Mathematical Logic OXFORD TEXTS in LOGIC

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Logic OXFORD TEXTS in LOGIC Mathematical Logic OXFORD TEXTS IN LOGIC Books in the series 1. Shawn Hedman: A First Course in Logic: An introduction to model theory, proof theory, computability, and complexity 2. Richard Bornat: An Introduction to Proof and Disproof in Formal Logic 3. Ian Chiswell and Wilfrid Hodges: Mathematical Logic Mathematical Logic IAN CHISWELL andWILFRID HODGES 1 3 Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York c Ian Chiswell and Wilfrid Hodges, 2007 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2007 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose the same condition on any acquirer British Library Cataloguing in Publication Data Data available Library of Congress Cataloging in Publication Data Data available Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain on acid-free paper by Biddles Ltd., King’s Lynn, Norfolk ISBN 978–0–19–857100–1 ISBN 978–0–19–921562–1 (Pbk) 10987654321 Preface This course in Mathematical Logic reflects a third-year undergraduate module that has been taught for a couple of decades at Queen Mary, University of London. Both the authors have taught it (though never together). Many years ago the first author put together a set of lecture notes broadly related to Dirk van Dalen’s excellent text Logic and Structure (Springer-Verlag, 1980). The present text is based on those notes as a template, but everything has been rewritten with some changes of perspective. Nearly all of the text, and a fair number of the exercises, have been tested in the classroom by one or other of the authors. The book covers a standard syllabus in propositional and predicate logic. A teacher could use it to follow a geodesic path from truth tables to the Com- pleteness Theorem. Teachers who are willing to follow our choice of examples from diophantine arithmetic (and are prepared to take on trust Matiyasevich’s analysis of diophantine relations) should find, as we did, that G¨odel’s Incomplete- ness Theorem and the undecidability of predicate logic fall out with almost no extra work. Sometimes the course at Queen Mary has finished with some appli- cations of the Compactness Theorem, and we have included this material too. We aimed to meet the following conditions, probably not quite compatible: • The mathematics should be clean, direct and correct. • As each notion is introduced, the students should be given something rele- vant that they can do with it, preferably at least a calculation. (For example, parsing trees, besides supporting an account of denotational semantics, seem to help students to make computations both in syntax and in semantics.) • Appropriate links should be made to other areas in which mathematical logic is becoming important, for example, computer science, linguistics and cognitive science (though we have not explored links to philosophical logic). • We try to take into account the needs of students and teachers who prefer a formal treatment, as well as those who prefer an intuitive one. We use the Hintikka model construction rather than the more traditional Henkin- Rasiowa-Sikorski one. We do this because it is more hands-on: it allows us to set up the construction by deciding what needs to be done and then doing it, rather than checking that a piece of magic does the work for us. We do not assume that our students have studied any logic before (though in practice most will at least have seen a truth table). Until the more specialist vi Preface matter near the end of the book, the set theory is very light, and we aim to explain any symbolism that might cause puzzlement. There are several proofs by induction and definitions by recursion; we aim to set these out in a format that students can copy even if they are not confident with the underlying ideas. Other lecturers have taught the Queen Mary module. Two who have cer- tainly influenced us (though they were not directly involved in the writing of this book) were Stephen Donkin and Thomas M¨uller—our thanks to them. We also thank Lev Beklemishev, Ina Ehrenfeucht, Jaakko Hintikka, Yuri