The 2-Length of a Finite Solvable Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Abelian Subgroups of Finitely Generated Metabelian
J. Group Theory 16 (2013), 695–705 DOI 10.1515/jgt-2013-0011 © de Gruyter 2013 On abelian subgroups of finitely generated metabelian groups Vahagn H. Mikaelian and Alexander Y. Olshanskii Communicated by John S. Wilson To Professor Gilbert Baumslag to his 80th birthday Abstract. In this note we introduce the class of H-groups (or Hall groups) related to the class of B-groups defined by P. Hall in the 1950s. Establishing some basic properties of Hall groups we use them to obtain results concerning embeddings of abelian groups. In particular, we give an explicit classification of all abelian groups that can occur as subgroups in finitely generated metabelian groups. Hall groups allow us to give a negative answer to G. Baumslag’s conjecture of 1990 on the cardinality of the set of isomorphism classes for abelian subgroups in finitely generated metabelian groups. 1 Introduction The subject of our note goes back to the paper of P. Hall [7], which established the properties of abelian normal subgroups in finitely generated metabelian and abelian-by-polycyclic groups. Let B be the class of all abelian groups B, where B is an abelian normal subgroup of some finitely generated group G with polycyclic quotient G=B. It is proved in [7, Lemmas 8 and 5.2] that B H, where the class H of countable abelian groups can be defined as follows (in the present paper, we will call the groups from H Hall groups). By definition, H H if 2 (1) H is a (finite or) countable abelian group, (2) H T K; where T is a bounded torsion group (i.e., the orders of all ele- D ˚ ments in T are bounded), K is torsion-free, (3) K has a free abelian subgroup F such that K=F is a torsion group with trivial p-subgroups for all primes except for the members of a finite set .K/. -
The Homology of Peiffer Products of Groups
New York Journal of Mathematics New York J. Math. 6 (2000) 55–71. The Homology of Peiffer Products of Groups W. A. Bogley and N. D. Gilbert Abstract. The Peiffer product of groups first arose in work of J.H.C. White- head on the structure of relative homotopy groups, and is closely related to problems of asphericity for two-complexes. We develop algebraic methods for computing the second integral homology of a Peiffer product. We show that a Peiffer product of superperfect groups is superperfect, and determine when a Peiffer product of cyclic groups has trivial second homology. We also introduce a double wreath product as a Peiffer product. Contents Introduction 55 1. The low-dimensional homology of products of subgroups 57 2. Twisted bilinear relations 60 3. The structure of SG∗H 61 4. Computations 63 References 70 Introduction Given two groups acting on each other by automorphisms, it is natural to ask whether these groups can be embedded in an overgroup in such a way that the given actions are realized by conjugation. If the actions are trivial, this can be done simply by forming the direct product of the two groups. In general, the question has a negative answer. One is led to the following construction. Let G and H be groups and suppose we are given fixed actions (g, h) 7→ gh and (h, g) 7→ hg of each group on the other. Received October 1, 1999. Mathematics Subject Classification. 20J05, 20E22, 20F05. Key words and phrases. homology, Peiffer product, asphericity, two-complex, double wreath product. -
Base Size of Finite Primitive Solvable Permutation Groups
Base size of finite primitive solvable permutation groups Ayan Maiti Under the supervision of Prof. Pal Hegedus A thesis presented for the partial fulfilment towards the degree of Masters of Science in Mathematics Mathematics and its Application Central European University Hungary Declaration of Authorship I, Ayan Maiti, declare that this thesis titled, "Base size of finite primitive solvable per- mutation groups" and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a masters degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Ayan Maiti Date: 20th May, 2016 1 Abstract The content of this thesis report is based on the bounds of the base size of affine type primitive permutation groups, the bound was conjectured by Pyber and later was proved by Akos Seress. The the primary focus of this thesis is to understand the basic idea and the proof given by Akos Seress. -
Minimal Generation of Transitive Permutation Groups
