MATLAB C Math Library 2.0 User's Guide

Total Page:16

File Type:pdf, Size:1020Kb

MATLAB C Math Library 2.0 User's Guide ® MATLAB C Math Library The Language of Technical Computing Computation Visualization Programming User’s Guide Version 2 How to Contact The MathWorks: ☎ 508-647-7000 Phone PHONE 508-647-7001 Fax FAX ✉ The MathWorks, Inc. Mail MAIL 24 Prime Park Way Natick, MA 01760-1500 http://www.mathworks.com Web INTERNET ftp.mathworks.com Anonymous FTP server comp.soft-sys.matlab Newsgroup @ [email protected] Technical support [email protected] Product enhancement suggestions [email protected] Bug reports [email protected] Documentation error reports [email protected] Subscribing user registration [email protected] Order status, license renewals, passcodes [email protected] Sales, pricing, and general information MATLAB C Math Library User’s Guide COPYRIGHT 1984 - 1999 by The MathWorks, Inc. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro- duced in any form without prior written consent from The MathWorks, Inc. U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S. Government, the following shall apply: (a) For units of the Department of Defense: the Government shall have only the rights specified in the license under which the commercial computer software or commercial software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of, the computer software and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo- sure are as set forth in Clause 52.227-19 (c)(2) of the FAR. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders. Printing History: October 1995 First printing January 1998 Revised for Version 1.2 January 1999 Revised for Version 2.0 (Release 11) Contents Getting Ready 1 Introduction . 1-2 Who Should Read This Book . 1-2 New MATLAB C Math Library Features . 1-2 Unsupported MATLAB Features . 1-3 Library Routine Naming Convention . 1-3 MATLAB C Math Library Documentation . 1-3 How This Book Is Organized . 1-3 Accessing Online Reference Documentation . 1-4 Additional Sources of Information . 1-5 MATLAB C Math Library 1.2 Users . 1-6 MATLAB C Math Library Version 1.2 Documentation . 1-6 Migrating Your Code to Version 2.0 . 1-6 Installing the MATLAB C Math Library . 1-9 Installation with MATLAB . 1-9 Installation Without MATLAB . 1-9 Verifying a UNIX Workstation Installation . 1-10 Verifying a PC Installation . 1-10 Building C Applications . 1-11 Packaging Stand-Alone Applications . 1-11 Overview . 1-11 Compiler Options Files . 1-12 Building a Stand-Alone Application on UNIX . 1-13 Configuring for C or C++ . 1-13 Locating Options Files . 1-13 Using the System Compiler . 1-14 Changing the Default Compiler . 1-14 Modifying the Options File . 1-15 Temporarily Changing the Compiler . 1-16 i Verifying mbuild . 1-16 Locating Shared Libraries . 1-17 Running Your Application . 1-18 mbuild Options . 1-18 Distributing Stand-Alone UNIX Applications . 1-21 Building a Stand-Alone Application on Microsoft Windows . 1-22 Configuring for C or C++ . 1-22 Locating Options Files . 1-22 Systems with Exactly One C/C++ Compiler . 1-23 Systems with More than One Compiler . 1-23 Changing the Default Compiler . 1-24 Modifying the Options File . 1-26 Combining Customized C and C++ Options Files . 1-27 Temporarily Changing the Compiler . 1-28 Verifying mbuild . 1-28 Shared Libraries (DLLs) . 1-28 Running Your Application . 1-29 mbuild Options . 1-29 Distributing Stand-Alone Microsoft Windows Applications . 1-32 Building Shared Libraries . 1-33 Troubleshooting mbuild . 1-34 Options File Not Writable . 1-34 Directory or File Not Writable . 1-34 mbuild Generates Errors . 1-34 Compiler and/or Linker Not Found . 1-34 mbuild Not a Recognized Command . 1-34 Cannot Locate Your Compiler (PC) . 1-34 Internal Error When Using mbuild -setup (PC) . 1-35 Verification of mbuild Fails . 1-35 Building on Your Own . 1-36 ii Contents Writing Programs 2 Overview . 2-2 A Simple Example Program . 2-2 Working with MATLAB Arrays 3 Overview . 3-2 Supported MATLAB Array Types . 3-2 MATLAB Array C Data Type . 3-3 Working with MATLAB Numeric Arrays . 3-4 Creating Numeric Arrays . 3-5 Using Numeric Array Creation Routines . 3-5 Creating Numeric Arrays by Calling Arithmetic Routines . 3-9 Creating Numeric Arrays by Concatenation . 