Matiyasevich and Zbigniew Ras for their kind help and permissions with the photographs of Anatoliˇı Mal’tsev, Alfred Tarski, Hintikka, Matiyasevich and Helena Rasiowa respectively. Every reasonable effort has been made to acknowledge copyright where appropriate. If notified, the publisher will be pleased to rectify any errors or omissions at the earliest opportunity. We have set up a web page at www.maths.qmul.ac.uk/∼wilfrid/mathlogic.html for errata and addenda to this text. Ian Chiswell Wilfrid Hodges School of Mathematical Sciences Queen Mary, University of London August 2006 Contents 1 Prelude 1 1.1 What is mathematics? 1 1.2 Pronunciation guide 3 2 Informal natural deduction 5 2.1 Proofs and sequents 6 2.2 Arguments introducing ‘and’ 9 2.3 Arguments eliminating ‘and’ 14 2.4 Arguments using ‘if’ 16 2.5 Arguments using ‘if and only if’ 22 2.6 Arguments using ‘not’ 24 2.7 Arguments using ‘or’ 27 3 Propositional logic 31 3.1 LP, the language of propositions 32 3.2 Parsing trees 38 3.3 Propositional formulas 45 3.4 Propositional natural deduction 53 3.5 Truth tables 62 3.6 Logical equivalence 69 3.7 Substitution 72 3.8 Disjunctive and conjunctive normal forms 78 3.9 Soundness for propositional logic 85 3.10 Completeness for propositional logic 89 4 First interlude: Wason’s selection task 97 5 Quantifier-free logic 101 5.1 Terms 101 5.2 Relations and functions 105 5.3 The language of first-order logic 111 5.4 Proof rules for equality 121 5.5 Interpreting signatures 128 5.6 Closed terms and sentences 134 5.7 Satisfaction 139 viii Contents 5.8 Diophantine sets and relations 143 5.9 Soundness for qf sentences 148 5.10 Adequacy and completeness for qf sentences 150 6 Second interlude: the Linda problem 157 7 First-order logic 159 7.1 Quantifiers 159 7.2 Scope and freedom 163 7.3 Semantics of first-order logic 169 7.4 Natural deduction for first-order logic 177 7.5 Proof and truth in arithmetic 186 7.6 Soundness and completeness for first-order logic 189 7.7 First-order theories 194 7.8 Cardinality 199 7.9 Things that first-order logic cannot do 206 8 Postlude 213 Appendix A The natural deduction rules 217 Appendix B Denotational semantics 223 Appendix C Solutions to some exercises 229 Index 245 1 Prelude 1.1 What is mathematics? Euclid Egypt, c. 325–265 bc. For Euclid, mathematics consists of proofs and constructions. Al-Khw¯arizm¯ı Baghdad, c. 780–850. For Al-Khw¯arizm¯ı, mathematics consists of calculations. 2 Prelude G. W. Leibniz Germany, 1646–1716. According to Leibniz, we can calculate whether a proof is correct. This will need a suitable language (a universal characteristic) for writing proofs. Gottlob Frege Germany, 1848–1925. Frege invented a universal characteristic. He called it Concept-script (Begriffsschrift). Gerhard Gentzen Germany, 1909–1945. Gentzen’s system of natural deduction allows us to write proofs in a way that is mathematically natural. Prelude 3 1.2 Pronunciation guide To get control of a branch of mathematics, you need to be able to speak it. Here are some symbols that you will probably need to pronounce, with some suggested pronunciations: ⊥ ‘absurdity’ ‘turnstile’ |= ‘models’ ∀ ‘for all’ ∃ ‘there is’ tA ‘the interpretation of t in A’ |=A φ ‘A is a model of φ’ ≈ ‘has the same cardinality as’ ≺ ‘has smaller cardinality than’ The expression ‘x → y’ is read as ‘x maps to y’, and is used for describing functions. For example, ‘x → x2’ describes the function ‘square’, and ‘n → n + 2’ describes the function ‘plus two’. This notation is always a shorthand; the surrounding context must make clear where the x or n comes from. The notation ‘A ⇒ B’ is shorthand for ‘If A then B’, or ‘A implies B’, or sometimes ‘the implication from A to B’, as best suits the context. Do not confuse it with the notation ‘→’. From Chapter 3 onwards, the symbol ‘→’is not shorthand; it is an expression of our formal languages. The safest way of reading it is probably just ‘arrow’ (though in Chapters 2 and 3 we will discuss its translation into English). The notation ‘N’ can be read as ‘the set of natural numbers’ or as ‘the natural number structure’, whichever makes better sense in context.
