The Extant Telephone-Pole Beetle Genus Micromalthus Discovered in Mid-Cretaceous Amber from Northern Myanmar (Coleoptera: Archostemata: Micromalthidae)

Total Page:16

File Type:pdf, Size:1020Kb

The Extant Telephone-Pole Beetle Genus Micromalthus Discovered in Mid-Cretaceous Amber from Northern Myanmar (Coleoptera: Archostemata: Micromalthidae) Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: https://www.tandfonline.com/loi/ghbi20 The extant telephone-pole beetle genus Micromalthus discovered in mid-Cretaceous amber from northern Myanmar (Coleoptera: Archostemata: Micromalthidae) Shûhei Yamamoto To cite this article: Shûhei Yamamoto (2019): The extant telephone-pole beetle genus Micromalthus discovered in mid-Cretaceous amber from northern Myanmar (Coleoptera: Archostemata: Micromalthidae), Historical Biology, DOI: 10.1080/08912963.2019.1670174 To link to this article: https://doi.org/10.1080/08912963.2019.1670174 Published online: 06 Oct 2019. Submit your article to this journal Article views: 123 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 HISTORICAL BIOLOGY https://doi.org/10.1080/08912963.2019.1670174 ARTICLE The extant telephone-pole beetle genus Micromalthus discovered in mid-Cretaceous amber from northern Myanmar (Coleoptera: Archostemata: Micromalthidae) Shûhei Yamamoto Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA ABSTRACT ARTICLE HISTORY The telephone-pole beetle family Micromalthidae has attracted the attention of entomologists and Received 19 August 2019 biologists because of its enigmatic morphology, systematic position, and complex life cycle. With only Accepted 17 September 2019 a single extant and four extinct species, the micromalthid beetles are a small but important lineage KEYWORDS ff within the primitive suborder Archostemata. Fossil micromathids, known mainly from di erent amber Micromalthus; deposits, are not commonly found. Here, I report the first Mesozoic fossil of the sole extant micro- Micromalthidae; malthid genus Micromalthus in the mid-Cretaceous Kachin amber from northern Myanmar. Due to its Archostemata; Burmese rather poor preservation, this provisional new species remains unnamed, tentatively identified as amber; Cenomanian; fossil Micromalthus sp. The newly found specimen is about 46 Ma older than an Eocene Micromalthus fossil from the Oise amber of France. My study greatly expands our knowledge of the origin and early evolution of Micromalthus beetles. Introduction some specific areas in the world (as summarised in Ruzzier and Colla 2019: Figure 2). The native range is thought to be With nearly 400,000 described species, Coleoptera (beetles) is the eastern part of the USA and possibly also Central America by far the largest order of organisms in terms of species (Philips 2001; Philips and Young 2001). This current wider richness, demonstrating remarkable morphological and eco- distribution of M. debilis is considered to be the result of logical diversity (Crowson 1981; Grimaldi and Engel 2005). human activities, globalisation, and the international timber The majority of this diversity is in Polyphaga, one of the four trade, rather than merely dispersal events (e.g. Ruzzier and suborders of Coleoptera, which accounts for over 90% of all Colla 2019). beetle species. By contrast, Archostemata is a small relict In general appearance, Micromalthus beetles are quite dif- group comprised of four (Lawrence 2016)orfive families ferent from the much more speciose, core archostematan (Hörnschemeyer 2016, including Jurodidae) with only about families Cupedidae and Ommatidae. Nonetheless, the phylo- 40 extant species (Yavorskaya et al. 2018). However, there are genetic affinity of M. debilis with Ommatidae is supported by diverse and abundant fossil records from the Mesozoic for morphological characters (Hörnschemeyer 2009) and mole- this group; thus, it is apparent that