3-9 Creating Numeric Arrays by Assignment . 3-11 Initializing a Numeric Array with Data . 3-12 Column-Major Storage versus Row-Major Storage . 3-14 Example Program: Creating Numeric Arrays (ex1.c) . 3-15 Working with MATLAB Sparse Matrices . 3-18 Creating a Sparse Matrix . 3-19 Converting an Existing Matrix into Sparse Format . 3-19 Creating a Sparse Matrix from Data . 3-21 Converting a Sparse Matrix to Full Matrix Format . 3-23 Evaluating Arrays for Sparse Storage . 3-23 Working with MATLAB Character Arrays . 3-25 Creating MATLAB Character Arrays . 3-26 Using Explicit Character Array Creation Routines . 3-26 Converting Numeric Arrays to Character Arrays . 3-27 Creating Multidimensional Arrays of Strings . 3-27 Accessing Individual Strings in an Array of Strings . 3-29 iii Working with MATLAB Cell Arrays . 3-30 Creating Cell Arrays . 3-30 Using the Cell Array Creation Routine . 3-31 Using Cell Array Conversion Routines . 3-31 Using Concatenation to Create Cell Arrays . 3-32 Using Assignment to Create Cell Arrays . 3-34 Displaying the Contents of a Cell Array . 3-34 Working with MATLAB Structures . 3-37 Creating Structures . 3-38 Using a Structure Creation Routine . 3-38 Creating Multidimensional Arrays of Structures . 3-38 Using a Structure Conversion Routine . 3-39 Using Assignment to Create Structures . 3-40 Performing Common Array Programming Tasks . 3-41 Allocating and Freeing MATLAB Arrays . 3-41 Displaying MATLAB Arrays . 3-41 Formatting Output . 3-42 Determining Array Type . 3-43 Determining the Size of an Array . 3-44 Obtaining the Length of a Single Dimension . 3-45 Returning the Dimensions in Separate Arrays . 3-45 Determining the Shape of an Array . 3-46 Managing Array Memory 4 Overview . 4-2 Why Choose Automated Memory Management? . 4-3 Using Explicit Memory Management . 4-4 Using Arrays Under Automated Memory Management . 4-6 Definitions . 4-6 Rules for Array Usage . 4-8 Paradigm for Working with Local Array Variables . 4-8 iv Contents Assigning Arrays to mxArray* Variables . 4-9 Assigning a Value to an Array Destroys Its Previous Value 4-10 Assignment by Value . 4-11 Nesting Calls to Functions that Return Arrays . 4-11 Deleting Your Arrays . 4-11 Avoiding Memory Leaks in.
Recommended publications
  • X10 Language Specification
    X10 Language Specification Version 2.6.2 Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove Please send comments to [email protected] January 4, 2019 This report provides a description of the programming language X10. X10 is a class- based object-oriented programming language designed for high-performance, high- productivity computing on high-end computers supporting ≈ 105 hardware threads and ≈ 1015 operations per second. X10 is based on state-of-the-art object-oriented programming languages and deviates from them only as necessary to support its design goals. The language is intended to have a simple and clear semantics and be readily accessible to mainstream OO pro- grammers. It is intended to support a wide variety of concurrent programming idioms. The X10 design team consists of David Grove, Ben Herta, Louis Mandel, Josh Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, Olivier Tardieu. Past members include Shivali Agarwal, Bowen Alpern, David Bacon, Raj Barik, Ganesh Bikshandi, Bob Blainey, Bard Bloom, Philippe Charles, Perry Cheng, David Cun- ningham, Christopher Donawa, Julian Dolby, Kemal Ebcioglu,˘ Stephen Fink, Robert Fuhrer, Patrick Gallop, Christian Grothoff, Hiroshi Horii, Kiyokuni Kawachiya, Al- lan Kielstra, Sreedhar Kodali, Sriram Krishnamoorthy, Yan Li, Bruce Lucas, Yuki Makino, Nathaniel Nystrom, Igor Peshansky, Vivek Sarkar, Armando Solar-Lezama, S. Alexander Spoon, Toshio Suganuma, Sayantan Sur, Toyotaro Suzumura, Christoph von Praun, Leena Unnikrishnan, Pradeep Varma, Krishna Nandivada Venkata, Jan Vitek, Hai Chuan Wang, Tong Wen, Salikh Zakirov, and Yoav Zibin. For extended discussions and support we would like to thank: Gheorghe Almasi, Robert Blackmore, Rob O’Callahan, Calin Cascaval, Norman Cohen, Elmootaz El- nozahy, John Field, Kevin Gildea, Sara Salem Hamouda, Michihiro Horie, Arun Iyen- gar, Chulho Kim, Orren Krieger, Doug Lea, John McCalpin, Paul McKenney, Hiroki Murata, Andrew Myers, Filip Pizlo, Ram Rajamony, R.