Recommended publications
  • Lecture Slides
    Program Verification: Lecture 3 Jos´eMeseguer Computer Science Department University of Illinois at Urbana-Champaign 1 Algebras An (unsorted, many-sorted, or order-sorted) signature Σ is just syntax: provides the symbols for a language; but what is that language talking about? what is its semantics? It is obviously talking about algebras, which are the mathematical models in which we interpret the syntax of Σ, giving it concrete meaning. Unsorted algebras are the simplest example: children become familiar with them from the early awakenings of reason. They consist of a set of data elements, and various chosen constants among those elements, and operations on such data. 2 Algebras (II) For example, for Σ the unsorted signature of the module NAT-MIXFIX we can define many different algebras, such as the following: 1. IN, the algebra of natural numbers in whatever notation we wish (Peano, binary, base 10, etc.) with 0 interpreted as the zero element, s interpreted as successor, and + and * interpreted as natural number addition and multiplication. 2. INk, the algebra of residue classes modulo k, for k a nonzero natural number. This is a finite algebra whose set of elements can be represented as the set {0,...,k − 1}. We interpret 0 as 0, and for the other 3 operations we perform them in IN and then take the residue modulo k. For example, in IN7 we have 6+6=5. 3. Z, the algebra of the integers, with 0 interpreted as the zero element, s interpreted as successor, and + and * interpreted as integer addition and multiplication. 4.
    [Show full text]
  • Automating Free Logic in HOL, with an Experimental Application in Category Theory
    Noname manuscript No. (will be inserted by the editor) Automating Free Logic in HOL, with an Experimental Application in Category Theory Christoph Benzm¨uller and Dana S. Scott Received: date / Accepted: date Abstract A shallow semantical embedding of free logic in classical higher- order logic is presented, which enables the off-the-shelf application of higher- order interactive and automated theorem provers for the formalisation and verification of free logic theories. Subsequently, this approach is applied to a selected domain of mathematics: starting from a generalization of the standard axioms for a monoid we present a stepwise development of various, mutually equivalent foundational axiom systems for category theory. As a side-effect of this work some (minor) issues in a prominent category theory textbook have been revealed. The purpose of this article is not to claim any novel results in category the- ory, but to demonstrate an elegant way to “implement” and utilize interactive and automated reasoning in free logic, and to present illustrative experiments. Keywords Free Logic · Classical Higher-Order Logic · Category Theory · Interactive and Automated Theorem Proving 1 Introduction Partiality and undefinedness are prominent challenges in various areas of math- ematics and computer science. Unfortunately, however, modern proof assistant systems and automated theorem provers based on traditional classical or intu- itionistic logics provide rather inadequate support for these challenge concepts. Free logic [24,25,30,32] offers a theoretically appealing solution, but it has been considered as rather unsuited towards practical utilization. Christoph Benzm¨uller Freie Universit¨at Berlin, Berlin, Germany & University of Luxembourg, Luxembourg E-mail: [email protected] Dana S.
    [Show full text]
  • Mathematical Logic. Introduction. by Vilnis Detlovs And
    1 Version released: May 24, 2017 Introduction to Mathematical Logic Hyper-textbook for students by Vilnis Detlovs, Dr. math., and Karlis Podnieks, Dr. math. University of Latvia This work is licensed under a Creative Commons License and is copyrighted © 2000-2017 by us, Vilnis Detlovs and Karlis Podnieks. Sections 1, 2, 3 of this book represent an extended translation of the corresponding chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of Latvia, 1964, 252 pp. (in Latvian). With kind permission of Dr. Detlovs. Vilnis Detlovs. Memorial Page In preparation – forever (however, since 2000, used successfully in a real logic course for computer science students). This hyper-textbook contains links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. 2 Table of Contents References..........................................................................................................3 1. Introduction. What Is Logic, Really?.............................................................4 1.1. Total Formalization is Possible!..............................................................5 1.2. Predicate Languages.............................................................................10 1.3. Axioms of Logic: Minimal System, Constructive System and Classical System..........................................................................................................27 1.4. The Flavor of Proving Directly.............................................................40
    [Show full text]
  • The Modal Logic of Potential Infinity, with an Application to Free Choice
    The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity.
