Rimental Forest Experiment Station

Total Page:16

File Type:pdf, Size:1020Kb

Rimental Forest Experiment Station United States Department of Agriculture Forest Service Southern Forest rimental Forest Experiment Station New Orleans, Sandra Brown, Ariel E. Lugo, Susan Silander, and Leon Liegel Louisiana : -2Ly -7; General Technical Report so-44 September, 1983 0iIgz.Y An Institute of Tropical Forestry Publication JAN4 ACKNOWLEDGMENT This manuscript was prepared in cooperation with the Terrestrial Ecol- ogy Division of the Center for Energy and Environment Research, University of Puerto Rico. Because the Luquillo Experimental Forest is a UNESCO Biosphere Reserve, the United States Man and the Biosphere Program (MAB), through its Directorate on Tropical Forests, reviewed and endorsed the manuscript as a contribution to the understanding of forest ecosystems in a tropical Biosphere Reserve. The U.S. Forest Service offers this publica- tion as a contribution to the fulfillment of the objectives of the U.S. MAB Program. CONTENTS Page INTRODUCTION ............................................ 1 GENERAL DESCRIPTION OF THE RESEARCH AREA .......... I CURRENT LAND USE ........................................ 4 Management ................................................ 4 Research ................................................... 5 Recreation ................................................. 6 PROPOSED LAND USE ....................................... 6 CLIMATE ................................................... 11 Rainfall ................................................... 11 Temperature ............................................... 12 Relative Humidity ........................................... 13 Wind Velocity and Direction .................................. 17 Solar Radiation ............................................. 18 SURFACE HYDROLOGY ..................................... 19 WATER QUALITY OF RIVERS ................................ 21 GEOLOGY .................................................. 22 SOILS ....................................................... 23 Surveys and Series Documentation ............................ 23 Physical Properties .......................................... 25 Chemical Properties ......................................... 32 Biotic Properties ............................................ 36 Root Profiles ............................................... 37 VEGETATION ............................................... 38 Floristic Studies ............................................. 39 Autecological Studies ........................................ 41 Tabonuco Forest ............................................ 42 Physiognomy ............................................ 42 Vertical Microclimatic Profiles .............................. 46 Leaf Area Index ........................................... 46 Chlorophyll a ............................................. 47 Biomass .................................................. 47 Primary Productivity and Metabolism ........................ 48 Energy Budget ............................................ 49 Evapotranspiration ........................................ 53 Tree Growth .............................................. 53 Mineral Cycling ........................................... 53 Phenology ................................................ 61 Colorado Forest ............................................. 61 Physiognomy ............................................. 61 Tree Growth ............................................. 62 Palm Forest ................................................ 64 Physiognomy ............................................. 64 Autecological Study of Sierra Palm ........................... 64 Tree Growth ................................ ..&. ......... 65 i Dwarf Forest ............................................... 65 Climate of Pica de1 Oeste ................................... 67 Physiognomy ............................................. 67 Biomass .................................................. 67 Leaf Characteristics ....................................... 70 Chlorophyll a ............................................. 70 Aerial Roots .............................................. 71 Epiphytes ................................................ 71 Primary Productivity ...................................... 75 Herbivory ................................................ 75 Transpiration ............................................. 75 Phenology ................................................ 80 Succession ............................................... 81 Long-Term Observations of Forest Dynamics .................... 84 Plantations ................................................. 89 FAUNA ..................................................... 89 Insects .................................................... 90 Amphibians ................................................ 94 Reptiles ................................................... 101 Birds ...................................................... 104 Mammals .................................................. 108 Molluscs ................................................... 108 Aquatic Fauna .............................................. 110 DISTURBANCES ............................................ 112 Irradiation Damage and Recovery .............................. 112 Herbicide and Experimental Cutting Damage and Recovery ........ 114 Hurricanes ................................................. 116 CONCLUSION ............................................... 116 Forcing Functions ........................................... 117 Response to Water ........................................... 118 Response to Hurricanes ...................................... 118 Energy Flow ................................................ 119 LITERATURE CITED . 