    [Show full text]
  • C Programming Language Review
    C Programming Language Review Embedded Systems 1 C: A High-Level Language Gives symbolic names to values – don’t need to know which register or memory location Provides abstraction of underlying hardware – operations do not depend on instruction set – example: can write “a = b * c”, even if CPU doesn’t have a multiply instruction Provides expressiveness – use meaningful symbols that convey meaning – simple expressions for common control patterns (if-then-else) Enhances code readability Safeguards against bugs – can enforce rules or conditions at compile-time or run-time Embedded Systems 2 A C Code “Project” • You will use an “Integrated Development Environment” (IDE) to develop, compile, load, and debug your code. • Your entire code package is called a project. Often you create several files to spilt the functionality: – Several C files – Several include (.h) files – Maybe some assembly language (.a30) files – Maybe some assembly language include (.inc) files • A lab, like “Lab7”, will be your project. You may have three .c, three .h, one .a30, and one .inc files. • More will be discussed in a later set of notes. Embedded Systems 3 Compiling a C Program C Source and Entire mechanism is usually called Header Files the “compiler” Preprocessor – macro substitution C Preprocessor – conditional compilation – “source-level” transformations • output is still C Compiler Source Code Compiler Analysis – generates object file Symbol Table Target Code • machine instructions Synthesis Linker – combine object files Library (including libraries) Linker into executable image Object Files Executable Image Embedded Systems 4 Compiler Source Code Analysis – “front end” – parses programs to identify its pieces • variables, expressions, statements, functions, etc.
    [Show full text]
  • Exploring Languages with Interpreters and Functional Programming Chapter 22
    Exploring Languages with Interpreters and Functional Programming Chapter 22 H. Conrad Cunningham 5 November 2018 Contents 22 Overloading and Type Classes 2 22.1 Chapter Introduction . .2 22.2 Polymorphism in Haskell . .2 22.3 Why Overloading? . .2 22.4 Defining an Equality Class and Its Instances . .4 22.5 Type Class Laws . .5 22.6 Another Example Class Visible ..................5 22.7 Class Extension (Inheritance) . .6 22.8 Multiple Constraints . .7 22.9 Built-In Haskell Classes . .8 22.10Comparison to Other Languages . .8 22.11What Next? . .9 22.12Exercises . 10 22.13Acknowledgements . 10 22.14References . 11 22.15Terms and Concepts . 11 Copyright (C) 2017, 2018, H. Conrad Cunningham Professor of Computer and Information Science University of Mississippi 211 Weir Hall P.O. Box 1848 University, MS 38677 (662) 915-5358 Browser Advisory: The HTML version of this textbook requires use of a browser that supports the display of MathML. A good choice as of November 2018 is a recent version of Firefox from Mozilla. 1 22 Overloading and Type Classes 22.1 Chapter Introduction Chapter 5 introduced the concept of overloading. Chapters 13 and 21 introduced the related concepts of type classes and instances. The goal of this chapter and the next chapter is to explore these concepts in more detail. The concept of type class was introduced into Haskell to handle the problem of comparisons, but it has had a broader and more profound impact upon the development of the language than its original purpose. This Haskell feature has also had a significant impact upon the design of subsequent languages (e.g.
