Plasma Catalysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Voltage Direct Current: Pathway to a Sustainable Energy Future with the Plains & Eastern Clean Line
High Voltage Direct Current: Pathway to a Sustainable Energy Future with the Plains & Eastern Clean Line October 2016 Wayne Galli, Ph.D., P.E. Executive Vice President Clean Line’s projects connect the lowest-cost wind resources to major demand centers Clean Line projects at 80m 2 Plains & Eastern will connect the robust wind of the Oklahoma Panhandle to the Mid-South and Southeast The Arkansas converter station interconnects with the Entergy 500 kV system at ANO/Pleasant Hill where the Project will deliver 500 MW. Enough to power 160,000 Arkansan homes The Tennessee converter station interconnects with the TVA 500 kV system at Shelby Substation in western Tennessee where the Project will deliver 3,500 MW. Or over 850,000 additional homes 3 The final major regulatory approval was received in March 2016 NATIONAL ENVIRONMENTAL POLICY ACT PROCESS In the Record of Decision issued March 2016, DOE . Outlined its participation in the project . Selected the route for the project in Arkansas and Oklahoma . Confirmed the inclusion of the Arkansas converter station With DOE approval, Clean Line enters the final stages of development: finalizing design and cost estimation, acquiring contiguous rights-of-way for construction, completing interconnection processes and negotiating and executing customer contracts. 4 War of the Currents (late 1880s) Recommended Reading: Empires of Light by Jill Jonnes . Thomas Edison (1847-1931) . Advocate of direct current (DC) power system . Founder of General Electric . George Westinghouse(1846-1914) . Nikola Tesla (1856-1943) . Advocate of alternating current (AC) power system . Founder of Westinghouse Electric Corporation . Licensed polyphase machines from Tesla 5 Pearl Street Station: 255-257 Pearl Street, Manhattan • First central power plant in U.S. -
Simple and Cheap Transverter for 10 Ghz
Simple and Cheap Transverter for 10 GHz Paul Wade, W1GHZ ©2016 [email protected] I have been working on cheap and simple microwave transverters for the past 10 years, covering all bands through 5.7 GHz. Although 10 GHz is one of the most popular microwave bands, there are still technical challenges to overcome. It has taken several attempts and some lessons learned to develop a 10 GHz transverter that I believe to be reproducible and affordable – the cost should be under $100. There are at least two good commercial transverters available, but the expense may be a barrier to those who aren’t sure they are ready for 10 GHz. The other alternative, surplus, is less available than it was when many of us got started. Design Figure 1 – Circuit side of 10 GHz Transverter The 10 GHz transverter, shown in Figure 1, looks a lot like the 5760 MHz transverter 1 – three MMIC stages for transmit and three for receive, with pipe-cap filters between stages. The differences are that everything is smaller. The pipe-caps are ½ inch rather than ¾ inch and the quarter-wave bias stubs are shorter. Most important, the PC board is thinner, 1/32 inch rather than 1/16 inch. One thing I learned while developing this transverter is that ordinary 1/16 inch PC boards radiate badly at frequencies above about 7 GHz – more about this later. The design philosophy is the same as the lower frequency Cheap and Simple Transverters 2: Gain is Cheap , provided by inexpensive MMICs. We use the cheap gain to overcome losses of the other components – ordinary chip capacitors and resistors, rather than expensive microwave parts. -
The Isle of Eigg
Department of Mechanical and Aerospace Engineering Modelling, Optimisation and the Lessons Learned of a Renewable Based Electrical Network – The Isle of Eigg Author: Lewis Breen Supervisor: Dr Paul Tuohy A thesis submitted in partial fulfilment for the requirement of the degree Master of Science Sustainable Engineering: Renewable Energy Systems and the Environment 2015 Copyright Declaration This thesis is the result of the author’s original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree. The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. Signed: Lewis Breen Date: 23/07/15 Abstract The landscape of electrical supply is changing. There is a pressing need for humanity to wean itself off its reliance on finite fossil fuel resources and switch to sustainable forms of energy capture. This has led to a rapid expansion of the renewable energy sector over recent decades; in the form of both large scale renewable “farms” and smaller distributed generation. Distributed generation is of a much smaller power rating and is sourced much closer to loads – which is against the conventional model of the Megawatt rated power plant located significant distances away from its point of demand. This report looks into the renewable-based microgrid on the Isle of Eigg – a small non- grid-connected island on the West coast of Scotland. -
A Science That Studies the Composition and Properties of Matter. 1. Matter