Minimal generation of transitive permutation groups Gareth M. Tracey∗ Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom October 30, 2017 Abstract This paper discusses upper bounds on the minimal number of elements d(G) required to generate a transitive permutation group G, in terms of its degree n, and its order G . In particular, we | | reduce a conjecture of L. Pyber on the number of subgroups of the symmetric group Sym(n). We also prove that our bounds are best possible. 1 Introduction A well-developed branch of finite group theory studies properties of certain classes of permutation groups as functions of their degree. The purpose of this paper is to study the minimal generation of transitive permutation groups. For a group G, let d(G) denote the minimal number of elements required to generate G. In [21], [7], [26] and [28], it is shown that d(G)= O(n/√log n) whenever G is a transitive permutation group of degree n 2 (here, and throughout this paper, “ log ” means log to the base 2). A beautifully ≥ constructed family of examples due to L. Kov´acs and M. Newman shows that this bound is ‘asymp- totically best possible’ (see Example 6.10), thereby ending the hope that a bound of d(G)= O(log n) could be proved. The constants involved in these theorems, however, were never estimated. We prove: arXiv:1504.07506v3 [math.GR] 30 Jan 2018 Theorem 1.1. Let G be a transitive permutation group of degree n 2. Then ≥ (1) d(G) cn ,where c := 1512660 log (21915)/(21915) = 0.920581 . -
Global Rigidity of Solvable Group Actions on S1 Lizzie Burslem Amie Wilkinson
ISSN 1364-0380 (on line) 1465-3060 (printed) 877 eometry & opology G T Volume 8 (2004) 877–924 Published: 5 June 2004 Global rigidity of solvable group actions on S1 Lizzie Burslem Amie Wilkinson Department of Mathematics, University of Michigan 2074 East Hall, Ann Arbor, MI 48109-1109 USA and Department of Mathematics, Northwestern University 2033 Sheridan Road, Evanston, IL 60208-2730 USA Email: [email protected], [email protected] Abstract In this paper we find all solvable subgroups of Diffω(S1) and classify their actions. We also investigate the Cr local rigidity of actions of the solvable Baumslag–Solitar groups on the circle. The investigation leads to two novel phenomena in the study of infinite group actions on compact manifolds. We exhibit a finitely generated group Γ and a manifold M such that: Γ has exactly countably infinitely many effective real-analytic actions on • M , up to conjugacy in Diffω(M); every effective, real analytic action of Γ on M is Cr locally rigid, for • some r 3, and for every such r, there are infinitely many nonconjugate, ≥ effective real-analytic actions of Γ on M that are Cr locally rigid, but not Cr−1 locally rigid. AMS Classification numbers Primary: 58E40, 22F05 Secondary: 20F16, 57M60 Keywords: Group action, solvable group, rigidity, Diffω(S1) Proposed:RobionKirby Received:26January2004 Seconded: Martin Bridson, Steven Ferry Accepted: 28 May 2004 c eometry & opology ublications G T P 878 Lizzie Burslem and Amie Wilkinson Introduction This paper describes two novel phenomena in the study of infinite group actions on compact manifolds. We exhibit a finitely generated group Γ and a manifold M such that: Γ has exactly countably infinitely many effective real-analytic actions on • M , up to conjugacy in Diffω(M); every effective, real analytic action of Γ on M is Cr locally rigid, for • some r 3, and for every such r, there are infinitely many nonconjugate, ≥ effective real-analytic actions of Γ on M that are Cr locally rigid, but not Cr−1 locally rigid. -
Bounds of Some Invariants of Finite Permutation Groups Hülya Duyan
Bounds of Some Invariants of Finite Permutation Groups H¨ulya Duyan Department of Mathematics and its Applications Central European University Budapest, Hungary CEU eTD Collection A dissertation presented for the degree of Doctor of Philosophy in Mathematics CEU eTD Collection Abstract Let Ω be a non-empty set. A bijection of Ω onto itself is called a permutation of Ω and the set of all permutations forms a group under composition of mapping. This group is called the symmetric group on Ω and denoted by Sym(Ω) (or Sym(n) or Sn where jΩj = n). A permutation group on Ω is a subgroup of Sym(Ω). Until 1850's this was the definition of group. Although this definition and the ax- iomatic definition are the same, usually what we first learn is the axiomatic approach. The reason is to not to restrict the group elements to being permutations of some set Ω. Let G be a permutation group. Let ∼ be a relation on Ω such that α ∼ β if and only if there is a transformation g 2 G which maps α to β where α; β 2 Ω. ∼ is an equivalence relation on Ω and the equivalence classes of ∼ are the orbits of G. If there is one orbit then G is called transitive. Assume that G is intransitive and Ω1;:::; Ωt are the orbits of G on Ω. G induces a transitive permutation group on each Ωi, say Gi where i 2 f1; : : : ; tg. Gi are called the transitive constituents of G and G is a subcartesian product of its transitive constituents. -