the archostematans were cular evidence (McKenna et al. 2015). The adults of M. debilis much more diverse than they are now. The systematic posi- are very small (~2.5 mm), narrowly elongated, and only tion of Archostemata remains unresolved, and morphological weakly sclerotised; they have smooth and shortened elytra, and molecular studies have yielded conflicting results (e.g. and superficially resemble some rove beetles (Staphylinidae) Lawrence et al. 2011; McKenna et al. 2015; Beutel et al. (Paterson 1938; Philips and Young 2001; Yan et al. 2019). The 2019). Nevertheless, it has retained many ancestral features larvae of M. debilis are wood borers that feed on, or develop and constitutes an important subgroup of Coleoptera (e.g. in, decaying oaks, chestnuts, hemlock, and others (Philips and Beutel et al. 2008; Friedrich et al. 2009). Therefore, it is clearly Young 2001; Grimaldi and Engel 2005). M. debilis has the a key taxon for understanding the early evolution of the most complicated and idiosyncratic life cycle of all beetles, mega-diverse beetles (Yan et al. 2019). including thelytoky, arrhenotoky, vivipary, matriphagy, The archostematan family Micromalthidae, or telephone- hypermetamorphosis, and paedogenesis, with several mark- pole beetles, represents a tiny fraction within the suborder edly different larval types (Philips and Young 2001; Pollock Archostemata. In fact, Micromalthus debilis LeConte, 1878 is and Normark 2002; Normark 2013; Hörnschemeyer 2016; the only extant species in this family. Nevertheless, M. debilis Perotti et al. 2016). Micromalthidae (M. debilis) is the only has attracted the attention of entomologists and biologists, family of Coleoptera defined by the presence of haploid mainly because of its unusual, distinct morphology, ancestral males, although such males are found in some bark beetles position, and highly complex life cycle. This species is cur- (Curculionidae: Scolytinae) within Coleoptera (Normark rently distributed globally, but it has been limited only to 2003). CONTACT Shûhei Yamamoto [email protected] Field Museum of Natural History, Integrative Research Center, 1400 S Lake Shore Drive, Chicago, IL 60605, USA © 2019 Informa UK Limited, trading as Taylor & Francis Group Published online 06 Oct 2019 2 S. YAMAMOTO Another interesting feature of M. debilis is that it is a ‘living believed to have been tropical (Grimaldi et al. 2002). It is fossil’; a presumed-extinct Micromalthus species (Perkovsky currently considered that the amber-producing forests were 2007) in the early Middle Miocene Dominican amber (ca. located near a seashore or coastline (Mao et al. 2018;Yu 16 Ma) was later regarded as the same taxon as M. debilis et al. 2019). The beetle inclusions in Kachin amber are (Hörnschemeyer et al. 2010). Like other extant archostematans, remarkably diverse, comprising 207 species in 159 genera the occurrence of M. debilis is rare and sporadic (Philips and and 80 families as of the end of 2018 (Ross 2019). Young 2001; Yavorskaya et al. 2018). Extinct micromalthids The original amber piece was spherical, but the author are also rare in spite of much diverse and abundant taxa of the (SY) later polished the specimen using emery papers differing other extinct archostematan families and also despite its pecu- in grain size and a plastic buffing cloth. This process yielded liar body form, which attracts palaeontologists and entomolo- a thin, flattened amber piece, allowing detailed observations. gists. However, its small size and weak sclerotisation make When it was observed or photographed, the amber was com- fossilisation difficult, particularly with respect to impression pletely submerged in clove oil (Wako Pure Chemical fossils (Yan et al. 2019). All but one micromalthid fossils are Industries, Osaka, Japan; refractive index, 1.52–1.55), to either Cenozoic or Mesozoic amber inclusions, which