The New York Nitrate Leaching Index

Total Page:16

File Type:pdf, Size:1020Kb

The New York Nitrate Leaching Index Agronomy Fact Sheet Series Fact Sheet 11 The New York Nitrate Leaching Index The Nitrate Leaching Index (LI) is an indicator The Percolation Index is a function of the of the potential for nitrate to reach annual average precipitation and soil groundwater. Nitrate, because it is water hydrologic group. Hydrologic group “A” soils soluble (see agronomy factsheet #2: Nitrogen have the greatest percolation potential and cycle – the basics), moves downward as water soils of hydrologic group “D” have the least percolates through the soil. The extent of percolation and lowest risk of leaching. The percolation depends on permeability, pore-size Seasonal Index is based on the annual distribution, soil depth to a restrictive layer, precipitation and the sum of the fall and winter artificial drainage, and precipitation amount precipitation (October through March). When and distribution over the year. For a given the factors are combined, the LI ranks the well precipitation pattern, excessively well drained drained soils in areas of high rainfall with a soils such as Howard, Adams, Hoosic and higher potential for leaching. Tunkhannock, or even well drained soils such as Madrid, Palmyra, Honeoye and Ontario have Fortunately, no calculations are necessary to a significantly greater leaching potential than rate a field. Appendix A of the New York less well drained soils such as Vergennes, Nitrate Leaching Index supplies the hydrologic Swanton, Rhinebeck, Lordstown or Volusia. soil groups and Appendix B provides the LI The current LI rates leaching potential based scores for each hydrologic group in each NY on soil hydrologic group (Table 1) and 10 year township. average precipitation data from weather stations around NY. Until recently, rainfall data Management Implications were county-based. The latest version of the LI An LI below 2 indicates that the potential for uses township-based precipitation data, which nitrate leaching below the root zone is low. An more accurately reflects precipitation patterns. LI greater than 10 indicates that the potential for nitrate leaching below the root zone is high Table 1. Soil Hydrologic Groups. while LI’s between 2 and 10 are considered Soil Infiltration Leaching intermediate. In order to meet the N leaching Hydrologic Type Capacity / Potential Group Permeability requirements of the NRCS Nutrient Management Standard (590), producers are Deep, well-drained A High High sands and gravels. expected to implement best management practices (BMP) if the LI score for a field is Moderately drained, high (>10) and to consider the same practices B moderately fine to Moderate Moderate if the LI score for a field is intermediate (2- moderately coarse 10). The following BMPs exist for soils with texture. medium to high N leaching indices: Impeding layer, or o Unless the New York Phosphorus Index C moderately fine to Low Low fine texture. (agronomy factsheet #10: How to calculate the New York Phosphorus Index) identifies Clay soils, soils D with high water Very Low Very Low the need for P based fertility management, table. manure and fertilizer application rates should be based on Cornell guidelines for Calculating the LI meeting crop N needs. The Nitrate Leaching Index is calculated by o For corn, pre-plant (other than starter multiplying the Percolation Index and the fertilizer) and early post plant broadcast Seasonal Index for a particular location: applications of commercial nitrogen without the use of nitrification inhibitors are not LI = Percolation Index * Seasonal Index recommended. Department of Crop and Soil Sciences 1 College of Agriculture and Life Sciences o Sidedress applications should be made hardy cover crops. Applications should after the corn has at least four true leaves. generally not exceed the greater of 50 o If starter N must be broadcast (e.g., for lbs/acre of first year available N or 50% of small grains or new seedings of grass), the expected N needs of next year’s crop. apply fertilizer as close to expected o Frost incorporation/injection is acceptable planting date as possible (ideally within 3 when soil conditions are suitable, but days or less). winter applications should be made in o For row and cereal crops, including corn, accordance with the NY Phosphorus Index. maintain starter fertilizer N rates below 50 o Manure N application on legumes is lbs/acre actual N under normal conditions. acceptable to satisfy agronomic o Manure and fertilizer applications should be requirements when legumes represent less adjusted based on information provided in than 50% of the stand. When legumes “Nitrogen Recommendations for Field Crops represent more