120 Research History and Opportunities in the Luquillo Experimental Forest Sandra Brown, Ariel E. Lugo, Susan Silander, and Leon Liege1 INTRODUCTION National Forest. The Caribbean National Forest was proclaimed a forest reserve in 1903 and has been Tropical forests account for about 50% of the managed by the U.S. Forest Service since 1917. Some world’s total forest area and tropical countries have land in the present Caribbean National Forest was a total population of about one billion people. Today protected under the Spanish Crown as early as 1860. many of the tropical forests are being subjected to When Puerto Rico became part of the United States high rates of deforestation because of the increased territory in 1898, about 5,018 hectares of forest land demand for agricultural land and fuel by the increas- in the Luquillo Mountains were under the protection ing human population. Management of forest areas of the Spanish Crown. The area of the Forest has in many tropical countries is primitive. Yet, the most increased since 1930 to its present size of 11,330 ha. powerful way to curb destruction of forests is through A summary of these and other highlights of forestry the application of sound management principles. Our activity in Puerto Rico are given in table 1. ability to manage tropical forests is hampered by lack The Luquillo Experimental Forest, located in the of understanding of their structure and function. Un- Luquillo Mountains, has elevations ranging from like the situation in the temperate zone, there is about 100 m to 1,075 m above mean sea level. The little long-term ecological research tradition in the highest peak in the range is El Toro with an eleva- tropics, particularly in the New World tropics. Much tion of 1,075 m and the second highest peak is El research in the New Wor!d tropics has been short and Yunque with an elevation of 1,065 m (fig. 3). Other scattered. A notabie exception is the research history peaks with an elevation of approximately 1,000 m at the Luquillo Experimental Forest in Puerto Rico or more are Pica de1 Este (1,050 m), Pica de1 Oeste where scientists have been active since the end of the (1,020 m), El Cacique (1,020 m), Los Picachos (968 last century and a tradition of forestry research m), Mount Britton (937 m), and La Mina (925 m). exists. For example, a literature compilation of fores- The topography of the Mountains is extremely dis- try works in the island (Mosquera and Feheley 1983) sected with steep upper slopes. The largest propor- yielded 1,357 entries. tion of the Mountains (which include the Experi- The objective of this paper is to summarize major mental Forest) lies within the 305 to 610 m range findings of the research activity in the Luquillo Ex- (467,) with only 3% of the Mountains above 915 m perimental Forest. In the context of this review, re- (table 2). The Mountains serve as the headwaters for search opportunities in this tropical environment will six major rivers. Rio Espiritu Santo, Rio Grande de become evident. Loiza, Rio Blanco, Rio Mameyes, Rio Fajardo, and the Rio Sabana. These rivers provide water supply to over 200,000 people. GENERAL DESCRIPTION OF THE The Luquillo Experimental Forest mainly includes RESEARCH AREA four life zones; subtropical wet forest, subtropical rain forest, lower montane wet forest, and lower mon- Puerto Rico, part of the Greater Antilles island tane rain forest (fig. 4). In addition, a small tract of chain, is located in the northeastern Caribbean (fig. land in the southwest portion is within the subtrop- 1). The Luquillo Experimental Forest is located in ical moist forest life zone. The largest proportion of the northeast corner of the island (fig. 2). This Forest, the Forest is in the lower montane wet forest life established in 1956, is congruent with the Caribbean
Recommended publications
  • Plant Communities & Habitats
    Plant Communities & Habitats CLASS READINGS Key to Common Trees of Bouverie Preserve Bouverie Vegetation Map This class will be held Deciduous & Evergreen Oaks of Bouverie Preserve almost entirely on the trail so dress Sun Leaves & Shade Leaves accordingly and bring Characteristics of the Oaks of Bouverie Preserve plenty of water Chaparral & Fire (California’s Changing Landscapes, Michael Barbour et.al., 1993) Bouverie Preserve Chaparral (DeNevers) ACR Fire Ecology Program Mixed Evergreen Forest (California’s Changing Landscapes, Michael Barbour et.al., 1993) Ecological Tolerances of Riparian Plants (River Partners) Call of the Galls (Bay Nature Magazine, Ron Russo, 2009) Oak Galls of Bouverie Preserve Leaves of Three (Bay Nature Magazine, Eaton & Sullivan, 2013) Mistletoe – Magical, Mysterious, & Misunderstood (Wirka) How Old is This Twig (Wirka) CALNAT: California Naturalist Handbook Chapter 4 (98-109, 114-115) Chapter 5 (117-138) Key Concepts By the end of this class, we hope you will be able to: Use a simple key to identify trees at Bouverie Preserve, Look around you and determine whether you are in oak woodland, mixed evergreen forest, riparian woodland, or chaparral -- and get a “feel” for each, Define: Plant Community, Habitat, Ecotone; understand how to discuss/investigate each with students, Stand under a large oak and guide students in exploring/discovering the many species that live on/around it, Find a gall on an oak leaf or twig and get excited about the lifecycle of the critters who live inside, Explain how chaparral plants are fire-adapted and look for evidence of these adaptations, Locate at least one granary tree and notice acorn woodpeckers that are guarding it, List some of the animals that rely on Bouverie’s oak woodland habitat, and Make an acorn whistle & count the years a twig has been growing SEQUOIA CLUB Resources When one tugs at a In the Bouverie Library single thing in nature, he A Manual of California Vegetation, second edition, finds it attached to the John Sawyer and Todd Keeler‐ Wolf (2009).