    [Show full text]
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • Existence and Reference in Medieval Logic
    GYULA KLIMA EXISTENCE AND REFERENCE IN MEDIEVAL LOGIC 1. Introduction: Existential Assumptions in Modern vs. Medieval Logic “The expression ‘free logic’ is an abbreviation for the phrase ‘free of existence assumptions with respect to its terms, general and singular’.”1 Classical quantification theory is not a free logic in this sense, as its standard formulations commonly assume that every singular term in every model is assigned a referent, an element of the universe of discourse. Indeed, since singular terms include not only singular constants, but also variables2, standard quantification theory may be regarded as involving even the assumption of the existence of the values of its variables, in accordance with Quine’s famous dictum: “to be is to be the value of a variable”.3 But according to some modern interpretations of Aristotelian syllogistic, Aristotle’s theory would involve an even stronger existential assumption, not shared by quantification theory, namely, the assumption of the non-emptiness of common terms.4 Indeed, the need for such an assumption seems to be supported not only by a number of syllogistic forms, which without this assumption appear to be invalid, but also by the doctrine of Aristotle’s De Interpretatione concerning the logical relationships among categorical propositions, commonly summarized in the Square of Opposition. For example, Aristotle’s theory states that universal affirmative propositions imply particular affirmative propositions. But if we formalize such propositions in quantification theory, we get formulae between which the corresponding implication does not hold. So, evidently, there is some discrepancy between the ways Aristotle and quantification theory interpret these categoricals.
    [Show full text]
  • Saving the Square of Opposition∗
    HISTORY AND PHILOSOPHY OF LOGIC, 2021 https://doi.org/10.1080/01445340.2020.1865782 Saving the Square of Opposition∗ PIETER A. M. SEUREN Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands Received 19 April 2020 Accepted 15 December 2020 Contrary to received opinion, the Aristotelian Square of Opposition (square) is logically sound, differing from standard modern predicate logic (SMPL) only in that it restricts the universe U of cognitively constructible situations by banning null predicates, making it less unnatural than SMPL. U-restriction strengthens the logic without making it unsound. It also invites a cognitive approach to logic. Humans are endowed with a cogni- tive predicate logic (CPL), which checks the process of cognitive modelling (world construal) for consistency. The square is considered a first approximation to CPL, with a cognitive set-theoretic semantics. Not being cognitively real, the null set Ø is eliminated from the semantics of CPL. Still rudimentary in Aristotle’s On Interpretation (Int), the square was implicitly completed in his Prior Analytics (PrAn), thereby introducing U-restriction. Abelard’s reconstruction of the logic of Int is logically and historically correct; the loca (Leak- ing O-Corner Analysis) interpretation of the square, defended by some modern logicians, is logically faulty and historically untenable. Generally, U-restriction, not redefining the universal quantifier, as in Abelard and loca, is the correct path to a reconstruction of CPL. Valuation Space modelling is used to compute
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • Existence and Identity in Free Logic: a Problem for Inferentialism?
    Existence and Identity in Free Logic: A Problem for Inferentialism? Abstract Peter Milne (2007) poses two challenges to the inferential theorist of meaning. This study responds to both. First, it argues that the method of natural deduction idealizes the essential details of correct informal deductive reasoning. Secondly, it explains how rules of inference in free logic can determine unique senses for the existential quantifier and the identity predicate. The final part of the investigation brings out an underlying order in a basic family of free logics. 1. Background 1.1 Free v. unfree logic Standard, unfree logic has among its rules of natural deduction the following (see, for example, the system in the classic monograph Prawitz 1965). : ϕ where a does not occur in any Universal Introduction (∀-I) assumption on which ϕ depends a ∀xϕ x Universal Elimination (∀-E) ∀xϕ x ϕ t x Existential Introduction (∃-I) ϕ t ∃xϕ (i) x ϕ a where a does not occur in ∃xϕ, or in ψ, x Existential Elimination (∃-E) : or in any assumption, other than ϕ a, on ∃xϕ ψ (i) which the upper occurrence of ψ depends ψ Reflexivity of identity t=t Substitutivity of identity t=u ϕ (t) ϕ(u) Let t be any term, not necessarily closed. Then ∃!t is short for ∃x x=t, where x is alphabetically the first variable not free in t. In unfree logic we have, for every closed term t, – ∃!t. We also have – ∃x x=x. So unfree logic is committed to a denotation for every closed term, and to the existence of at least one thing.