include avoid extra reflections and improve the visibility of the beetle larval and adult forms in the Middle Miocene Dominican fossil from multiple angles. Observations were made using amber (Lawrence and Newton 1995; Perkovsky 2007; a Leica MZ16 stereomicroscope (Leica Microsystems, Hörnschemeyer et al. 2010), a larval form in the Miocene Wetzlar, Germany). Photographs (Figures 1, 2, 3(e), 4) were Mexican amber (Rozen 1971), larval and adult forms in the taken using an 80D digital camera (Canon, Tokyo, Japan) Upper Eocene Rovno amber (Perkovsky 2016), a larval form in with an MP-E 65 mm macro lens (F2.8, 1–5 ×; Canon) and an the Upper Eocene Baltic amber (Lawrence and Newton 1995), MT-24EX Macro Twin Lite Flash (Canon). Additional photos an adult form in the Lower Eocene Oise amber from France (Figures 3(a–d), 5, 6) were obtained with the Dun Ink BK (Kirejtshuk et al. 2010), and a larval form in the Lower PLUS Lab System (Dun, Palmyra, VA, USA) mounted on Cretaceous Lebanese amber (described as an extinct genus; a 6D digital camera (Canon) with a 10 × lens. The images Kirejtshuk and Azar 2008). Recently, the oldest micromalthid were stacked using the automontage software Helicon Focus fossil was found in the Upper Permian Babiy Kamen’ locality 7.5.4 (Helicon Soft, Kharkiv, Ukraine). All images were edited in Siberia, and was described as a second extinct genus in the and arranged with Photoshop® Elements 15 (Adobe Systems, family (Yan et al. 2019). Consequently, a total of four extinct San Jose, CA, USA). The sole specimen is deposited in the micromalthid species has been described, namely two extinct entomological collection of the Gantz Family Collections Micromalthus species (Perkovsky 2007, 2016; Hörnschemeyer Centre, Field Museum of Natural History (FMNH), Chicago et al. 2010; Kirejtshuk et al. 2010) and two monotypic extinct genera (Kirejtshuk and Azar 2008; Yan et al. 2019). Nevertheless, very little is known about
Recommended publications
  • A New Genus and Species of Asiocoleidae (Coleoptera) From
    ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 50 (2), pp. 1–9 (21 July 2020) This contribution is published to honor Prof. Vladimir Chikatunov, a scientist, a colleague and a friend, on the occasion of his 80th birthday. The first finding of an asiocoleid beetle (Coleoptera: Asiocoleidae) in the Upper Permian Belmont Insect Beds, Australia, with descriptions of a new genus and species Aleksandr G. Ponomarenko1, Evgeny V. Yan1, Olesya D. Strelnikova1 & Robert G. Beattie2 1A.A. Borissiak Palaeontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia. E-mail: [email protected], [email protected], [email protected] 2The Australian Museum, 1 William Street, Sydney, New South Wales, 2010 Australia. E-mail: [email protected], [email protected] ABSTRACT A new genus and species of Archostematan beetles, Gondvanocoleus chikatunovi n. gen. & sp., is described from an isolated elytron from the Upper Permian Belmont locality in Australia. Gondvanocoleus n. gen. differs from other members of the family Asiocoleidae in having only one row of cells in the middle part of the elytral field 3 and in having unorganized cells not forming rows near the elytral apex. Further relationships of the new genus with other asiocoleids are discussed. The fossil record of the Asiocoleidae is briefly overviewed. KEYWORDS: Coleoptera, Archostemata, Asiocoleidae, beetles, new genus, new species, Permian, Lopingian, Australia, Gondwana, fossil record. РЕЗЮМЕ Новый род и вид жуков-архостемат, Gondvanocoleus chikatunovi n. gen. & sp., описаны по изолированному надкрылью из верхнепермского мес то­ нахождения Бельмонт в Австралии. Gondvanocoleus n. gen. отличается от остальных родов семейства Asiocoleidae присутствием только одного ряда ячей в средней части предшовного поля и не организованных в ряды ячей в апикальной части надкрылья.