    [Show full text]
  • Section “Common Predefined Macros” in the C Preprocessor
    The C Preprocessor For gcc version 12.0.0 (pre-release) (GCC) Richard M. Stallman, Zachary Weinberg Copyright c 1987-2021 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation. A copy of the license is included in the section entitled \GNU Free Documentation License". This manual contains no Invariant Sections. The Front-Cover Texts are (a) (see below), and the Back-Cover Texts are (b) (see below). (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Table of Contents 1 Overview :::::::::::::::::::::::::::::::::::::::: 1 1.1 Character sets:::::::::::::::::::::::::::::::::::::::::::::::::: 1 1.2 Initial processing ::::::::::::::::::::::::::::::::::::::::::::::: 2 1.3 Tokenization ::::::::::::::::::::::::::::::::::::::::::::::::::: 4 1.4 The preprocessing language :::::::::::::::::::::::::::::::::::: 6 2 Header Files::::::::::::::::::::::::::::::::::::: 7 2.1 Include Syntax ::::::::::::::::::::::::::::::::::::::::::::::::: 7 2.2 Include Operation :::::::::::::::::::::::::::::::::::::::::::::: 8 2.3 Search Path :::::::::::::::::::::::::::::::::::::::::::::::::::: 9 2.4 Once-Only Headers::::::::::::::::::::::::::::::::::::::::::::: 9 2.5 Alternatives to Wrapper #ifndef ::::::::::::::::::::::::::::::
    [Show full text]
  • SIPB's IAP Programming in C
    SIPB’s IAP Programming in C C was developed at AT&T Bell Labs between 1971 and 1973, by Dennis Ritchie. It was derived from an experimental language called B, which itself was a stripped-down version of BCPL. All of these are derivatives of the ALGOL family of languages, dating from the 1950s. This work was done on a PDP-11, a machine with a 16 bit address bus. While a PDP-11 should be able to address up to 64K of memory, these machines only had 24K. The C compiler was written in C, and was able to compile itself on these machines, running under the nascent Unix operating system. #include <stdio.h> main() The classic { printf("hello, world\n"); } /* * %% - a percent sign * %s - a string * %d - 32-bit integer, base 10 * %lld - 64-bit integer, base 10 * %x - 32-bit integer, base 16 * %llx - 64-bit integer, base 16 * %f, %e, %g - double precision * floating point number */ /* * the following should produce: A word on printf() * * printf() test: * string: 'string test' * number: 22 * float: 18.19 */ printf("printf() test:\n" " string: '%s'\n" " number: %d\n" " float: %g\n", "string test", 22, 18.19); Language Structure char i_8; There are five different /* -128 to 127 */ kinds of integer: unsigned char ui_8; /* 0 to 255 */ - char short i_16; - short /* -32768 to 32767 */ unsigned short ui_16; - int /* 0 to 65536 */ int i_32; - long /* -2147483648 to 2147483647 */ unsigned int ui_32; - long long /* 0 to 4294967295U */ long i_arch; unsigned ui_arch; Each of these can be /* architecture either: * dependent */ long long i64; - signed (the default)
    [Show full text]
  • Tinyos Programming Philip Levis and David Gay Frontmatter More Information
    Cambridge University Press 978-0-521-89606-1 - TinyOS Programming Philip Levis and David Gay Frontmatter More information TinyOS Programming Do you need to know how to write systems, services, and applications using the TinyOS operating system? Learn how to write nesC code and efficient applications with this indispensable guide to TinyOS programming. Detailed examples show you how to write TinyOS code in full, from basic applications right up to new low-level systems and high-performance applications. Two leading figures in the development of TinyOS also explain the reasons behind many of the design decisions made and explain for the first time how nesC relates to and differs from other C dialects. Handy features such as a library of software design patterns, programming hints and tips, end-of-chapter exercises, and an appendix summarizing the basic application-level TinyOS APIs make this the ultimate guide to TinyOS for embedded systems programmers, developers, designers, and graduate students. Philip Levis is Assistant Professor of Computer Science and Electrical Engineering at Stanford University. A Fellow of the Microsoft Research Faculty, he is also Chair of the TinyOS Core Working Group and a Member of the TinyOS Network Protocol (net2), Simulation (sim), and Documentation (doc) Working Groups. David Gay joined Intel Research in Berkeley in 2001, where he has been a designer and the principal implementer of the nesC language, the C dialect used to implement the TinyOS sensor network operating system, and its applications. He has a diploma in Computer Science from the Swiss Federal Institute of Technology in Lausanne and a Ph.D.
