Structures of Monomeric and Dimeric PRC2:EZH1 Reveal Flexible
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
O-Glcnacylation Regulates the Stability and Enzymatic Activity of the Histone Methyltransferase EZH2
O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2 Pei-Wen Loa, Jiun-Jie Shieb, Chein-Hung Chena, Chung-Yi Wua, Tsui-Ling Hsua, and Chi-Huey Wonga,1 aGenomics Research Center, Academia Sinica, Taipei 115, Taiwan; and bInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan Contributed by Chi-Huey Wong, May 16, 2018 (sent for review February 1, 2018; reviewed by Michael D. Burkart, Benjamin G. Davis, and Gerald W. Hart) Protein O-glycosylation by attachment of β-N-acetylglucosamine maintenance and differentiation in embryonic stem cells (14, 15). (GlcNAc) to the Ser or Thr residue is a major posttranslational It was suggested that O-GlcNAcylation might play an important glycosylation event and is often associated with protein folding, role in the regulation of PRC1-mediated gene expression, and stability, and activity. The methylation of histone H3 at Lys-27 along this line the O-GlcNAcylation of EZH2 at S76 in the PRC2 catalyzed by the methyltransferase EZH2 was known to suppress complex was reported to stablize EZH2 in our previous study (16). gene expression and cancer development, and we previously The PRC2 complex is composed of Enhancer of zeste 2 (EZH2), reported that the O-GlcNAcylation of EZH2 at S76 stabilized Suppressor of Zeste 12 (Suz12), Extraembryonic endoderm (EED), EZH2 and facilitated the formation of H3K27me3 to inhibit tumor AE binding protein 2 (AEBP2), and retinoblastoma binding protein suppression. In this study, we employed a fluorescence-based method 4/7 (RBBP4/7) (17, 18). Within the PRC2 complex, EZH2 catalyzes the di- and trimethylation of histone H3 at lysine 27 (K27) to form of sugar labeling combined with mass spectrometry to investigate H3K27me2/3 to regulate embryonic and cancer development EZH2 glycosylation and identified five O-GlcNAcylation sites. -
The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways. -
Leukemia and Lymphoma: Molecular and Therapeutic Insights
This is a free sample of content from Leukemia and Lymphoma: Molecular and Therapeutic Insights. Click here for more information on how to buy the book. Index A PRPF8, 307 AA. See Aplastic anemia SF3B1, 307 ABL1, 347, 368–369 SRSF2, 307 ABL2, 369 SUZ12, 120 ABT-199, 368 TET2, 117, 119, 121, 305 ABT-731, 181 U2AF1, 307 ACIN1, 374 U2AF2, 307 Acute lymphocytic leukemia (ALL). See also B- ZRSR2, 307 progenitor acute lymphoblastic therapeutic targeting leukemia; T-cell acute lymphoblastic combination therapy, 123–124 leukemia histone epigenetic mechanisms, 121, 123 epidemiology specific epigenetic mechanisms, 121 adult, 32–33 induced pluripotent stem cell models, 257–259 pediatric, 29–30 leukemia stem cell studies. See Leukemia stem cell Acute megakaryoblastic leukemia (AMKL) model children without Down syndrome, 326–329 mouse models. See Mouse models Down syndrome association pathophysiology, 295–296 clinical and biological features, 324–325 recurrent mutations GATA1 CEBPA, 301–302 cooperation with trisomy genes, 323–324 GATA2, 302 mutations, 323 NPM1, 300–301 genetic susceptibility, 321–322 RUNX1, 301 transforming mutation acquisition, 325–326 signal transduction mutations overview, 319–320 CBL, 303 RNA-binding proteins, 153 FLT3, 302 Acute myeloid leukemia (AML) KIT, 302–303 chromosomal abnormalities KRAS, 303 core binding factor rearrangements, 296–297 NF1, 303–304 KMT2A rearrangements, 298–299 NRAS, 303 rare translocations, 299–300 PTPN11, 303 clonal hematoipoiesis, 75 therapeutic targeting epidemiology CD123, 91–92 adult, 31–32 CD33, -
The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiationᰔ† Diego Pasini,1 Adrian P