    [Show full text]
  • Reticulated Beetles, Family Cupedidae
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. FAMILY CUPEDIDAE RETICULATED BEETLES, FAMILY CUPEDIDAE (CUE-PEH-DIH-DEE) Cupedids are a small and unusual family of primitive beetles with more than 30 species worldwide, two of which are found in eastern North America. Adults and larvae bore into fungus-infested wood beneath the bark of limbs and logs. FAMILY DIAGNOSIS Adult cupedids are slender, parallel- SIMILAR FAMILIES sided, strongly flattened, roughly sculpted, and clothed ■ net-winged beetles (Lycidae) – head not visible in broad, scalelike setae. Head and pronotum narrower from above (p.229) than elytra. Antennae thick, filiform with 11 antennomeres. ■ hispine leaf beetles (Chrysomelidae: Cassidinae) Prothorax distinctly margined or keeled on sides, underside – antennae short, clavate; head narrower than with grooves to receive legs. Elytra broader than prothorax, pronotum (p.429) strongly ridged with square punctures between. Tarsal formula 5-5-5; claws simple. Abdomen with five overlapping COLLECTING NOTES Adult cupedids are found in late ventrites. spring and summer by chopping into old decaying logs and stumps, netted in flight near infested wood, and beaten from dead branches. They are sometimes common at light. FAUNA FOUR SPECIES IN FOUR GENERA (NA); TWO SPECIES IN TWO GENERA (ENA) Cupes capitatus Fabricius (7.0–11.0 mm) is elongate, narrow, bicolored with reddish or golden head and remainder of body grayish black. Adults active late spring and summer, 60 found under bark and on bare trunks of standing dead oaks (Quercus); attracted to light.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Current Classification of the Families of Coleoptera
    The Great Lakes Entomologist Volume 8 Number 3 - Fall 1975 Number 3 - Fall 1975 Article 4 October 1975 Current Classification of the amiliesF of Coleoptera M G. de Viedma University of Madrid M L. Nelson Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation de Viedma, M G. and Nelson, M L. 1975. "Current Classification of the amiliesF of Coleoptera," The Great Lakes Entomologist, vol 8 (3) Available at: https://scholar.valpo.edu/tgle/vol8/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. de Viedma and Nelson: Current Classification of the Families of Coleoptera THE GREAT LAKES ENTOMOLOGIST CURRENT CLASSIFICATION OF THE FAMILIES OF COLEOPTERA M. G. de viedmal and M. L. els son' Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations.
    [Show full text]
  • The Evolutionary History of the Coleoptera
    geosciences Editorial The Evolutionary History of the Coleoptera Alexander G. Kirejtshuk Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia; [email protected] or [email protected] Received: 29 January 2020; Accepted: 5 March 2020; Published: 12 March 2020 Abstract: In this Editorial, different aspects of palaeocoleopterological studies and contributions of the issue “The Evolutionary History of the Coleoptera” are discussed. Keywords: classification; problems of taxonomic interpretation of fossils; contributions for studies of palaeoenvironment and faunogenesis “Beetles, like other insects, spread quickly and practically simultaneously (in the geological sense), appearing in different parts of the Earth. The differences in dispersal result not from the difficulty to reach a particular location of the Earth, but because of the difficulty to enter an ecosystem already formed. Thus, the evolutionary potential of beetles is quite high, and the study of their ancient representatives is interesting from many points of view; however, it requires much effort and expertise. Unfortunately, a study of the palaeontology of beetles is a much more complicated task than that of Hymenoptera or Diptera. By the structure of the wing of the latter it is nearly always possible to determine to what large taxon it belongs. For the majority of discoveries of isolated elytra of beetles at the present state of knowledge it is impossible to identify the group to which the beetle with these elytra belongs. However there was a period—the Permian except its very end—when the evolution of elytra was the main evolutionary process in beetles.” Ponomarenko, A.G. Paleontological discoveries of beetles.
    [Show full text]
  • Ancient Rapid Radiations of Insects: Challenges for Phylogenetic Analysis
    ANRV330-EN53-23 ARI 2 November 2007 18:40 Ancient Rapid Radiations of Insects: Challenges for Phylogenetic Analysis James B. Whitfield1 and Karl M. Kjer2 1Department of Entomology, University of Illinois, Urbana, Illinois 61821; email: jwhitfi[email protected] 2Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901; email: [email protected] Annu. Rev. Entomol. 2008. 53:449–72 Key Words First published online as a Review in Advance on diversification, molecular evolution, Palaeoptera, Orthopteroidea, September 17, 2007 fossils The Annual Review of Entomology is online at ento.annualreviews.org Abstract by UNIVERSITY OF ILLINOIS on 12/18/07. For personal use only. This article’s doi: Phylogenies of major groups of insects based on both morphological 10.1146/annurev.ento.53.103106.093304 and molecular data have sometimes been contentious, often lacking Copyright c 2008 by Annual Reviews. the data to distinguish between alternative views of relationships. Annu. Rev. Entomol. 2008.53:449-472. Downloaded from arjournals.annualreviews.org All rights reserved This paucity of data is often due to real biological and historical 0066-4170/08/0107-0449$20.00 causes, such as shortness of time spans between divergences for evo- lution to occur and long time spans after divergences for subsequent evolutionary changes to obscure the earlier ones. Another reason for difficulty in resolving some of the relationships using molecu- lar data is the limited spectrum of genes so far developed for phy- logeny estimation. For this latter issue, there is cause for current optimism owing to rapid increases in our knowledge of comparative genomics.