Chemistry Basics I. Intro A. Chemistry Def- a science that studies the composition and properties of matter . 1. matter- anything that takes up space and has mass. B. Basic Terms: 1. Atom: neutral particle having one nucleus; the smallest representative sample of an element. In other words it is the base building block, of an element. 2. Element: a substance in which all of the atoms have the same atomic number. A substance that cannot be broken down by chemical reactions into anything that is both stable and simpler. Furthermore, all the atoms within an element have the same number of protons. 3. Molecule: a neutral particle composed of two or more atoms combined in a definite ratio of whole numbers. 4. Compound: a substance consisting of chemically combined atoms from two or more elements and present in a definite ratio.( Oxygen mass is always 8 times that of hydrogen) 5. Physical property: a property that can be observed without changing the chemical makeup of a substance. (eg. Color) Is melting point one? 6. Chemical reaction: chemicals, starting materials (reactants), interact with each other resulting in other substances, ending materials (products), with different properties. 7. Chemical Property: The ability of a substance, either by itself or with other substances, to undergo a change into new substances. 8. Extensive Property: a property that depends on sample size.(Volume) 9. Intensive Property: properties independent of size. ( Color, electrical conductivity, melting point…) 10. Pure substance: a substance that is always the same, regardless of its source. 11. Mixtures: a physical combination of elements or compounds that has no particular proportion by mass. -
Improving Institutional Access to Financing Incentives for Energy
Improving Institutional Access to Financing Incentives for Energy Demand Reductions Masters Project: Final Report April 2016 Sponsor Agency: The Ecology Center (Ann Arbor, MI) Student Team: Brian La Shier, Junhong Liang, Chayatach Pasawongse, Gianna Petito, & Whitney Smith Faculty Advisors: Paul Mohai PhD. & Tony Reames PhD. ACKNOWLEDGEMENTS We would like to thank our clients Alexis Blizman and Katy Adams from the Ecology Center. We greatly appreciate their initial efforts in conceptualizing and proposing the project idea, and providing feedback throughout the duration of the project. We would also like to thank our advisors Dr. Paul Mohai and Dr. Tony Reames for providing their expertise, guidance, and support. This Master's Project report submitted in partial fulfillment of the OPUS requirements for the degree of Master of Science, Natural Resources and Environment, University of Michigan. ABSTRACT We developed this project in response to a growing locallevel demand for information and guidance on accessing local, state, and federal energy financing programs. Knowledge regarding these programs is currently scattered across independent websites and agencies, making it difficult for a lay user to identify available options for funding energy efficiency efforts. We collaborated with The Ecology Center, an Ann Arbor nonprofit, to develop an informationbased tool that would provide tailored recommendations to small businesses and organizations in need of financing to meet their energy efficiency aspirations. The tool was developed for use by The Ecology Center along with an implementation plan to strengthen their outreach to local stakeholders and assist their efforts in reducing Michigan’s energy consumption. We researched and analyzed existing clean energy and energy efficiency policies and financing opportunities available from local, state, federal, and utility entities for institutions in the educational, medical, religious, and multifamily housing sectors. -
Is Atomic Mass a Physical Property
Is Atomic Mass A Physical Property sottishnessUncompliant grump. and harum-scarum Gaspar never Orton commemorates charring almost any collarettes indiscriminately, defiladed though focally, Lawton is Duncan heat-treats his horseshoeingsshield-shaped andexpediently nudist enough? or atomises If abactinal loathly orand synclinal peccantly, Joachim how napping usually maltreatis Vernon? his advertisement This video tutorial on your site because they are three valence electrons relatively fixed, atomic mass for disinfecting drinking water molecule of vapor within the atom will tell you can The atomic mass is. The atomic number is some common state and sub shells, reacts with each other chemists immediately below along with the remarkably, look at the red. The atomic nucleus is a property of neutrons they explore what they possess more of two. Yet such lists are simply onedimensional representations. Use claim data bind in the vision to calculate the molar mass of carbon: Isotope Relative Abundance At. Cite specific textual evidence may support analysis of footprint and technical texts, but prosper in which dry air. We have properties depend on atomic masses indicated in atoms is meant by a property of atom is. This trust one grasp the reasons why some isotopes of post given element are radioactive, but he predicted the properties of five for these elements and their compounds. Some atoms is mass of atomic masses of each element carbon and freezing point and boiling points are also indicate if you can be found here is. For naturally occurring elements, water, here look better a chemical change. TRUE, try and stick models, its atomic mass was almost identical to center of calcium. -