than 50% of the stand, in New York” (see additional resources). manure application should be limited to no o Evaluate the need for sidedress N more than 150 lbs of available N/acre. applications based on PSNT or other soil nitrogen tests (see agronomy factsheet#3: Other Considerations Pre-sidedress nitrate test). In addition to the fields identified with a high o Sod crops should not be incorporated in the leaching potential by the LI, the best fall. Chemical sod killing may be carried out management practices should also be applied when the soil temperature at four-inch to fields with any of the situations, below: depth is approaching 45oF. Depending on o Soils, of any drainage, that are less than location, this will not likely take place until 40 inches deep over limestone bedrock. early October. o Glacial outwash and some well drained o Minimize fall and/or winter manure alluvial soils, especially over aquifers. application on good grass and/or legume o Soils, of any drainage, that are less than sod fields that are to be rotated the 20 inches deep over other bedrock types. following spring. These cases can be identified with a soil survey o Appropriate ammonia conservation is and local knowledge and aim to capture those encouraged. Losses can either be reduced fields with a thin layer of soil over fractured by immediately incorporating manure or bedrock and course textured soils over eliminated by directly injecting manure as a aquifers. sidedress application to growing crops. o Plant winter hardy cover crops whenever Additional Resources possible, especially when fall manure is o The New York Nitrate Leaching Index: applied (e.g., rye, winter wheat, or nmsp.css.cornell.edu/publications/nleachingindex.asp. o Nitrogen Recommendations for Field Crops in New interseed ryegrass in summer). York: nmsp.css.cornell.edu/nutrient_guidelines o Cornell University Agronomy Fact Sheets #2 (Nitrogen cycle – the basics), #3 (Pre-sidedress nitrate test), #4 (Nitrogen credits from manure), and #10 (How to Calculate the New York Phosphorus Index) nmsp.css.cornell.edu/ publications/factsheets.asp. For more information Figure 1: Plant winter hardy cover crops where/when possible to reduce N leaching. Nutrient Management Spear Program http://nmsp.css.cornell.edu o Manure may be applied in the fall where Karl Czymmek, Quirine Ketterings, Harold van Es, there is a growing crop. Judicious amounts Stephen DeGloria, and Greg Albrecht of manure can be applied to or in 2005 conjunction with perennial crops or winter Department of Crop and Soil Sciences 2 College of Agriculture and Life Sciences .
Recommended publications
  • Good Practices for the Preparation of Digital Soil Maps
    UNIVERSIDAD DE COSTA RICA CENTRO DE INVESTIGACIONES AGRONÓMICAS FACULTAD DE CIENCIAS AGROALIMENTARIAS GOOD PRACTICES FOR THE PREPARATION OF DIGITAL SOIL MAPS Resilience and comprehensive risk management in agriculture Inter-american Institute for Cooperation on Agriculture University of Costa Rica Agricultural Research Center UNIVERSIDAD DE COSTA RICA CENTRO DE INVESTIGACIONES AGRONÓMICAS FACULTAD DE CIENCIAS AGROALIMENTARIAS GOOD PRACTICES FOR THE PREPARATION OF DIGITAL SOIL MAPS Resilience and comprehensive risk management in agriculture Inter-american Institute for Cooperation on Agriculture University of Costa Rica Agricultural Research Center GOOD PRACTICES FOR THE PREPARATION OF DIGITAL SOIL MAPS Inter-American institute for Cooperation on Agriculture (IICA), 2016 Good practices for the preparation of digital soil maps by IICA is licensed under a Creative Commons Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) (http://creativecommons.org/licenses/by-sa/3.0/igo/) Based on a work at www.iica.int IICA encourages the fair use of this document. Proper citation is requested. This publication is also available in electronic (PDF) format from the Institute’s Web site: http://www.iica. int Content Editorial coordination: Rafael Mata Chinchilla, Dangelo Sandoval Chacón, Jonathan Castro Chinchilla, Foreword .................................................... 5 Christian Solís Salazar Editing in Spanish: Máximo Araya Acronyms .................................................... 6 Layout: Sergio Orellana Caballero Introduction .................................................. 7 Translation into English: Christina Feenny Cover design: Sergio Orellana Caballero Good practices for the preparation of digital soil maps................. 9 Printing: Sergio Orellana Caballero Glossary .................................................... 15 Bibliography ................................................. 18 Good practices for the preparation of digital soil maps / IICA, CIA – San Jose, C.R.: IICA, 2016 00 p.; 00 cm X 00 cm ISBN: 978-92-9248-652-5 1.