    [Show full text]
  • The Head Morphology of Ascioplaga Mimeta (Coleoptera: Archostemata) and the Phylogeny of Archostemata
    Eur. J. Entomol. 103: 409–423, 2006 ISSN 1210-5759 The head morphology of Ascioplaga mimeta (Coleoptera: Archostemata) and the phylogeny of Archostemata THOMAS HÖRNSCHEMEYER1, JÜRGEN GOEBBELS2, GERD WEIDEMANN2, CORNELIUS FABER3 and AXEL HAASE3 1Universität Göttingen, Institut für Zoologie & Anthropologie, Abteilung Morphologie & Systematik, D-37073 Göttingen, Germany; e-mail: [email protected] 2Bundesanstalt für Materialforschung (BAM), Berlin, Germany 3Physikalisches Institut, University of Würzburg, Germany Keywords. Archostemata, Cupedidae, phylogeny, NMR-imaging, skeletomuscular system, micro X-ray computertomography, head morphology Abstract. Internal and external features of the head of Ascioplaga mimeta (Coleoptera: Archostemata) were studied with micro X-ray computertomography (µCT) and nuclear magnetic resonance imaging (NMRI). These methods allowed the reconstruction of the entire internal anatomy from the only available fixed specimen. The mouthparts and their associated musculature are highly derived in many aspects. Their general configuration corresponds to that of Priacma serrata (the only other archostematan studied in comparable detail). However, the mandible-maxilla system of A. mimeta is built as a complex sorting apparatus and shows a distinct specialisation for a specific, but still unknown, food source. The phylogenetic analysis resulted in the identification of a new mono- phylum comprising the genera [Distocupes + (Adinolepis +Ascioplaga)]. The members of this taxon are restricted to the Australian zoogeographic region. The most prominent synapomorphies of these three genera are their derived mouthparts. INTRODUCTION 1831) (Snyder, 1913; Barber & Ellis, 1920), Tenomerga Ascioplaga mimeta Neboiss, 1984 occurs in New Cale- mucida (Chevrolat, 1829) (Fukuda, 1938, 1939), Disto- donia (a French island ca. 1400 km ENE of Brisbane, cupes varians (Lea, 1902) (Neboiss, 1968), P.
    [Show full text]
  • Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE
    Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 36, Heft 40: 529-536 ISSN 0250-4413 Ansfelden, 2. Januar 2015 A study of Coleoptera (Insecta) from the rice fields and surrounding grasslands of northern Iran Hassan GHAHARI , Hamid SAKENIN, Hadi OSTOVAN & Mehrdad TABARI Abstract The fauna of Coleoptera from the rice fields and surrounding grasslands of northern Iran is studied. In total 27 species from 10 families Alleculidae (2), Anthicidae (6), Cantharidae (3), Cleridae (2), Elmidae (3), Glaphyridae (4), Elateridae (3), Helophoridae (2), Silphidae (1), and Spercheidae (1) were collected and identified. Zusammenfassung Die Käferfauna von Reisfeldern und umgebendem Grasland des nördlichen Iran wurde in dieser Arbeit untersucht. Insgesamt konnten 27 Arten der 10 Familien Alleculidae (2), Anthicidae (6), Cantharidae (3), Cleridae (2), Elmidae (3), Glaphyridae (4), Elateridae (3), Helophoridae (2), Silphidae (1), and Spercheidae (1) gesammelt und bestimmt werden. Introduction Coleoptera is the largest order that contains 40% of all described insect species (more than 350,000 species), and new species are constantly discovered. These insects live throughout the world (except Antarctica), but most of them occur in the tropics (WHITE 529 1983; LAWRENCE & BRITTON 1994). The oldest fossils of Coleoptera are from the Lower Permian (about 265 million years ago) (PAKALUK & SLIPINSKI 1995). They range in size from minute featherwing beetles (Ptiliidae, 0.3 mm long) to the giant Goliath and Hercules beetles (Scarabaeidae, over than 15 cm long) (ARNETT 1973; BORROR CORRECT FONT et al. 1989). Beetles have variable life styles, the majority are terrestrial herbivores, though many families are predators, some are parasitic, in both terrestrial and aquatic environments.