MOLECULAR AND CELLULAR BIOLOGY, May 2007, p. 3769–3779 Vol. 27, No. 10 0270-7306/07/$08.00ϩ0 doi:10.1128/MCB.01432-06 Copyright © 2007, American Society for Microbiology. All Rights Reserved. The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiationᰔ† Diego Pasini,1 Adrian P. Bracken,1 Jacob B. Hansen,2 Manuela Capillo,3,4 and Kristian Helin1* Centre for Epigenetics and BRIC, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark1; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark2; Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy3; and Institute of Molecular Oncology of the Italian Foundation for Cancer Research, Via Adamello 16, 20139 Milan, Italy4 Received 3 August 2006/Returned for modification 10 October 2006/Accepted 22 February 2007 Downloaded from Polycomb group (PcG) proteins form multiprotein complexes, called Polycomb repressive complexes (PRCs). PRC2 contains the PcG proteins EZH2, SUZ12, and EED and represses transcription through methylation of lysine (K) 27 of histone H3 (H3). Suz12 is essential for PRC2 activity and its inactivation results in early lethality of mouse embryos. Here, we demonstrate that Suz12؊/؊ mouse embryonic stem (ES) cells can be established and expanded in tissue culture. The Suz12؊/؊ ES cells are characterized by global loss of H3K27 trimethylation (H3K27me3) and higher expression levels of differentiation-specific genes. Moreover, Suz12؊/؊ ES cells are impaired in proper differentiation, resulting in a lack of repression of ES cell markers as well as activation of differentiation-specific genes. Finally, we demonstrate that the PcGs are actively recruited to several genes during ES cell differentiation, which despite an increase in H3K27me3 levels is not always http://mcb.asm.org/ sufficient to prevent transcriptional activation. -
Automethylation of PRC2 Promotes H3K27 Methylation and Is Impaired in H3K27M Pediatric Glioma
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma Chul-Hwan Lee,1,2,7 Jia-Ray Yu,1,2,7 Jeffrey Granat,1,2,7 Ricardo Saldaña-Meyer,1,2 Joshua Andrade,3 Gary LeRoy,1,2 Ying Jin,4 Peder Lund,5 James M. Stafford,1,2,6 Benjamin A. Garcia,5 Beatrix Ueberheide,3 and Danny Reinberg1,2 1Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 3Proteomics Laboratory, New York University School of Medicine, New York, New York 10016, USA; 4Shared Bioinformatics Core, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 5Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/ EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring inde- pendently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2. -
The EZH1–SUZ12 Complex Positively Regulates the Transcription of NF-Κb
© 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 2343-2353 doi:10.1242/jcs.185546 RESEARCH ARTICLE The EZH1–SUZ12 complex positively regulates the transcription of NF-κB target genes through interaction with UXT Shuai-Kun Su, Chun-Yuan Li, Pin-Ji Lei, Xiang Wang, Quan-Yi Zhao, Yang Cai, Zhen Wang, Lianyun Li* and Min Wu* ABSTRACT zeste 2 polycomb repressive complex 2 subunit (EZH2) (Shen et al., Drosophila Unlike other members of the polycomb group protein family, EZH1 2008). EZH2 mimics the function of E(Z) in and is the has been shown to positively associate with active transcription on a main methyltransferase for H3K27 in mammalian cells (Shen et al., genome-wide scale. However, the underlying mechanism for this 2008). However, controversial reports exist about EZH1, which behavior still remains elusive. Here, we report that EZH1 physically means its activities have been a puzzle for a long time. Compared interacts with UXT, a small chaperon-like transcription co-activator. with EZH2, EZH1 has lower enzymatic activity, suggesting it might UXT specifically interacts with EZH1 and SUZ12, but not EED. have distinct functions (Margueron et al., 2008). Several groups Similar to upon knockdown of UXT, knockdown of EZH1 or SUZ12 reported that EZH1 methylates histone H3K27 and compensates for through RNA interference in the cell impairs the transcriptional the functions of EZH2 upon its absence (Bae et al., 2015; Hidalgo activation of nuclear factor (NF)-κB target genes induced by TNFα. et al., 2012; Shen et al., 2008). Recently, Mousavi et al. -
Alu Elements in ANRIL Non-Coding RNA at Chromosome 9P21 Modulate Atherogenic Cell Functions Through Trans-Regulation of Gene Networks
Alu Elements in ANRIL Non-Coding RNA at Chromosome 9p21 Modulate Atherogenic Cell Functions through Trans-Regulation of Gene Networks Lesca M. Holdt1,2,3, Steve Hoffmann1,4, Kristina Sass2, David Langenberger1,4, Markus Scholz1,5, Knut Krohn1,6, Knut Finstermeier1,2, Anika Stahringer2,3, Wolfgang Wilfert2,3, Frank Beutner1,2,7, Stephan Gielen1,7, Gerhard Schuler1,7, Gabor Ga¨bel8, Hendrik Bergert8, Ingo Bechmann9, Peter F. Stadler1,4,10,11, Joachim Thiery1,2, Daniel Teupser1,2,3* 1 LIFE – Leipzig Research Center for Civilization Diseases, Universita¨t Leipzig, Leipzig, Germany, 2 Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany, 3 Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany, 4 Transcriptome Bioinformatics Group and Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany, 5 Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany, 6 Interdisciplinary Center for Clinical Research, University Leipzig, Leipzig, Germany, 7 Department of Internal Medicine/Cardiology, Heart Center, University Leipzig, Leipzig, Germany, 8 Department of General, Thoracic, and Vascular Surgery, University Dresden, Dresden, Germany, 9 Institute of Anatomy, University Leipzig, Leipzig, Germany, 10 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, 11 Santa Fe Institute, Santa Fe, New Mexico, United States of America Abstract The chromosome 9p21 (Chr9p21) locus of coronary artery disease has been identified in the first surge of genome-wide association and is the strongest genetic factor of atherosclerosis known today. Chr9p21 encodes the long non-coding RNA (ncRNA) antisense non-coding RNA in the INK4 locus (ANRIL). ANRIL expression is associated with the Chr9p21 genotype and correlated with atherosclerosis severity. -
Protein Interactions in the Cancer Proteome† Cite This: Mol
Molecular BioSystems View Article Online PAPER View Journal | View Issue Small-molecule binding sites to explore protein– protein interactions in the cancer proteome† Cite this: Mol. BioSyst., 2016, 12,3067 David Xu,ab Shadia I. Jalal,c George W. Sledge Jr.d and Samy O. Meroueh*aef The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are both overexpressed and correlate with patient survival. Protein products of these genes were scanned for binding sites that possess shape and physicochemical properties that can accommodate small-molecule probes or therapeutic agents (druggable). These binding sites were classified as enzyme active sites (ENZ), protein–protein interaction sites (PPI), or other sites whose function is unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure suggesting that many of these OTH cavities can be used for allosteric modulation of Creative Commons Attribution 3.0 Unported Licence. enzyme activity or protein–protein interactions with small molecules. We discovered several ENZ (PYCR1, QPRT,andHSPA6)andPPI(CASC5, ZBTB32,andCSAD) binding sites on proteins that have been seldom explored in cancer. We also found proteins that have been extensively studied in cancer that have not been previously explored with small molecules that harbor ENZ (PKMYT1, STEAP3,andNNMT) and PPI (HNF4A, MEF2B,andCBX2) binding sites. All binding sites were classified by the signaling pathways to Received 29th March 2016, which the protein that harbors them belongs using KEGG. -
Mouse Cbx2 Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Cbx2 Knockout Project (CRISPR/Cas9) Objective: To create a Cbx2 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cbx2 gene (NCBI Reference Sequence: NM_007623 ; Ensembl: ENSMUSG00000025577 ) is located on Mouse chromosome 11. 5 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 5 (Transcript: ENSMUST00000026662). Exon 4 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mutations cause malformations of the axial skeletal, reduced viability, poor growth and male to female sex reversal. Exon 4 starts from about 11.75% of the coding region. Exon 4 covers 6.81% of the coding region. The size of effective KO region: ~106 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 5 Legends Exon of mouse Cbx2 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 4 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1343 bp section downstream of Exon 4 is aligned with itself to determine if there are tandem repeats. -
Protein Quality Control in the Nucleolus Safeguards Recovery of Epigenetic
RESEARCH ARTICLE Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock Maria Azkanaz1, Aida Rodrı´guezLo´ pez1, Bauke de Boer1, Wouter Huiting2, Pierre-Olivier Angrand3, Edo Vellenga1, Harm H Kampinga2, Steven Bergink2, Joost HA Martens4, Jan Jacob Schuringa1†, Vincent van den Boom1†* 1Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; 2Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; 3Cell Plasticity & Cancer, Inserm U908, University of Lille, Lille, France; 4Department of Molecular Biology, Faculty of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, Netherlands Abstract Maintenance of epigenetic modifiers is of utmost importance to preserve the epigenome and consequently appropriate cellular functioning. Here, we analyzed Polycomb group protein (PcG) complex integrity in response to heat shock (HS). Upon HS, various Polycomb Repressive