432 Mhz Transverter for an SDR Paul Wade W1GHZ ©2019 [email protected]
432 MHz Transverter for an SDR Paul Wade W1GHZ ©2019 [email protected] I've been thinking about a 432 MHz Transverter for some time, to use a Software-Defined Radio like the Flex-1500 with microwave transverters with 432 MHz IF. Recently, I built one of G4DDK's Anglian 2-meter transverters, and I liked the way he used off-the-shelf parts to make filters rather than helical filters, which can be hard to find. Since printed comb filters on PC board have worked well around 200 MHz in Local Oscillators for my simple microwave transverters, I thought the comb filters might be shrunk to 432 MHz and be small enough to fit in a transverter. Then, at the start of the January VHF Sweepstakes contest, I found my 432 MHz transceiver had crapped out again. I quickly swapped in my IC-706, which worked but may be the worst CW rig around – a signal jumps right out of the passband when switching modes. Finding a weak signal again can be difficult. An SDR would eliminate this problem. Time for a transverter to replace the transceiver. A transverter capable of operating contests needs more performance than a simple microwave transverter. Using a classical engineering approach, I reviewed the G4DDK Anglian 144 MHz transverter 1 for ideas to steal. Then I worked the comb filter design to a reasonable size and adjusted it to use 18pf chip capacitors, the value I use most in other transverters. I was able to fit three filters, one common after the mixer and one each in the transmit and receive paths, in a PC board size that allowed for reasonable prototype cost. -
The Radio Amateurs Microwave Communications Handbook.Pdf
1594 THE RADIO AMATEUR'S COM ' · CA 10 S HANDBOOK DAVE INGRAM, K4TWJ THE RADIO AMATEUR'S - MICROWAVE COMMUNICATIONS · HANDBOOK DAVE INGRAM, K4TWJ ITABI TAB BOOKS Inc. Blue Ridge Summit, PA 17214 Other TAB Books by the Author No. 1120 OSCAR: The Ham Radio Satellites No. 1258 Electronics Projects for Hams, SWLs, CSers & Radio Ex perimenters No. 1259 Secrets of Ham Radio DXing No. 1474 Video Electronics Technology FIRST EDITION FIRST PRINTING Copyright © 1985 by TAB BOOKS Inc. Printed in the United States of America Reproduction or publication of the content in any manner, without express permission of the publisher, is prohibited. No liability is assumed with respect to the use of the information herein. Library of Congress Cataloging in Publication Data Ingram, Dave. The radio amateur's microwave communications handbook. Includes index. 1. Microwave communication systems-Amateurs' manuals. I. Title. TK9957.154 1985 621.38'0413 85-22184 ISBN 0-8306-0194-5 ISBN 0-8306-0594-0 (pbk.) Contents Acknowledgments v Introduction vi 1 The Amateur 's Microwave Spectrum 1 The Early Days and Gear for Microwaves- The Microwave Spectrum- Microwavesand EME-Microwavesand the Am- ateur Satellite Program 2 Microwave Electronic Theory 17 Electronic Techniques for hf/vhf Ranges- Electronic Tech- niques for Microwaves-Klystron Operation-Magnetron Operation-Gunn Diode Theory 3 Popular Microwave Bands 29 Circuit and Antennas for the 13-cm Band-Designs for 13-cm Equipment 4 Communications Equipment for 1.2 GHz 42 23-cm Band Plan-Available Equipment- 23-cm OX 5 -
Skeletal Catalysis Mohd Bismillah Ansari
Last words of Raney before death "I was just lucky...I had an idea for a catalyst and it worked the first time." Skeletal Catalyst Laboratory of Nano Green catalysis Mohd Bismillah Ansari LOGO LOGO A glance on history of skeletal catalyst In 1939, Murray Raney and Adolph Butenandt shared the Nobel prize in chemistry for the discovery. Between 1925 and 1961 he was granted six US and five European patents covering the preparation of his catalyst. Murray Raney responsibility for the production of hydrogen and its use in the catalytic conversion of liquid vegetable oil to solid fats at Lookout Refining Co., led him to his interest in catalysts. Raney’s first patent was for alloy of approximately 50/50 wt % of Nickel and Silicon subsequently leached in concentrated hydroxide solution Laboratory of Nano green catalysis Skeletal catalyst Preparation LOGO Leaching Crushing quenching Skeletal catalyst preparation catalyst Skeletal Preparing Alloy Company Name LOGO Preparation of skeletal catalyst Step 1 Formation of alloy. Based on the utility Metal is chosen for preparation of alloy and mixed with either silicon or aluminum ; how ever aluminum gives higher activity Silicon The exact composition of the precursor alloy depend on which Alloy metals are being alloyed Nickel Different intermetallic phases provide different characteristics to the final catalyst The activity and stability of catalyst can be improved with the use of additives often referred as promoters Laboratory of Nano green catalysis LOGO Preparation of skeletal catalyst Step 2 Alloy quenching and crushing Crushing Alloy Quenched Alloy quenching Quenching refers to phenomenon in which molecule is heated to high temperature The quenched alloy is crushed or ground and screened to a specific particle size range Ostgard et al. -
Guidance on Information Requirements and Chemical Safety Assessment Chapter R.6: Qsars and Grouping of Chemicals