    [Show full text]
  • Hox-Logic of Body Plan Innovations for Social Symbiosis in Rove Beetles
    bioRxiv preprint first posted online Oct. 5, 2017; doi: http://dx.doi.org/10.1101/198945. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Hox-logic of body plan innovations for social symbiosis in rove beetles 2 3 Joseph Parker1*, K. Taro Eldredge2, Isaiah M. Thomas3, Rory Coleman4 and Steven R. Davis5 4 5 1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, 6 CA 91125, USA 7 2Department of Ecology and Evolutionary Biology, and Division of Entomology, Biodiversity 8 Institute, University of Kansas, Lawrence, KS, USA 9 3Department of Genetics and Development, Columbia University, 701 West 168th Street, New 10 York, NY 10032, USA 11 4Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, 12 USA 13 5Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, 14 USA 15 *correspondence: [email protected] 16 17 18 19 20 21 22 23 24 25 26 27 1 bioRxiv preprint first posted online Oct. 5, 2017; doi: http://dx.doi.org/10.1101/198945. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 How symbiotic lifestyles evolve from free-living ecologies is poorly understood. In 2 Metazoa’s largest family, Staphylinidae (rove beetles), numerous lineages have evolved 3 obligate behavioral symbioses with ants or termites.
    [Show full text]
  • Ecology and Present Taxonomic Status of Beetles in Shekhawati Region of Rajasthan
    Journal of Global Resources Volume 5 (01) January 2019 Page 116-122 ISSN: 2395-3160 (Print), 2455-2445 (Online) 15 ECOLOGY AND PRESENT TAXONOMIC STATUS OF BEETLES IN SHEKHAWATI REGION OF RAJASTHAN Madhu Chaudhary Associate Professor, Department of Zoology Govt. Lohia P.G. College, Churu (Rajasthan) India Abstract: The order Coleoptera is a group of beetles and weevils is the largest group of comparable units among all animals. The members of this order vary in colour, size, structure and adaptations to a wide range of habitats and are cosmopolitan in distribution. The majorities of beetles are terrestrial, herbivores; many are predatory, frequently with highly specialized host ranges or life cycles. They are economically important in terms of both beneficiary as well as deleterious impacts which they have on ecosystem dynamics and environmental health and hygiene, including agriculture and animal husbandry. The present study is based on collection of different coleopteran genera from Shekhawati region of Rajasthan. Shekhawati region is the part of northern Rajasthan and desert area, where rain is the main source of fresh water, so rainy season (months from July to Sept.) are favourable for floral growth and also favourable for fauna because of rich flora most beetles are harmless and were collected by hand. In the present study 37 genera from 11 families are recorded. Nine genera from Scarabaeidae (scarabs, dung beetles), 12 genera from Tenebrionidae (Darkling beetles), 2 genera from Geotrupidae, 2 genera from Cerambycidae (long horned beetles), 1 genera from Buprestidae (Metallic wood borers, Jewel beetles), 4 genera from Hydrophilidae (Water scavenger beetles), 2 genera from Dytiscidae (Predacious diving beetles, water beetles), 2 genera from Coccinellidae (Lady bird beetles), 1 genera from Bruchidae, 1 genera from Elateridae (click beetles), 1 genera from Melolonthidae (cockchafers) are recorded.