    [Show full text]
  • Phase I Vital Signs Monitoring Plan for the San Francisco Bay Area Network
    1 San Francisco Bay Area Network 2 Phase II Vital Signs Monitoring Plan 3 Working Draft 4 5 6 7 [Golden Gate image here when posted to web site!] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 San Francisco Bay Area Network (SFAN) 28 Eugene O’Neill National Historic Site (EUON) 29 Fort Point National Historic Site (FOPO) 30 Golden Gate National Recreation Area (GOGA) 31 John Muir National Historic Site (JOMU) 32 Muir Woods National Monument (MUWO) 33 Pinnacles National Monument (PINN) 34 Point Reyes National Seashore (PORE) 35 Presidio of San Francisco (PRES) SFAN_Phase II draftv9.doc 1 Brad Welch 26 September 2003 1 Table of Contents 2 Page 3 4 List of Figures 5 5 List of Tables 6 6 Acknowledgments 8 7 8 Executive Summary 9 9 10 Chapter 1 Introduction and Background 10 11 1.1 Purpose 10 12 1.1.1 Justification for Integrated Natural Resource 13 Monitoring 10 14 1.1.2 Legislation, Policy, and Guidance 11 15 1.2 Monitoring Goals and Strategies 14 16 1.2.1 Role of Inventory, Monitoring, and Research in Resource 17 Management 14 18 1.2.2 Goals for Vital Signs Monitoring 16 19 1.2.3 Strategic Approaches to Monitoring 16 20 1.2.3.1 Scope and Process for Developing an 21 Integrated Monitoring Program 16 22 1.2.3.2 Strategies for Determining What to Monitor 18 23 1.2.3.3 Integration: Ecological, Spatial, Temporal, 24 and Programmatic 20 25 1.2.3.4 Limitations of the Monitoring Program 20 26 1.2.3.5 SFAN Monitoring Plan and GPRA Goals 21 27 1.2.3.6 SFAN Strategic Approach to Monitoring 22 28 1.3 Overview of Network Parks and Selected
    [Show full text]
  • Dominican Republic Endemics of Hispaniola II 1St February to 9Th February 2021 (9 Days)
    Dominican Republic Endemics of Hispaniola II 1st February to 9th February 2021 (9 days) Palmchat by Adam Riley Although the Dominican Republic is perhaps best known for its luxurious beaches, outstanding food and vibrant culture, this island has much to offer both the avid birder and general naturalist alike. Because of the amazing biodiversity sustained on the island, Hispaniola ranks highest in the world as a priority for bird protection! This 8-day birding tour provides the perfect opportunity to encounter nearly all of the island’s 32 endemic bird species, plus other Greater Antillean specialities. We accomplish this by thoroughly exploring the island’s variety of habitats, from the evergreen and Pine forests of the Sierra de Bahoruco to the dry forests of the coast. Furthermore, our accommodation ranges from remote cabins deep in the forest to well-appointed hotels on the beach, each with its own unique local flair. Join us for this delightful tour to the most diverse island in the Caribbean! RBL Dominican Republic Itinerary 2 THE TOUR AT A GLANCE… THE ITINERARY Day 1 Arrival in Santo Domingo Day 2 Santo Domingo Botanical Gardens to Sabana del Mar (Paraiso Caño Hondo) Day 3 Paraiso Caño Hondo to Santo Domingo Day 4 Salinas de Bani to Pedernales Day 5 Cabo Rojo & Southern Sierra de Bahoruco Day 6 Cachote to Villa Barrancoli Day 7 Northern Sierra de Bahoruco Day 8 La Placa, Laguna Rincon to Santo Domingo Day 9 International Departures TOUR ROUTE MAP… RBL Dominican Republic Itinerary 3 THE TOUR IN DETAIL… Day 1: Arrival in Santo Domingo.
