https://doi.org/10.5194/cp-2020-141 Preprint. Discussion started: 17 November 2020 c Author(s) 2020. CC BY 4.0 License. Holocene climatic changes in the Westerly-Indian Monsoon realm and its anthropogenic impact Nicole Burdanowitz1, Tim Rixen1,2, Birgit Gaye1, Kay-Christian Emeis1,3 1Institute for Geology, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany 5 2Leibniz-Zentrum für Marine Tropenforschung (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany 3Institute of Coastal Research, Helmholtz Center Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany Correspondence to: Nicole Burdanowitz (
[email protected]) Abstract. The Indian Summer Monsoon (ISM) with its rainfall is the lifeline for people living on the Indian subcontinent 10 today and possibly was the driver of the rise and fall of early agricultural societies in the past. Intensity and position of the ISM have shifted in response to orbitally forced thermal land-ocean contrasts. At the northwestern monsoon margins, interactions between the subtropical westerly jet (STWJ) and the ISM constitute a tipping element in the Earth’s climate system, because their non-linear interaction may be a first-order influence on rainfall. We reconstructed marine sea surface temperature (SST), supply of terrestrial material and vegetation changes from a very well-dated sediment core from the 15 northern Arabian Sea to reconstruct the STWJ-ISM interaction. The Holocene record (from 11,000 years) shows a distinct, but gradual, southward displacement of the ISM in the Early to Mid-Holocene, increasingly punctuated by phases of intensified STWJ events that are coeval with interruptions of North Atlantic overturning circulation (Bond events).