    [Show full text]
  • Symmetric Approximations of Pseudo-Boolean Functions with Applications to Influence Indexes
    SYMMETRIC APPROXIMATIONS OF PSEUDO-BOOLEAN FUNCTIONS WITH APPLICATIONS TO INFLUENCE INDEXES JEAN-LUC MARICHAL AND PIERRE MATHONET Abstract. We introduce an index for measuring the influence of the kth smallest variable on a pseudo-Boolean function. This index is defined from a weighted least squares approximation of the function by linear combinations of order statistic functions. We give explicit expressions for both the index and the approximation and discuss some properties of the index. Finally, we show that this index subsumes the concept of system signature in engineering reliability and that of cardinality index in decision making. 1. Introduction Boolean and pseudo-Boolean functions play a central role in various areas of applied mathematics such as cooperative game theory, engineering reliability, and decision making (where fuzzy measures and fuzzy integrals are often used). In these areas indexes have been introduced to measure the importance of a variable or its influence on the function under consideration (see, e.g., [3, 7]). For instance, the concept of importance of a player in a cooperative game has been studied in various papers on values and power indexes starting from the pioneering works by Shapley [13] and Banzhaf [1]. These power indexes were rediscovered later in system reliability theory as Barlow-Proschan and Birnbaum measures of importance (see, e.g., [10]). In general there are many possible influence/importance indexes and they are rather simple and natural. For instance, a cooperative game on a finite set n = 1,...,n of players is a set function v∶ 2[n] → R with v ∅ = 0, which associates[ ] with{ any}coalition of players S ⊆ n its worth v S .
    [Show full text]
  • Building the Signature of Set Theory Using the Mathsem Program
    Building the Signature of Set Theory Using the MathSem Program Luxemburg Andrey UMCA Technologies, Moscow, Russia [email protected] Abstract. Knowledge representation is a popular research field in IT. As mathematical knowledge is most formalized, its representation is important and interesting. Mathematical knowledge consists of various mathematical theories. In this paper we consider a deductive system that derives mathematical notions, axioms and theorems. All these notions, axioms and theorems can be considered a small mathematical theory. This theory will be represented as a semantic net. We start with the signature <Set; > where Set is the support set, is the membership predicate. Using the MathSem program we build the signature <Set; where is set intersection, is set union, -is the Cartesian product of sets, and is the subset relation. Keywords: Semantic network · semantic net· mathematical logic · set theory · axiomatic systems · formal systems · semantic web · prover · ontology · knowledge representation · knowledge engineering · automated reasoning 1 Introduction The term "knowledge representation" usually means representations of knowledge aimed to enable automatic processing of the knowledge base on modern computers, in particular, representations that consist of explicit objects and assertions or statements about them. We are particularly interested in the following formalisms for knowledge representation: 1. First order predicate logic; 2. Deductive (production) systems. In such a system there is a set of initial objects, rules of inference to build new objects from initial ones or ones that are already build, and the whole of initial and constructed objects. 3. Semantic net. In the most general case a semantic net is an entity-relationship model, i.e., a graph, whose vertices correspond to objects (notions) of the theory and edges correspond to relations between them.
    [Show full text]
  • Embedding and Learning with Signatures
    Embedding and learning with signatures Adeline Fermaniana aSorbonne Universit´e,CNRS, Laboratoire de Probabilit´es,Statistique et Mod´elisation,4 place Jussieu, 75005 Paris, France, [email protected] Abstract Sequential and temporal data arise in many fields of research, such as quantitative fi- nance, medicine, or computer vision. A novel approach for sequential learning, called the signature method and rooted in rough path theory, is considered. Its basic prin- ciple is to represent multidimensional paths by a graded feature set of their iterated integrals, called the signature. This approach relies critically on an embedding prin- ciple, which consists in representing discretely sampled data as paths, i.e., functions from [0, 1] to Rd. After a survey of machine learning methodologies for signatures, the influence of embeddings on prediction accuracy is investigated with an in-depth study of three recent and challenging datasets. It is shown that a specific embedding, called lead-lag, is systematically the strongest performer across all datasets and algorithms considered. Moreover, an empirical study reveals that computing signatures over the whole path domain does not lead to a loss of local information. It is concluded that, with a good embedding, combining signatures with other simple algorithms achieves results competitive with state-of-the-art, domain-specific approaches. Keywords: Sequential data, time series classification, functional data, signature. 1. Introduction Sequential or temporal data are arising in many fields of research, due to an in- crease in storage capacity and to the rise of machine learning techniques. An illustra- tion of this vitality is the recent relaunch of the Time Series Classification repository (Bagnall et al., 2018), with more than a hundred new datasets.
    [Show full text]