Aldosterone-Renin Ratio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Familial Hyperaldosteronism
Familial hyperaldosteronism Description Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Aldosterone helps control the amount of salt retained by the kidneys. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure (hypertension), often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. Familial hyperaldosteronism is categorized into three types, distinguished by their clinical features and genetic causes. In familial hyperaldosteronism type I, hypertension generally appears in childhood to early adulthood and can range from mild to severe. This type can be treated with steroid medications called glucocorticoids, so it is also known as glucocorticoid-remediable aldosteronism (GRA). In familial hyperaldosteronism type II, hypertension usually appears in early to middle adulthood and does not improve with glucocorticoid treatment. In most individuals with familial hyperaldosteronism type III, the adrenal glands are enlarged up to six times their normal size. These affected individuals have severe hypertension that starts in childhood. The hypertension is difficult to treat and often results in damage to organs such as the heart and kidneys. Rarely, individuals with type III have milder symptoms with treatable hypertension and no adrenal gland enlargement. There are other forms of hyperaldosteronism that are not familial. These conditions are caused by various problems in the adrenal glands or kidneys. In some cases, a cause for the increase in aldosterone levels cannot be found. -
Aldosterone and Parathyroid Hormone: Evidence for a Clinically Relevant Relationship
Journal of Endocrinology and Thyroid Research ISSN: 2573-2188 Review Article J Endocrinol Thyroid Res Volume 4 Issue 3 - May 2019 Copyright © All rights are reserved by Vismay Naik DOI: 10.19080/JETR.2019.04.555637 Aldosterone and Parathyroid Hormone: Evidence for a Clinically Relevant Relationship Vismay Naik* PG Diploma in Endocrinology and Diabetes, Ashirvad Heart and Diabetes Centre, India Submission: April 13, 2019; Published: May 06, 2019 *Corresponding author: Vismay Naik, MD, MRCP(UK), PG Diploma in Endocrinology and Diabetes, Ashirvad Heart and Diabetes Centre, India Introduction hyperparathyroidism due to increased renal and faecal calcium A ‘new endocrine axis’, involving the bi-directional relati- excretion. PTH is increased as a result of the MR (mineralocorticoid onship between the parathyroid hormone (PTH) and the renin– receptor) mediated calciuretic and magnesiuretic effects, with a angiotensin–aldosterone system (RAAS) has been established trend towards hypocalcemia, hypomagnesemia and the direct recently. Individually these have long been recognized, althou- effects of aldosterone on parathyroid cells via binding to the MR. gh it is only in recent times that we are realizing the interplay Moreover, the angiotensin II receptor is expressed by human between the two and the corresponding effects this has on the parathyroid tissue, and angiotensin may therefore directly physiological and pathological roles within the body. Other cal- stimulate PTH secretion [6]. ciotropic hormones such as Vitamin D are also impacting on this relationship [1]. This report aims to highlight the cyclic nature of RAAS and Vitamin D these relationships, through the physiological pathways, which Aldosterone acts through the mineralocorticoid receptor, will then lead into pathological disease in multiple areas such as which belongs to the same superfamily of nuclear receptors as heart failure, cardiovascular health and bone homeostasis. -
Hypertension: Shall We Focus on Adipose Tissue?
www.jasn.org EDITORIALS Hypertension: Shall We Focus associated with incident hypertension among women with- out diabetes. The authors prospectively studied 872 women on Adipose Tissue? without diabetes or hypertension from the Nurses’ Health Study. After a follow-up of 14 years, 361 (41.4%) women Simona Bo and Paolo Cavallo-Perin developed hypertension. Plasma resistin values were signif- Department of Internal Medicine, University of Turin, Turin, Italy icantly associated with incident hypertension: The highest resistin tertile conferred a 75% higher risk for hypertension J Am Soc Nephrol 21: 1067–1068, 2010. doi: 10.1681/ASN.2010050524 than the lowest (relative risk 1.75; 95% confidence interval 1.19 to 2.56). The relative risk did not substantially change after adjustment for multiple potential metabolic and nu- Adipose tissue is an active endocrine organ that produces sub- tritional confounding factors and for other adipokines. The stances having local and systemic actions on blood vessels, kid- risk was greater among older women. In a secondary analy- neys, and the heart. Leptin, adiponectin, resistin, angiotensin sis, inflammatory and endothelial biomarkers were mea- ␣ II, adipsin, TNF- , IGF-1, plasminogen-activator inhibitor 1, sured in a subset of women. Resistin levels were significantly and prostaglandins compose an incomplete list.1 associated with both groups of biomarkers. After further Resistin, an adipokine belonging to the cysteine-rich secre- adjustment for C-reactive protein, IL-6, soluble TNF recep- tory protein family, was described as an adipocyte-derived tor 2, intercellular adhesion molecule 1, vascular adhesion polypeptide that links obesity and insulin resistance in mice2; molecule 1, and E-selectin, resistin concentrations re- however, striking differences in the genomic organization and mained positively associated with an increased risk for inci- cellular source of resistin in rodents versus humans and the dent hypertension. -
Primary Aldosteronism: a Common Cause of Resistant Hypertension