    [Show full text]
  • Apiales, Aquifoliales, Boraginales, , Brassicales, Canellales
    Kingdom: Plantae Phylum: Tracheophyta Class: Magnoliopsida Order: Apiales, Aquifoliales, Boraginales, , Brassicales, Canellales, Caryophyllales, Celastrales, Ericales, Fabales, Garryales, Gentianales, Lamiales, Laurales, Magnoliales, Malpighiales, Malvales, Myrtales, Oxalidales, Picramniales, Piperales, Proteales, Rosales, Santalales, Sapindales, Solanales Family: Achariaceae, Anacardiaceae, Annonaceae, Apocynaceae, Aquifoliaceae, Araliaceae, Bignoniaceae, Bixaceae, Boraginaceae, Burseraceae, Calophyllaceae, Canellaceae, Cannabaceae, Capparaceae, Cardiopteridaceae, Caricaceae, Caryocaraceae, Celastraceae, Chrysobalanaceae, Clusiaceae, Combretaceae, Dichapetalaceae, Ebenaceae, Elaeocarpaceae, Emmotaceae, Erythroxylaceae, Euphorbiaceae, Fabaceae, Goupiaceae, Hernandiaceae, Humiriaceae, Hypericaceae, Icacinaceae, Ixonanthaceae, Lacistemataceae, Lamiaceae, Lauraceae, Lecythidaceae, Lepidobotryaceae, Linaceae, Loganiaceae, Lythraceae, Malpighiaceae, Malvaceae, Melastomataceae, Meliaceae, Monimiaceae, Moraceae, Myristicaceae, Myrtaceae, Nyctaginaceae, Ochnaceae, Olacaceae, Oleaceae, Opiliaceae, Pentaphylacaceae, Phyllanthaceae, Picramniaceae, Piperaceae, Polygonaceae, Primulaceae, Proteaceae, Putranjivaceae, Rhabdodendraceae, Rhamnaceae, Rhizophoraceae, Rosaceae, Rubiaceae, Rutaceae, Sabiaceae, Salicaceae, Sapindaceae, Sapotaceae, Simaroubaceae, Siparunaceae, Solanaceae, Stemonuraceae, Styracaceae, Symplocaceae, Ulmaceae, Urticaceae, Verbenaceae, Violaceae, Vochysiaceae Genus: Abarema, Acioa, Acosmium, Agonandra, Aiouea, Albizia, Alchornea,
    [Show full text]
  • Bird Checklist Guánica Biosphere Reserve Puerto Rico
    United States Department of Agriculture BirD CheCklist Guánica Biosphere reserve Puerto rico Wayne J. Arendt, John Faaborg, Miguel Canals, and Jerry Bauer Forest Service Research & Development Southern Research Station Research Note SRS-23 The Authors: Wayne J. Arendt, International Institute of Tropical Forestry, U.S. Department of Agriculture Forest Service, Sabana Field Research Station, HC 2 Box 6205, Luquillo, PR 00773, USA; John Faaborg, Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA; Miguel Canals, DRNA—Bosque de Guánica, P.O. Box 1185, Guánica, PR 00653-1185, USA; and Jerry Bauer, International Institute of Tropical Forestry, U.S. Department of Agriculture Forest Service, Río Piedras, PR 00926, USA. Cover Photos Large cover photograph by Jerry Bauer; small cover photographs by Mike Morel. Product Disclaimer The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service. April 2015 Southern Research Station 200 W.T. Weaver Blvd. Asheville, NC 28804 www.srs.fs.usda.gov BirD CheCklist Guánica Biosphere reserve Puerto rico Wayne J. Arendt, John Faaborg, Miguel Canals, and Jerry Bauer ABSTRACt This research note compiles 43 years of research and monitoring data to produce the first comprehensive checklist of the dry forest avian community found within the Guánica Biosphere Reserve. We provide an overview of the reserve along with sighting locales, a list of 185 birds with their resident status and abundance, and a list of the available bird habitats. Photographs of habitats and some of the bird species are included.