On Non-Solvable Camina Pairs ∗ Zvi Arad A, Avinoam Mann B, Mikhail Muzychuk A, , Cristian Pech C
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Journal of Algebra 322 (2009) 2286–2296 Contents lists available at ScienceDirect Journal of Algebra www.elsevier.com/locate/jalgebra On non-solvable Camina pairs ∗ Zvi Arad a, Avinoam Mann b, Mikhail Muzychuk a, , Cristian Pech c a Department of Computer Sciences and Mathematics, Netanya Academic College, University St. 1, 42365, Netanya, Israel b Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel c Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel article info abstract Article history: In this paper we study non-solvable and non-Frobenius Camina Received 27 September 2008 pairs (G, N). It is known [D. Chillag, A. Mann, C. Scoppola, Availableonline29July2009 Generalized Frobenius groups II, Israel J. Math. 62 (1988) 269–282] Communicated by Martin Liebeck that in this case N is a p-group. Our first result (Theorem 1.3) shows that the solvable residual of G/O (G) is isomorphic either Keywords: p e = Camina pair to SL(2, p ), p is a prime or to SL(2, 5), SL(2, 13) with p 3, or to SL(2, 5) with p 7. Our second result provides an example of a non-solvable and non- 5 ∼ Frobenius Camina pair (G, N) with |Op (G)|=5 and G/Op (G) = SL(2, 5).NotethatG has a character which is zero everywhere except on two conjugacy classes. Groups of this type were studies by S.M. Gagola [S.M. Gagola, Characters vanishing on all but two conjugacy classes, Pacific J. -
A Survey on Automorphism Groups of Finite P-Groups
A Survey on Automorphism Groups of Finite p-Groups Geir T. Helleloid Department of Mathematics, Bldg. 380 Stanford University Stanford, CA 94305-2125 [email protected] February 2, 2008 Abstract This survey on the automorphism groups of finite p-groups focuses on three major topics: explicit computations for familiar finite p-groups, such as the extraspecial p-groups and Sylow p-subgroups of Chevalley groups; constructing p-groups with specified automorphism groups; and the discovery of finite p-groups whose automorphism groups are or are not p-groups themselves. The material is presented with varying levels of detail, with some of the examples given in complete detail. 1 Introduction The goal of this survey is to communicate some of what is known about the automorphism groups of finite p-groups. The focus is on three topics: explicit computations for familiar finite p-groups; constructing p-groups with specified automorphism groups; and the discovery of finite p-groups whose automorphism groups are or are not p-groups themselves. Section 2 begins with some general theorems on automorphisms of finite p-groups. Section 3 continues with explicit examples of automorphism groups of finite p-groups found in the literature. This arXiv:math/0610294v2 [math.GR] 25 Oct 2006 includes the computations on the automorphism groups of the extraspecial p- groups (by Winter [65]), the Sylow p-subgroups of the Chevalley groups (by Gibbs [22] and others), the Sylow p-subgroups of the symmetric group (by Bon- darchuk [8] and Lentoudis [40]), and some p-groups of maximal class and related p-groups. -
Arxiv:1612.04280V2 [Math.FA] 11 Jan 2018 Oal Opc Group Compact Important Locally a Is Groups, Discrete for Especially Amenability, SB878)
WEAK AMENABILITY OF LIE GROUPS MADE DISCRETE SØREN KNUDBY Abstract. We completely characterize connected Lie groups all of whose countable subgroups are weakly amenable. We also provide a characteriza- tion of connected semisimple Lie groups that are weakly amenable. Finally, we show that a connected Lie group is weakly amenable if the group is weakly amenable as a discrete group. 1. Statement of the results Weak amenability for locally compact groups was introduced by Cowling and Haagerup in [11]. The property has proven useful as a tool in operator algebras going back to Haagerup’s result on the free groups [17], results on lattices on simple Lie groups and their group von Neumann algebras [11, 18], and more recently in several results on Cartan rigidity in the theory of von Neumann algebras (see e.g. [31, 32]). Due to its many applications in operator algebras, the study of weak amenability, especially for discrete groups, is important. A locally compact group G is weakly amenable if the constant function 1 on G can be approximated uniformly on compact subsets by compactly supported Herz-Schur multipliers, uniformly bounded in norm (see Section 2 for details). The optimal uniform norm bound is the Cowling–Haagerup constant (or the weak amenability constant), denoted here Λ(G). By now, weak amenability is quite well studied, especially in the setting of connected Lie groups. The combined work of [9, 11, 12, 15, 16, 18, 19] characterizes weak amenability for simple Lie groups. For partial results in the non-simple case, we refer to [10, 25]. We record the simple case here. -