    [Show full text]
  • A New Era of Digital Soil Mapping Across Forested Landscapes 14 Chuck Bulmera,*, David Pare´ B, Grant M
    CHAPTER A new era of digital soil mapping across forested landscapes 14 Chuck Bulmera,*, David Pare´ b, Grant M. Domkec aBC Ministry Forests Lands Natural Resource Operations Rural Development, Vernon, BC, Canada, bNatural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, QC, Canada, cNorthern Research Station, USDA Forest Service, St. Paul, MN, United States *Corresponding author ABSTRACT Soil maps provide essential information for forest management, and a recent transformation of the map making process through digital soil mapping (DSM) is providing much improved soil information compared to what was available through traditional mapping methods. The improvements include higher resolution soil data for greater mapping extents, and incorporating a wide range of environmental factors to predict soil classes and attributes, along with a better understanding of mapping uncertainties. In this chapter, we provide a brief introduction to the concepts and methods underlying the digital soil map, outline the current state of DSM as it relates to forestry and global change, and provide some examples of how DSM can be applied to evaluate soil changes in response to multiple stressors. Throughout the chapter, we highlight the immense potential of DSM, but also describe some of the challenges that need to be overcome to truly realize this potential. Those challenges include finding ways to provide additional field data to train models and validate results, developing a group of highly skilled people with combined abilities in computational science and pedology, as well as the ongoing need to encourage communi- cation between the DSM community, land managers and decision makers whose work we believe can benefit from the new information provided by DSM.
    [Show full text]
  • Soil Survey Manual Introduction
    Soil Survey Manual Introduction he Soil Survey Manual provides in a single volume the major principles and practices needed for making and using soil surveys and for assembling and using data related to T them. The Manual is intended primarily for use by soil scientists engaged in the classification and mapping of soils and in the interpretation of soil surveys. Although the Manual is oriented to the needs of those actively engaged in preparing soil surveys for publication, workers and students who have limited soils experience or are less familiar with the soil survey process also will be able to use the information. The Manual focuses on the major concerns of the members of the National Cooperative Soil Survey, a cooperative undertaking of the United States Department of Agriculture and an agency of each of the States: commonly, the State agricultural experiment station of a State's land-grant university. Other agencies—local, State, or Federal—cooperate under special agreements. The original Federal authority for the soil survey of the United States is contained in the record of the 53rd Congress, chapter 169, Agricultural Appropriations Act of 1896. The authority was elaborated in Public Law 74-46, The Soil Conservation Act of April 27, 1936, and again in Public Law 89-560, Soil Surveys for Resource Planning and Development, September 7, 1966. The Manual is the primary reference on principles and technical detail for local, State, and Federal contributions to soil surveys authorized under these acts. The term "the Soil Survey" is used in the Manual to refer to the National Cooperative Soil Survey.
    [Show full text]
  • Soils in Landscaped Public Areas - Wolfgang Burghardt
    AGRICULTURAL SCIENCES – Vol. II - Soils in Landscaped Public Areas - Wolfgang Burghardt SOILS IN LANDSCAPED PUBLIC AREAS Wolfgang Burghardt Institute of Ecology, University of Essen, Germany Keywords: soil, park, playground, burial ground, soil pollution, soil compaction, pollution, aeration Contents 1. Introduction 2. Parks 3. Playgrounds 4. Burial Grounds Glossary Bibliography Summary Demands of public use determine the quality of urban ground and soils. On the other hand city history, location and availability of the ground have greater influence on the use than do the soil characteristics. In addition the use of the ground and the urban environment can effect the soil in an extreme way. This mutual relationship is pronounced for soils of parks, cemeteries and playgrounds. To a minor extent, very old remnant areas survive in many cities. They can have well developed soil morphology, not touched by agriculture, of low maintenance input and are in many respects in a natural state, but which are under the impact of the environment of urban atmosphere. Often they are strongly acid and can be a source of groundwater pollution. Most areas are exposed to landscaping by tipping and excavation. The reasons for this are numerous. New substrates are the body of soil formation. These soils are young and not much developed or stratified into horizons. Accumulation of humus will be visible, indicating that the soils are already sinks for carbon dioxide. An adverse characteristic of soils tippedUNESCO in the last 30 to 40 years –is strong EOLSS compaction, which is not found to the same extent in rural areas. Compaction can be dominant.