    [Show full text]
  • Other Contributions
    Other Contributions NATURE NOTES Amphibia: Anura Family Bufonidae Incilius marmoreus (Wiegmann, 1833). Reproduction. The distribution of the Marbled Toad, Incilius marmo- reus, a Mexican endemic, extends from northern Sinaloa to Chiapas along the Pacific coastal plain, with an isolated population in Veracruz (Frost, 2017); on the Atlantic versant, Lemos Espinal and Dixon (2016: 354) also noted that this species occurs from “northern Hidalgo to the Isthmus of Tehuantepec.” Hardy and McDiarmid (1969) reported that most individuals in Sinaloa were found on the road at night during or just after rains, and that most females were collected in July and contained eggs. In Hidalgo, I. marmoreus aggregates in temporary ponds during the rainy season (Lemos Espinal and Dixon, 2016). Herein, I present data from a histological examination of I. marmoreus gonadal material from Colima and Sinaloa, and provide the minimum sizes for reproductive activity in males and females. The use of museum collections for obtaining reproductive data avoids removing additional animals from the wild. I examined 42 specimens of I. marmoreus (11 from Colima, collected in 1967, and 31 from Sinaloa, collected in 1960, 1962, 1963, and 1968). The combined samples consisted of 17 males (mean snout–vent length [SVL] = 54.5 mm ± 3.1 SD, range = 48–58 mm), 21 females (mean SVL = 60.9 mm ± 4.5 SD, range = 54–70 mm) and four juveniles from Sinaloa (mean SVL = 38.4 mm ± 7.1 SD, range = 29–44 mm); the specimens are maintained in the herpetology collection of the Natural History Museum of Los Angeles County (LACM), Los Angeles, California, United States (Appendix 1).
    [Show full text]
  • Macrolepidoptera Inventory of the Chilcotin District
    Macrolepidoptera Inventory of the Chilcotin District Aud I. Fischer – Biologist Jon H. Shepard - Research Scientist and Crispin S. Guppy – Research Scientist January 31, 2000 2 Abstract This study was undertaken to learn more of the distribution, status and habitat requirements of B.C. macrolepidoptera (butterflies and the larger moths), the group of insects given the highest priority by the BC Environment Conservation Center. The study was conducted in the Chilcotin District near Williams Lake and Riske Creek in central B.C. The study area contains a wide variety of habitats, including rare habitat types that elsewhere occur only in the Lillooet-Lytton area of the Fraser Canyon and, in some cases, the Southern Interior. Specimens were collected with light traps and by aerial net. A total of 538 species of macrolepidoptera were identified during the two years of the project, which is 96% of the estimated total number of species in the study area. There were 29,689 specimens collected, and 9,988 records of the number of specimens of each species captured on each date at each sample site. A list of the species recorded from the Chilcotin is provided, with a summary of provincial and global distributions. The habitats, at site series level as TEM mapped, are provided for each sample. A subset of the data was provided to the Ministry of Forests (Research Section, Williams Lake) for use in a Flamulated Owl study. A voucher collection of 2,526 moth and butterfly specimens was deposited in the Royal BC Museum. There were 25 species that are rare in BC, with most known only from the Riske Creek area.
    [Show full text]
  • Classification of a Clade of New World Doves (Columbidae: Zenaidini)
    Zootaxa 3669 (2): 184–188 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3669.2.11 http://zoobank.org/urn:lsid:zoobank.org:pub:183526F0-B925-49EA-B2C6-49520634452A Classification of a clade of New World doves (Columbidae: Zenaidini) RICHARD C. BANKS1, JASON D. WECKSTEIN2, J.V. REMSEN, JR3 & KEVIN P. JOHNSON4 13201 Circle Hill Rd., Alexandria, VA 22305, USA. E-mail: [email protected] 2Field Museum of Natural History, Chicago, IL 60605 USA. E-mail [email protected] 3Museum of Natural Science and Dept. Biological Sciences, Louisiana State University, Baton Rouge, LA 70776 USA. E-mail: [email protected] 4Illinois Natural History Survey, University of Illinois, Champaign, IL 61820 USA. E-mail: [email protected] To evaluate the role of the formation of the Central American land bridge in diversification of the American avifauna, Johnson and Weckstein (2011) reconstructed a phylogeny, using DNA sequence data from four gene regions, of 24 nominal species in three putative genera of New World doves. Although a systematic revision of these doves was not a primary purpose of their study, Johnson and Weckstein (2011) provided information that helps to re-evaluate the presumed relationships among the taxa included. Their analysis supported a hypothesis of monophyly for a group containing seven species currently (American Ornithologists’ Union [AOU] 1998, Gibbs et al. 2001, Dickinson 2003, Remsen et al. 2012) placed in the genus Zenaida Bonaparte, 1838, and for a group of 12 taxa in 6 species (of as many as 11 currently recognized species) in the genus Leptotila Swainson, 1837 (Gibbs et al.