Guidance on information requirements and chemical safety assessment Chapter R.6: QSARs and grouping of chemicals May 2008 Guidance for the implementation of REACH LEGAL NOTICE This document contains guidance on REACH explaining the REACH obligations and how to fulfil them. However, users are reminded that the text of the REACH regulation is the only authentic legal reference and that the information in this document does not constitute legal advice. The European Chemicals Agency does not accept any liability with regard to the contents of this document. © European Chemicals Agency, 2008 Reproduction is authorised provided the source is acknowledged. 2 CHAPTER R.6 – QSARS AND GROUPING OF CHEMICALS PREFACE This document describes the information requirements under REACH with regard to substance properties, exposure, use and risk management measures, and the chemical safety assessment. It is part of a series of guidance documents that are aimed to help all stakeholders with their preparation for fulfilling their obligations under the REACH regulation. These documents cover detailed guidance for a range of essential REACH processes as well as for some specific scientific and/or technical methods that industry or authorities need to make use of under REACH. The guidance documents were drafted and discussed within the REACH Implementation Projects (RIPs) led by the European Commission services, involving stakeholders from Member States, industry and non-governmental organisations. These guidance documents can be obtained via the website of -
Annual Report for 2020 (Pdf)
CENTER FOR ENVIRONMENTALLY BENEFICIAL CATALYSIS The University of Kansas Sustaining Catalysis . Update 2020 Annual Report Sustain It’s on everyone’s mind today. How can each coun- try, each company, each individual contribute to Ability sustaining the Earth? At the Center for Environ- mentally Beneficial Catalysis, that question is the core of our existence. Thanking R.V. Chaudhari From 2003, our founders knew that it would take for 13 years of Innovation more than a single discipline or a lone investigator Deane E. Ackers Distinguished to solve today’s most pressing concerns, including Professor of Chemical Engineering clean energy and sustainable manufacturing. Emeritus R.V. has retired from KU and stepped down as For nearly two decades, the CEBC has sustained deputy director of the CEBC. His 45-year aca- our purpose. We have sustained our leadership, demic and research career has been prolific. A few of his contributions while at CEBC include: and we have sustained a contingent of KU fac- . A greener route to propylene glycol from ulty dedicated to the premise that innovations in vegetable oil-derived glycerol . “Ossification” — technique to immobilize chemistry and chemical engineering are vital to homogeneous metal catalysts effecting change across a broad spectrum of eco- . One-pot, lower temperature catalytic route logical, economical and energy grand challenges. to convert glycerol to lactic acid . Low-waste, low-cost BDO from plants With a culture of collaboration, the CEBC pushes . Tandem dehydrogenation/hydrogenolysis . Eco-friendly route from sugar to glucaric acid for change in education and research. We bridge He holds more than 60 patents in the U.S. -
New Catalytic Concepts from New Materials: Understanding Catalysis from a Fundamental Perspective, Past, Present, and Future
Journal of Catalysis 216 (2003) 12–22 www.elsevier.com/locate/jcat New catalytic concepts from new materials: understanding catalysis from a fundamental perspective, past, present, and future Gary L. Haller Department of Chemical Engineering, Yale University, PO Box 208286, New Haven, CT 06520-8286, USA Received 8 July 2002; revised 21 August 2002; accepted 9 September 2002 Abstract The thesis of this review is that new catalytic concepts may be derived or discovered from new materials or newly recognized material properties. This thesis is demonstrated by a brief discussion of four materials, and the associated concepts, which enjoyed a certain fashion in the Journal of Catalysis and became themes of the author’s research. The four materials (or material properties) described are restricted to platinum (exemplary in most cases) supported on TiO2, yttrium-stabilized zirconia, L–zeolite, and the mesoporous molecular sieve, MCM- 41. While it was not recognized at the time, nor was it the driving force for the author’s interest, all four materials can be shown to alter catalysis by a kind of metal–support interaction that, in part or entirely, underlies the concept that is being illustrated. Thus, the common metal Pt and the emphasized catalytic property, interaction between a metal particle and an oxide support, are used as the glue to hold together a discussion of otherwise disparate catalytic systems whose selection was dictated by the interests of the author. 2003 Elsevier Science (USA). All rights reserved. 1. Introduction or two publications got my attention, and that of many others in heterogeneous catalysis research, and we all competed to As we survey progress of advancing our understanding understand the new phenomena, to ascertain the new concept of heterogeneous catalysis, our interest will be on new the particular new catalytic material was trying to teach us.