    [Show full text]
  • A Type-Checking Preprocessor for Cilk 2, a Multithreaded C Language
    A Typechecking Prepro cessor for Cilk a Multithreaded C Language by Rob ert C Miller Submitted to the Department of Electrical Engineering and Computer Science in partial fulllment of the requirements for the degrees of Bachelor of Science in Computer Science and Engineering and Master of Engineering in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology May Copyright Massachusetts Institute of Technology All rights reserved Author ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::: Department of Electrical Engineering and Computer Science May Certied by ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::: Charles E Leiserson Thesis Sup ervisor Accepted by ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::: F R Morgenthaler Chairman Department Committee on Graduate Theses A Typechecking Prepro cessor for Cilk a Multithreaded C Language by Rob ert C Miller Submitted to the Department of Electrical Engineering and Computer Science on May in partial fulllment of the requirements for the degrees of Bachelor of Science in Computer Science and Engineering and Master of Engineering in Electrical Engineering and Computer Science Abstract This thesis describ es the typechecking optimizing translator that translates Cilk a C ex tension language for multithreaded parallel programming into C The CilktoC translator is based on CtoC a to ol I developed that parses type checks analyzes and regenerates a C program With a translator based on CtoC
    [Show full text]
  • Nesc 1.2 Language Reference Manual
    nesC 1.2 Language Reference Manual David Gay, Philip Levis, David Culler, Eric Brewer August 2005 1 Introduction nesC is an extension to C [3] designed to embody the structuring concepts and execution model of TinyOS [2]. TinyOS is an event-driven operating system designed for sensor network nodes that have very limited resources (e.g., 8K bytes of program memory, 512 bytes of RAM). TinyOS has been reimplemented in nesC. This manual describes v1.2 of nesC, changes from v1.0 and v1.1 are summarised in Section 2. The basic concepts behind nesC are: • Separation of construction and composition: programs are built out of components, which are assembled (“wired”) to form whole programs. Components define two scopes, one for their specification (containing the names of their interfaces) and one for their implementation. Components have internal concurrency in the form of tasks. Threads of control may pass into a component through its interfaces. These threads are rooted either in a task or a hardware interrupt. • Specification of component behaviour in terms of set of interfaces. Interfaces may be provided or used by the component. The provided interfaces are intended to represent the functionality that the component provides to its user, the used interfaces represent the functionality the component needs to perform its job. • Interfaces are bidirectional: they specify a set of functions to be implemented by the inter- face’s provider (commands) and a set to be implemented by the interface’s user (events). This allows a single interface to represent a complex interaction between components (e.g., registration of interest in some event, followed by a callback when that event happens).
    [Show full text]
  • On the Interaction of Object-Oriented Design Patterns and Programming
    On the Interaction of Object-Oriented Design Patterns and Programming Languages Gerald Baumgartner∗ Konstantin L¨aufer∗∗ Vincent F. Russo∗∗∗ ∗ Department of Computer and Information Science The Ohio State University 395 Dreese Lab., 2015 Neil Ave. Columbus, OH 43210–1277, USA [email protected] ∗∗ Department of Mathematical and Computer Sciences Loyola University Chicago 6525 N. Sheridan Rd. Chicago, IL 60626, USA [email protected] ∗∗∗ Lycos, Inc. 400–2 Totten Pond Rd. Waltham, MA 02154, USA [email protected] February 29, 1996 Abstract Design patterns are distilled from many real systems to catalog common programming practice. However, some object-oriented design patterns are distorted or overly complicated because of the lack of supporting programming language constructs or mechanisms. For this paper, we have analyzed several published design patterns looking for idiomatic ways of working around constraints of the implemen- tation language. From this analysis, we lay a groundwork of general-purpose language constructs and mechanisms that, if provided by a statically typed, object-oriented language, would better support the arXiv:1905.13674v1 [cs.PL] 31 May 2019 implementation of design patterns and, transitively, benefit the construction of many real systems. In particular, our catalog of language constructs includes subtyping separate from inheritance, lexically scoped closure objects independent of classes, and multimethod dispatch. The proposed constructs and mechanisms are not radically new, but rather are adopted from a variety of languages and programming language research and combined in a new, orthogonal manner. We argue that by describing design pat- terns in terms of the proposed constructs and mechanisms, pattern descriptions become simpler and, therefore, accessible to a larger number of language communities.