    [Show full text]
  • Coleoptera: Myxophaga) and the Systematic Position of the Family and Suborder
    Eur. J. Entomol. 103: 85–95, 2006 ISSN 1210-5759 On the head morphology of Lepiceridae (Coleoptera: Myxophaga) and the systematic position of the family and suborder ERIC ANTON 1 and ROLF G. BEUTEL2 Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, FSU Jena, 07743 Jena, Germany; e-mails: 1 [email protected], 2 [email protected] Key words. Lepiceridae, head morphology, systematic position, function Abstract. Adult head structures of Lepicerus inaequalis were examined in detail and interpreted functionally and phylogenetically. The monogeneric family clearly belongs to Myxophaga. A moveable process on the left mandible is an autapomorphy of the subor- der. Even though Lepiceridae is the “basal” sistergroup of the remaining three myxophagan families, it is likely the group which has accumulated most autapomorphic features, e.g. tuberculate surface structure, internalised antennal insertion, and a specific entogna- thous condition. Adults of Lepiceridae and other myxophagan groups possess several features which are also present in larvae (e.g., premental papillae, semimembranous mandibular lobe). This is probably related to a very similar life style and has nothing to do with “desembryonisation”. Lepiceridae and other myxophagans share a complex and, likely, derived character of the feeding appa- ratus with many polyphagan groups (e.g., Staphyliniformia). The mandibles are equipped with large molae and setal brushes. The latter interact with hairy processes or lobes of the epi- and hypopharynx. This supports a sistergroup relationship between both sub- orders. INTRODUCTION association with semiaquatic species [e.g., Georissus, Lepicerus is a rather enigmatic and highly unusual Paracymus confusus Wooldridge, 1966, Anacaena debilis genus of Coleoptera.
    [Show full text]
  • Neocrohoria Gen. Nov., a New Anthicidae (Insecta: Coleoptera) Genus from Chile
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337339166 Neocrohoria gen. nov., a new Anthicidae (Insecta: Coleoptera) genus from Chile Article in Acta Biologica Universitatis Daugavpiliensis · October 2019 CITATIONS READS 0 97 1 author: Dmitry Telnov Natural History Museum, London 195 PUBLICATIONS 823 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: BMNH Specimen Photography Site View project Taxonomy & diversity of the Ischaliidae (Coleoptera: Tenebrionoidea) View project All content following this page was uploaded by Dmitry Telnov on 19 November 2019. The user has requested enhancement of the downloaded file. Acta Biol. Univ. Daugavp. 19 (1) 2019 ISSN 1407 - 8953 NEOCROHORIA GEN. NOV., A NEW ANTHICIDAE (INSECTA: COLEOPTERA) GENUS FROM CHILE Dmitry Telnov Telnov D. 2019. Neocrohoria gen. nov., a new Anthicidae (Insecta: Coleoptera) genus from Chile. Acta Biol. Univ. Daugavp., 19 (1): 1 – 8. Neocrohoria gen. nov. (Anthicinae: Microhoriini) from Chile is described, diagnosed, and illustrated. Some new critical morphological characters of Anthicinae and Microhoriini (Anthicidae) are mentioned and briefly discussed for the first time. New combination is made for Neocrohoria melanura (Fairmaire et Germain, 1863) comb. nov. (from Anthicus) and lectotype is designated for this taxon. Key words: Anthicinae, Microhoriini, taxonomy, morphology, Chile. Dmitry Telnov. Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom & Institute of Biology, University of Latvia, Miera iela 3, LV-2169, Salaspils, Latvia, LV-2169, e-mail: [email protected] (ORCID: 0000-0003-3412-0089) INTRODUCTION hitherto known from Chile (Werner 1966, 1974, Moore & Vidal 2005, Kejval 2009, Honour 2016, Anthicidae Latreille, 1819, ant-like flower beetles, Guerrero & Diéguez 2018, Telnov, unpublished is a rather large group of tenebrionoid Coleoptera data).
    [Show full text]