Complex (PRC)1 and PRC2 subunits, including CBX proteins, but also other chromatin regulators, are found to accumulate in the nucleolus. In parallel, binding of PRC1/2 to target genes is strongly reduced, coinciding with a dramatic loss of H2AK119ub and H3K27me3 marks. Nucleolar-accumulated CBX proteins are immobile, but remarkably both CBX protein accumulation and loss of PRC1/2 epigenetic marks are reversible. This post-heat shock recovery of pan-nuclear CBX protein localization and reinstallation of epigenetic marks is HSP70 dependent. Our findings *For correspondence: demonstrate that the nucleolus is an essential protein quality control center, which is indispensable [email protected] for recovery of epigenetic regulators and maintenance of the epigenome after heat shock. -
Evolutionarily Ancient BAH–PHD Protein Mediates Polycomb Silencing
Evolutionarily ancient BAH–PHD protein mediates Polycomb silencing Elizabeth T. Wilesa,1, Kevin J. McNaughta,1, Gurmeet Kaurb, Jeanne M. L. Selkera, Tereza Ormsbya,2, L. Aravindb, and Eric U. Selkera,3 aInstitute of Molecular Biology, University of Oregon, Eugene, OR 97403; and bNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 Contributed by Eric U. Selker, March 18, 2020 (sent for review October 28, 2019; reviewed by Wolfgang Fischle and Steve Jacobsen) Methylation of histone H3 lysine 27 (H3K27) is widely recognized (NCU07505) that we show is critical for H3K27 methylation- as a transcriptionally repressive chromatin modification but the mediated silencing and therefore named it effector of Polycomb re- mechanism of repression remains unclear. We devised and imple- pression 1 (epr-1). It encodes a protein with a bromo-adjacent ho- mented a forward genetic scheme to identify factors required for mology (BAH) domain and plant homeodomain (PHD) finger. H3K27 methylation-mediated silencing in the filamentous fungus Although epr-1 mutants display phenotypic and gene-expression Neurospora crassa and identified a bromo-adjacent homology changes similar to strains lacking PRC2 components, H3K27 meth- (BAH)-plant homeodomain (PHD)-containing protein, EPR-1 (effec- ylation is essentially unaffected. We demonstrate that EPR-1 forms tor of polycomb repression 1; NCU07505). EPR-1 associates with nuclear foci, reminiscent of Polycomb bodies (24), and its genomic H3K27-methylated chromatin, and loss of EPR-1 de-represses H3K27- distribution is limited to, and dependent upon, H3K27-methylated methylated genes without loss of H3K27 methylation. EPR-1 is not chromatin, which may be recognized through its BAH domain. -
RYBP-PRC1 Complexes Mediate H2A Ubiquitylation at Polycomb Target Sites Independently of PRC2 and H3k27me3
RYBP-PRC1 Complexes Mediate H2A Ubiquitylation at Polycomb Target Sites Independently of PRC2 and H3K27me3 Lı´gia Tavares,1 Emilia Dimitrova,2 David Oxley,3 Judith Webster,3 Raymond Poot,4 Jeroen Demmers,5 Karel Bezstarosti,5 Stephen Taylor,6 Hiroki Ura,7 Hiroshi Koide,7 Anton Wutz,8 Miguel Vidal,9 Sarah Elderkin,2,* and Neil Brockdorff1,* 1Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK 2Nuclear Dynamics 3Mass Spectrometry Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK 4Department of Cell Biology 5Proteomics Center Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands 6Computational Biology Research Group, WIMM, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK 7Department of Stem Cell Biology, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan 8Wellcome Trust Centre for Stem Cell Research, Tennis Court Road, Cambridge CB2 1QR, UK 9Cell Proliferation and Development, Centro de Investigaciones Biolo´ gicas, Consejo Superior de Investigaciones Cientificas (CSIC), 28040 Madrid, Spain *Correspondence: [email protected] (S.E.), [email protected] (N.B.) DOI 10.1016/j.cell.2011.12.029 SUMMARY histone-modifying activity critical for their function in gene re- pression, monoubiquitylation of histone H2AK119 (H2AK119u1), Polycomb-repressive complex 1 (PRC1) has a central and di- tri-methylation of histone H3K27, respectively (reviewed role in the regulation of heritable gene silencing in Mu¨ ller and Verrijzer, 2009). Mechanisms other than H2A during differentiation and development. PRC1 re- ubiquitylation also contribute to PRC1-mediated gene repression cruitment is generally attributed to interaction of (Eskeland et al., 2010; Francis et al., 2001, 2004; King et al., 2002; the chromodomain of the core protein Polycomb Shao et al., 1999).