    [Show full text]
  • An Analysis of the Dynamic Behavior of Javascript Programs
    An Analysis of the Dynamic Behavior of JavaScript Programs Gregor Richards Sylvain Lebresne Brian Burg Jan Vitek S3 Lab, Department of Computer Science, Purdue University, West Lafayette, IN fgkrichar,slebresn,bburg,[email protected] Abstract becoming a general purpose computing platform with office appli- The JavaScript programming language is widely used for web cations, browsers and development environments [15] being devel- programming and, increasingly, for general purpose computing. oped in JavaScript. It has been dubbed the “assembly language” of the Internet and is targeted by code generators from the likes As such, improving the correctness, security and performance of 2;3 JavaScript applications has been the driving force for research in of Java and Scheme [20]. In response to this success, JavaScript type systems, static analysis and compiler techniques for this lan- has started to garner academic attention and respect. Researchers guage. Many of these techniques aim to reign in some of the most have focused on three main problems: security, correctness and dynamic features of the language, yet little seems to be known performance. Security is arguably JavaScript’s most pressing prob- about how programmers actually utilize the language or these fea- lem: a number of attacks have been discovered that exploit the lan- tures. In this paper we perform an empirical study of the dynamic guage’s dynamism (mostly the ability to access and modify shared behavior of a corpus of widely-used JavaScript programs, and an- objects and to inject code via eval). Researchers have proposed ap- alyze how and why the dynamic features are used.
    [Show full text]
  • Thinking in C++ Volume 2 Annotated Solution Guide, Available for a Small Fee From
    1 z 516 Note: This document requires the installation of the fonts Georgia, Verdana and Andale Mono (code font) for proper viewing. These can be found at: http://sourceforge.net/project/showfiles.php?group_id=34153&release_id=105355 Revision 19—(August 23, 2003) Finished Chapter 11, which is now going through review and copyediting. Modified a number of examples throughout the book so that they will compile with Linux g++ (basically fixing case- sensitive naming issues). Revision 18—(August 2, 2003) Chapter 5 is complete. Chapter 11 is updated and is near completion. Updated the front matter and index entries. Home stretch now. Revision 17—(July 8, 2003) Chapters 5 and 11 are 90% done! Revision 16—(June 25, 2003) Chapter 5 text is almost complete, but enough is added to justify a separate posting. The example programs for Chapter 11 are also fairly complete. Added a matrix multiplication example to the valarray material in chapter 7. Chapter 7 has been tech-edited. Many corrections due to comments from users have been integrated into the text (thanks!). Revision 15—(March 1 ,2003) Fixed an omission in C10:CuriousSingleton.cpp. Chapters 9 and 10 have been tech-edited. Revision 14—(January ,2003) Fixed a number of fuzzy explanations in response to reader feedback (thanks!). Chapter 9 has been copy-edited. Revision 13—(December 31, 2002) Updated the exercises for Chapter 7. Finished rewriting Chapter 9. Added a template variation of Singleton to chapter 10. Updated the build directives. Fixed lots of stuff. Chapters 5 and 11 still await rewrite. Revision 12—(December 23, 2002) Added material on Design Patterns as Chapter 10 (Concurrency will move to Chapter 11).
    [Show full text]
  • C Programming
    C PROGRAMMING 6996 Columbia Gateway Drive Suite 100 Columbia, MD 21046 Tel: 443-692-6600 http://www.umbctraining.com C PROGRAMMING Course # TCPRG3000 Rev. 10/14/2016 ©2016 UMBC Training Centers 1 C PROGRAMMING This Page Intentionally Left Blank ©2016 UMBC Training Centers 2 C PROGRAMMING Course Objectives ● At the conclusion of this course, students will be able to: ⏵ Write non-trivial C programs. ⏵ Use data types appropriate to specific programming problems. ⏵ Utilize the modular features of the C languages. ⏵ Demonstrate efficiency and readability. ⏵ Use the various control flow constructs. ⏵ Create and traverse arrays. ⏵ Utilize pointers to efficiently solve problems. ⏵ Create and use structures to implement new data types. ⏵ Use functions from the C runtime library. ©2016 UMBC Training Centers 3 C PROGRAMMING This Page Intentionally Left Blank ©2016 UMBC Training Centers 4 C PROGRAMMING Table of Contents Chapter 1: Getting Started..............................................................................................9 What is C?..................................................................................................................10 Sample Program.........................................................................................................11 Components of a C Program......................................................................................13 Data Types.................................................................................................................14 Variables.....................................................................................................................16
    [Show full text]