A Classification of Clifford Algebras As Images of Group Algebras of Salingaros Vee Groups
DEPARTMENT OF MATHEMATICS TECHNICAL REPORT A CLASSIFICATION OF CLIFFORD ALGEBRAS AS IMAGES OF GROUP ALGEBRAS OF SALINGAROS VEE GROUPS R. Ablamowicz,M.Varahagiri,A.M.Walley November 2017 No. 2017-3 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505 A Classification of Clifford Algebras as Images of Group Algebras of Salingaros Vee Groups Rafa lAb lamowicz, Manisha Varahagiri and Anne Marie Walley Abstract. The main objective of this work is to prove that every Clifford algebra C`p;q is R-isomorphic to a quotient of a group algebra R[Gp;q] modulo an ideal J = (1 + τ) where τ is a central element of order 2. p+q+1 Here, Gp;q is a 2-group of order 2 belonging to one of Salingaros isomorphism classes N2k−1;N2k; Ω2k−1; Ω2k or Sk. Thus, Clifford al- gebras C`p;q can be classified by Salingaros classes. Since the group algebras R[Gp;q] are Z2-graded and the ideal J is homogeneous, the quotient algebras R[G]=J are Z2-graded. In some instances, the isomor- ∼ phism R[G]=J = C`p;q is also Z2-graded. By Salingaros Theorem, the groups Gp;q in the classes N2k−1 and N2k are iterative central products of the dihedral group D8 and the quaternion group Q8, and so they are extra-special. The groups in the classes Ω2k−1 and Ω2k are central products of N2k−1 and N2k with C2 × C2, respectively. The groups in the class Sk are central products of N2k or N2k with C4. Two algorithms to factor any Gp;q into an internal central product, depending on the class, are given. -
Rigidity of Some Abelian-By-Cyclic Solvable Group N Actions on T
RIGIDITY OF SOME ABELIAN-BY-CYCLIC SOLVABLE GROUP N ACTIONS ON T AMIE WILKINSON, JINXIN XUE Abstract. In this paper, we study a natural class of groups that act as affine trans- N formations of T . We investigate whether these solvable, \abelian-by-cyclic," groups N can act smoothly and nonaffinely on T while remaining homotopic to the affine actions. In the affine actions, elliptic and hyperbolic dynamics coexist, forcing a pri- ori complicated dynamics in nonaffine perturbations. We first show, using the KAM method, that any small and sufficiently smooth perturbation of such an affine action can be conjugated smoothly to an affine action, provided certain Diophantine condi- tions on the action are met. In dimension two, under natural dynamical hypotheses, we get a complete classification of such actions; namely, any such group action by Cr diffeomorphisms can be conjugated to the affine action by Cr−" conjugacy. Next, we show that in any dimension, C1 small perturbations can be conjugated to an affine action via C1+" conjugacy. The method is a generalization of the Herman theory for circle diffeomorphisms to higher dimensions in the presence of a foliation structure provided by the hyperbolic dynamics. Contents 1. Introduction 2 1.1. The affine actions of ΓB;K¯ 4 1.2. Local rigidity of ΓB;K¯ actions 6 1.3. Global rigidity 8 2. Local rigidity: proofs 14 3. The existence of the common conjugacy 18 4. Preliminaries: elliptic and hyperbolic dynamics 20 4.1. Elliptic dynamics: the framework of Herman-Yoccoz-Katznelson-Ornstein 20 4.2. Hyperbolic dynamics: invariant foliations of Anosov diffeomorphisms 24 5. -
Solvable and Nilpotent Groups
SOLVABLE AND NILPOTENT GROUPS If A; B ⊆ G are subgroups of a group G, define [A; B] to be the subgroup of G generated by all commutators f[a; b] = aba−1b−1 j a 2 A; b 2 Bg. Thus, the elements of [A; B] are finite products of such commutators and their inverses. Since [a; b]−1 = [b; a], we have [A; B] = [B; A]. If both A and B are normal subgroups of G then [A; B] is also a normal subgroup. (Clearly, c[a; b]c−1 = [cac−1; cbc−1].) Recall that a characteristic [resp fully invariant] subgroup of G means a subgroup that maps to itself under all automorphisms [resp. all endomorphisms] of G. It is then obvious that if A; B are characteristic [resp. fully invariant] subgroups of G then so is [A; B]. Define a series of normal subgroups G = G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · G(0) = G; G(n+1) = [G(n);G(n)]: Thus G(n)=G(n+1) is the derived group of G(n), the universal abelian quotient of G(n). The above series of subgroups of G is called the derived series of G. Define another series of normal subgroups of G G = G0 ⊇ G1 ⊇ G2 ⊇ · · · G0 = G; Gn+1 = [G; Gn]: This second series is called the lower central series of G. Clearly, both the G(n) and the Gn are fully invariant subgroups of G. DEFINITION 1: Group G is solvable if G(n) = f1g for some n. DEFINITION 2: Group G is nilpotent if Gn = f1g for some n.