | Gabrielle P. Shall4 | Ryan M. Welchko4 | Keiji Ibata6,7 | Atsushi Miyawaki6 | George J. Augustine1,2,3 | Ute Hochgeschwender4,5 1Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea 2Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 3Institute of Molecular and Cell Biology, Singapore 4Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan 5College of Medicine, Central Michigan University, Mt. Pleasant, Michigan 6Laboratory for Cell Function Dynamics, Brain Science Institute, Riken, Saitama, Japan 7School of Medicine, Keio University, Tokyo, Japan Correspondence Ute Hochgeschwender, Neuroscience Abstract Program and College of Medicine, Central Previous work has demonstrated that fusion of a luciferase to an opsin, to create a luminescent Michigan University, 1280 SE Campus opsin or luminopsin, provides a genetically encoded means of manipulating neuronal activity via Drive, CMED 2405, Mount Pleasant, both chemogenetic and optogenetic approaches. Here we have expanded and refined the versatility MI 48859. Email:
[email protected] of luminopsin tools by fusing an alternative luciferase variant with high light emission, Gaussia lucif- erase mutant GLucM23, to depolarizing and