    [Show full text]
  • Geochemistry in the Modern Soil Survey Program
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska February 2008 Geochemistry in the modern soil survey program M. A. Wilson USDA-NRCS R. Burt USDA-NRCS J. M. Scheyer USDA-NRCS A. B. Jenkins USDA-NRCS J. V. Chiaretti USDA-NRCS See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Wilson, M. A.; Burt, R.; Scheyer, J. M.; Jenkins, A. B.; Chiaretti, J. V.; and Ulmer, M. G., "Geochemistry in the modern soil survey program" (2008). Publications from USDA-ARS / UNL Faculty. 223. https://digitalcommons.unl.edu/usdaarsfacpub/223 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors M. A. Wilson, R. Burt, J. M. Scheyer, A. B. Jenkins, J. V. Chiaretti, and M. G. Ulmer This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdaarsfacpub/223 Environ Monit Assess (2008) 139:151–171 DOI 10.1007/s10661-007-9822-z Geochemistry in the modern soil survey program M. A. Wilson & R. Burt & S. J. Indorante & A. B. Jenkins & J. V. Chiaretti & M. G. Ulmer & J. M. Scheyer Received: 6 November 2006 /Accepted: 11 May 2007 / Published online: 11 July 2007 # Springer Science + Business Media B.V.
    [Show full text]
  • Soil Data Explorer Tab – Web Soil Survey
    Soil Data Explorer Tab – Web Soil Survey This is a guide that lists the location of maps, reports, and tables found underneath the Soil Data Explorer tab in Web Soil Survey once an Area of Interest is selected. It does not include the many state and local interpretations that may be present for a specific location. Many thanks to the Connecticut State Soils Staff for the concept and design of this useful tool! Page 1 of 13 Soil Data Explorer Tab -- Web Soil Survey User Options Tab of Soil Data Map or Topic Map or Table Name Menu Sub Menu Notes Explorer Table Minor Depth Soils Range AASHTO Group Soil Properties and Soil Qualities and M,T Classification, Surface Qualities Features ● AASHTO Soil Physical report uses typical Engineering Properties Soil Reports T Properties ● depths Catastrophic Mortality, Suitabilities and Disaster Recovery M,T Large Animal Disposal, Pit Limitations for Use Planning ● Catastrophic Mortality, Suitabilities and Disaster Recovery Large Animal Disposal, M,T Limitations for Use Planning ● Trench DHS - Catastrophic Selected Soil Animal Disposal Mortality, Large Animal Soil Reports AOI Inventory T Interpretations ● Disposal, Pit DHS - Catastrophic Selected Soil Mortality, Large Animal Soil Reports AOI Inventory T Interpretations ● Disposal, Trench Large Animal Carcass Soil Reports Waste Management T Disposal ● Soil Properties and Soil Physical Available Water Capacity M,T Qualities Properties ● ● Available Water Capacity, 0 Soil Properties and Soil Physical M,T ● to 100 cm Qualities Properties Available Water Capacity,
    [Show full text]
  • Application of Soil Survey to Assess the Effects of Land Management Practices on Soil and Water Quality
    United States Department of Agriculture Application of Soil Survey To Assess Natural the Effects of Land Resources Conservation Service Management Practices National on Soil and Water Soil Survey Center Quality Soil Survey Investigations Report No. 52 Copies of this report can be obtained from: Director National Soil Survey Center USDA, NRCS, Room 152 100 Centennial Mall North Lincoln, Nebraska 68508-3806 Citation Elrashidi, M.A., L.T. West, C.A. Seybold, D.A. Wysocki, E. Benham, R. Ferguson, and S.D. Peaslee. 2010. Application of soil survey to assess the effects of land management practices on soil and water quality. United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Soil Survey Investigations Report No. 52. USDA Nondiscrimination Statement The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
    [Show full text]
  • Soil Properties and Pedometrics - R
    LAND USE, LAND COVER AND SOIL SCIENCES – Vol. VI - Soil Properties and Pedometrics - R. Murray Lark SOIL PROPERTIES AND PEDOMETRICS R. Murray Lark Biomathematics and Bioinformatics Division, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom. Keywords: Bayesian maximum entropy, biometrics, digital soil mapping, fuzzy sets, geostatistics, kriging, multivariate analysis, pedodiversity, pedometrics, precision agriculture, soil inventory, soil monitoring, soil survey, statistics, wavelet transforms. Contents 1. Introduction 2. Origins of Pedometrics 3. Mathematical and Statistical Techniques used by Pedometricians 3.1. Well-established Workhorses 3.1.1. Geostatistics 3.1.2. Multivariate Analysis 3.1.3. Fuzzy Sets 3.2. Emerging Methodologies 3.2.1. Bayesian Maximum Entropy 3.2.2. Wavelet Transforms 4. Some Applications and Preoccupations 4.1. Precision Agriculture 4.2. Digital Soil Mapping 4.3. Soil Monitoring 5. Future Prospects 5.1. Pedometrics in a Data-rich Environment 5.2. Pedometrics and the Management of Pedodiversity 5.3. Pedometrics as a Unifying Discipline Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS Pedometrics is a branch of soil science, concerned with the quantitative analysis of the variations of soil by mathematical and statistical methods. In this chapter some of the key themes of pedometricsSAMPLE are described, both CHAPTERS in terms of its origin as a discipline, the methods used by its practitioners for the core problems of estimating and predicting soil properties, some emerging techniques, and aspects of the discipline that are likely to prove to be important in the future. 