    [Show full text]
  • Nota Lepidopterologica
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nota lepidopterologica Jahr/Year: 2006 Band/Volume: 29 Autor(en)/Author(s): Fibiger Michael, Sammut Paul M., Seguna Anthony, Catania Aldo Artikel/Article: Recent records of Noctuidae from Malta, with five species new to the European fauna, and a new subspecies 193-213 ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Notalepid. 29(3/4): 193-213 193 Recent records of Noctuidae from Malta, with five species new to the European fauna, and a new subspecies Michael Fibiger Paul Sammut-, Anthony Seguna \ & Aldo Catania^ ' Molbecha Allé 49, 4180 Sor0, Denmark; e-mail: [email protected] 2 137, 'Fawkner/2\ Dingli Rd., Rabat, RBT 07, Malta; e-mail: [email protected] ^ 'Redeemer', Triq 1-Emigrant, Naxxar, Malta; e-mail: [email protected] ^ 'Rama Rama', Triq Möns. Anton Cilia, Zebbug, Malta; e-mail: [email protected] Abstract. Recent records of Noctuoidea from Malta are given. Five noctuid species are recorded from Europe for the first time: Eublemma conistrota Hampson, 1910, Eiiblemma deserti Rothschild, 1909, Anumeta hilgerti (Rothschild 1909), Hadiila deserticula (Hampson 1905), and Eiixoa canariensis Rebel, 1902. New synonyms are stated: Leptosia velocissima f. tarda Turati, 1926, syn. n. and Leptosia griseimargo Warren, 1912, syn. n., both synonyms of Metachrostis velox (Hübner, 1813); and Pseudohadena (Eremohadena) roseonitens espugnensis Lajonquiere, 1964, syn. n., a synonym of P. (E.) roseonitens roseonitens (Oberthür, 1887). A new subspecies of Xylena exsoleta (Linneaus, 1758), Xylena exsoleta maltensis ssp. n., is established. The literature on Maltese Noctuoidea is reviewed and erronuousely reported species are indicated.
    [Show full text]
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
    © Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi­ lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye.
    [Show full text]
  • Assessing the Extinction Probability of the Purple-Winged Ground Dove, an Enigmatic Bamboo Specialist
    fevo-09-624959 April 29, 2021 Time: 12:42 # 1 ORIGINAL RESEARCH published: 29 April 2021 doi: 10.3389/fevo.2021.624959 Assessing the Extinction Probability of the Purple-winged Ground Dove, an Enigmatic Bamboo Specialist Alexander C. Lees1,2*, Christian Devenish1, Juan Ignacio Areta3, Carlos Barros de Araújo4,5, Carlos Keller6, Ben Phalan7 and Luís Fábio Silveira8 1 Ecology and Environment Research Centre (EERC), Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom, 2 Cornell Lab of Ornithology, Cornell University, Ithaca, NY, United States, 3 Laboratorio de Ecología, Comportamiento y Sonidos Naturales, Instituto de Bio y Geociencias del Noroeste Argentino (IBIGEO-CONICET), Salta, Argentina, 4 Programa de Pós-Graduação em Ecologia e Monitoramento Ambiental, Centro de Ciências Aplicadas e Educação, Universidade Federal da Paraíba, Rio Tinto, Brazil, 5 Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil, 6 Independent Researcher, Rio de Janeiro, Brazil, 7 Centre for Conservation of Atlantic Forest Birds, Parque das Aves, Foz do Iguaçu, Brazil, 8 Seção de Aves, Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil The continued loss, fragmentation, and degradation of forest habitats are driving an Edited by: extinction crisis for tropical and subtropical bird species. This loss is particularly acute in Bruktawit Abdu Mahamued, the Atlantic Forest of South America, where it is unclear whether several endemic bird Kotebe Metropolitan University (KMU), Ethiopia species are extinct or extant. We collate and model spatiotemporal distributional data Reviewed by: for one such “lost” species, the Purple-winged Ground Dove Paraclaravis geoffroyi, John Woinarski, a Critically Endangered endemic of the Atlantic Forest biome, which is nomadic Charles Darwin University, Australia Sam Turvey, and apparently dependent on masting bamboo stands.
    [Show full text]