1. Introduction Any properties of the soil that we might measure vary substantially. This is because the soil is a complex material that arises from physical, chemical and biological processes, all of which interact and many of which are non-linear in their effects.
    [Show full text]
  • Unit 2.1, Soils and Soil Physical Properties
    2.1 Soils and Soil Physical Properties Introduction 5 Lecture 1: Soils—An Introduction 7 Lecture 2: Soil Physical Properties 11 Demonstration 1: Soil Texture Determination Instructor’s Demonstration Outline 23 Demonstration 2: Soil Pit Examination Instructor’s Demonstration Outline 28 Supplemental Demonstrations and Examples 29 Assessment Questions and Key 33 Resources 37 Glossary 40 Part 2 – 4 | Unit 2.1 Soils & Soil Physical Properties Introduction: Soils & Soil Physical Properties UNIT OVERVIEW MODES OF INSTRUCTION This unit introduces students to the > LECTURES (2 LECTURES, 1.5 HOURS EACH ) components of soil and soil physical Lecture 1 introduces students to the formation, classifica- properties, and how each affects soil tion, and components of soil. Lecture 2 addresses different concepts of soil and soil use and management in farms and physical properties, with special attention to those proper- gardens. ties that affect farming and gardening. > DEMONSTRATION 1: SOIL TEXTURE DETERMINATION In two lectures. students will learn about (1 HOUR) soil-forming factors, the components of soil, and the way that soils are classified. Demonstration 1 teaches students how to determine soil Soil physical properties are then addressed, texture by feel. Samples of many different soil textures are including texture, structure, organic mat- used to help them practice. ter, and permeability, with special attention > DEMONSTRATION 2: SOIL PIT EXAMINATION (1 HOUR) to those properties that affect farming and In Demonstration 2, students examine soil properties such gardening. as soil horizons, texture, structure, color, depth, and pH in Through a series of demonstrations and a large soil pit. Students and the instructor discuss how the hands-on exercises, students are taught how soil properties observed affect the use of the soil for farm- to determine soil texture by feel and are ing, gardening, and other purposes.
    [Show full text]
  • Soil Change, Soil Survey, and Natural
    Published online May 6, 2005 Soil Change, Soil Survey, and Natural Resources Decision Making: A Blueprint for Action A. J. Tugel,* J. E. Herrick, J. R. Brown, M. J. Mausbach, W. Puckett, and K. Hipple ABSTRACT et al., 1996). While these surveys have been invaluable Land managers and policymakers need information about soil change in guiding development of natural resources through caused by anthropogenic and non-anthropogenic factors to predict the disciplines of agronomy, animal husbandry, forestry, the effects of management on soil function, compare alternatives, and and land use planning (Durana and Helms, 2002), the make decisions. Current knowledge of how soils change is not well focus in the 20th century has been classification of rela- synthesized and existing soil surveys include only limited information tively static soil properties to facilitate inventory, define on the dynamic nature of soils. Providing information about causes limitations, and provide soil property data for input- and attributes of soil change and the effects of soil change on soil based production system design. Since the passage of function over the human time scale (centuries, decades, or less) should the National Environmental Protection Act in 1969, be a primary objective of 21st century soil survey. Soil change is tempo- ral variation in soil across various time scales at a specific location. standard soil survey information has required reinter- Attributes of change include state variables (dynamic soil properties), pretation to address questions of environmental quality reversibility, drivers, trends, rates, and pathways and functional inter- and sustainability (Muhn, 2002). The increasing empha- pretations include resistance, resilience, and early warning indicators.
    [Show full text]
  • Digital Soil Mapping
    Digital Soil Mapping Ronald Vargas Rojas 01 April 2012 Outline • Conventional soil mapping • Technological developments in soil mapping • Case studies Conventional Soil Mapping SOIL INFORMATION IS REQUIRED FOR Soil Climate change biodiversity adaptation and mitigation Food security Bioenergy Urban production expansion Water scarcity- Further storage ecosystem services Who are/could be the users of soil information? . Decision takers . International organizations . National governments . Extensionists/Farmers . Researchers/scientists . Modellers from other disciplines requiring soil data . Researchers working in the food production field . Soil scientists working purely in new approaches . Agronomists and extensionists . Extensionists that use the data to take decisions and provide advise. At field level. Farmers/Agrodealers . In the absence of extension services, farmers require guidance. They could be potential users of soil information. Already happening in precision farming . Lecturers and students, etc. Soil as body vs. soil as continuum • Soil as soil body (pedon). • Soil unit (mapeable) polipedon. • Soil is continous in the geographic • Discrete Model of Spatial space. Variation (based on polygons). • Continous Model of Spatial (Heuvelink, 2005). Variation (grid-pixel) Considerations of conventional soil mapping • Soil information represented by cloropletic (polygon) maps (discrete units). • Discrete model of spatial variation • Maps are static and qualitative (subjectivity when using interpretation). • Soil classes (Typic Ustorthents), difficult to integrate with other themes or sciences (specially with modeling). • Pedology = pure science? Other sciences have made use of the Geo-information tools and methods. • Approach: qualitative or quantitative? FIVE SOIL FORMING FACTORS (V.V. Dokuchaev, Rusia,1883) • Soil as a natural body having its own genesis and history of development. • Conceptual model: the soil genesis and geographic variation of soils could be explained by a combined activity of the 5 factors.
    [Show full text]
  • Pedometric Mapping
    PEDOMETRIC MAPPING bridging the gaps between conventional and pedometric approaches Tomislav Hengl ITC Dissertation number 101 ITC, P.O. Box 6, 7500 AA Enschede, The Netherlands ISBN: 90-5808-896-0 Copyright © 2003 by Tomislav Hengl, [email protected] Thesis Wageningen University and ITC with summary in Dutch and Croatian All rights reserved. No part of this book may be published, reproduced, or stored in a database or retrieval system, in any form or in any way, either mechanically, electronically, by print, photocopy, microfilm, or any other means, without the prior written permission of the author. Pedometric mapping bridging the gaps between conventional and pedometric approaches Ph.D. THESIS to fulfill the requirements for the degree of doctor on the authority of the Rector Magnificus of Wageningen University, Prof. dr.ir L. Speelman, to be publicly defended on Wednesday 17 September 2003 at 15.00 hrs in the auditorium of ITC, Enschede PROMOTOR: Prof.dr.ir. A. Stein, (Wageningen University and ITC, Enschede) CO-PROMOTORS: Dr. D.G. Rossiter, (ITC, Enschede) Dr. S. Husnjak, (Department of Soil Science, University of Zagreb, Zagreb) EXAMINING COMMITTEE: Prof.dr.ir. A. Bregt, (Laboratory of Geo-Information Science and Remote Sensing, Wageningen University, Wageningen) Prof.dr. A.B. McBratney, (Faculty of Agriculture, Food & Natural Resources, University of Sydney, Sydney) Dr.ir. G.B.M. Heuvelink, (Laboratory of Soil Science and Geology, Wageningen University, Wageningen) Dr.ir. P.A. Finke, (Biometris, Wageningen University, Wageningen) Foreword This book is a small contribution to pedometric methodology, specifically to map- ping methods. It could serve as a handbook or a user’s guide for anyone seeking to collate soil geoinformation.
    [Show full text]