REVIEW CPD Primary aldosteronism: a common cause of resistant hypertension Gregory A. Kline MD, Ally P.H. Prebtani BScPhm MD, Alexander A. Leung MD, Ernesto L. Schiffrin CM MD PhD n Cite as: CMAJ 2017 June 5;189:E773-8. doi: 10.1503/cmaj.161486 esistant or difficult-to-control hypertension is a problem that may affect as many as 13% of all persons with hyper- KEY POINTS tension.1 It is estimated that more than 6 million (22.6%) • Difficult-to-control hypertension should trigger testing for primary Rof adults in Canada have hypertension, but less than two-thirds aldosteronism. have it adequately controlled despite conventional strategies for Measurement of aldosterone-to-renin ratio (ARR) is the preferred 2 • treatment. Uncontrolled hypertension may arise from nonadher- diagnostic test. ence to medication, selection of suboptimal treatment regimens • Patients with high ARR who are potential candidates for surgical and/or the presence of unidentified secondary causes. It is frus- adrenalectomy and those with severe hypertension for whom trating for both the patient and treating physician. Patients may discontinuation of antihypertensive drugs would be dangerous embark upon a series of variably successful approaches with dif- should be referred to a hypertension specialist for assessment. ferent drug classes. We review the accumulating epidemiologic • Patients with very severe hypertension who may not tolerate drug evidence on primary aldosteronism and hypertension that is adjustment for ARR measures should also be assessed by a hypertension specialist. resistant to treatment. We offer a pragmatic approach to diagno- sis for generalist physicians. Although no randomized controlled • Patients who cannot be considered for adrenalectomy may consider an empiric trial of spironolactone or eplerenone for blood pressure control. -
Primary Aldosteronism—Not Just About Potassium and Blood Pressure
QJM: An International Journal of Medicine, 2017, 175–177 doi: 10.1093/qjmed/hcw224 Advance Access Publication Date: 9 January 2017 Case report CASE REPORT Primary aldosteronism—not just about potassium and Downloaded from https://academic.oup.com/qjmed/article-abstract/110/3/175/2875723 by guest on 27 November 2019 blood pressure T.H. Toh, C.V. Tong and H.C. Chong From the Department of Internal Medicine, Malacca General Hospital, Malacca, Malaysia Address correspondence to T.H. Toh, Department of Internal Medicine, Malacca General Hospital, Malacca, Malaysia. email: [email protected] She presented again in the subsequent years with body Learning point for clinicians weakness, recurrent low electrolyte levels and was hyperten- sive. Gitelman or Bartter syndrome was considered initially due Primary aldosteronism is one of the few potentially cur- to certain overlapping features. The development of hyperten- able causes of hypertension and it requires a high index of suspicion in making an accurate diagnosis. This case sion later prompted the investigation for hyperaldosteronism. illustrates the importance of looking at electrolytes other Phaechromocytoma and Cushing’s syndrome were also ruled than just the potassium in a patient with severe primary out. We performed an aldosterone renin ratio, followed by a sa- aldosteronism. line suppression test. Patient was on prazosin and verapamil when these tests were carried out and had serum potassium >4 mmol/l with potassium supplements. Her laboratory results are in Table 1. Computed tomography of the adrenal showed a well defined Introduction hypodense lesion in the medial limb of the left adrenal gland Primary aldosteronism is a well established cause of secondary measuring 2.5 Â 1.6 Â 1.6 cm. -
Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm
Kidney360 Publish Ahead of Print, published on July 23, 2020 as doi:10.34067/KID.0000922020 Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm Michael R Lattanzio(1), Matthew R Weir(2) (1) Division of Nephrology, Department of Medicine, The Chester County Hospital/University of Pennsylvania Health System (2) Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD Correspondence: Matthew R Weir University of Maryland Medical Center Division of Nephrology 22 S. Greene St. Room N3W143 Baltimore, Maryland 21201 [email protected] 1 Copyright 2020 by American Society of Nephrology. Abbreviations PA=Primary Hyperaldosteronism CVD=Cardiovascular Disease PAPY=Primary Aldosteronism Prevalence in Hypertension APA=Aldosterone-Producing Adenoma BAH=Bilateral Adrenal Hyperplasia ARR=Aldosterone Renin Ratio AF=Atrial Fibrillation OSA=Obstructive Sleep Apnea OR=Odds Ratio AHI=Apnea Hypopnea Index ABP=Ambulatory Blood Pressure AVS=Adrenal Vein Sampling CT=Computerized Tomography MRI=Magnetic Resonance Imaging SIT=Sodium Infusion Test FST=Fludrocortisone Suppression Test CCT=Captopril Challenge Test PAC=Plasma Aldosterone Concentration PRA=Plasma Renin Activity MRA=Mineralocorticoid Receptor Antagonist MR=Mineralocorticoid Receptor 2 Abstract Nearly seven decades have elapsed since the clinical and biochemical features of Primary Hyperaldosteronism (PA) were described by Conn. PA is now widely recognized as the most common form of secondary hypertension. PA has a strong correlation with cardiovascular disease and failure to recognize and/or properly diagnose this condition has profound health consequences. With proper identification and management, PA has the potential to be surgically cured in a proportion of affected individuals. The diagnostic pursuit for PA is not a simplistic endeavor, particularly since an enhanced understanding of the disease process is continually redefining the diagnostic and treatment algorithm. -
Why Is Plasma Renin Activity Lower in Populations of African Origin?
Journal of Human Hypertension (2001) 15, 17–25 2001 Macmillan Publishers Ltd All rights reserved 0950-9240/01 $15.00 www.nature.com/jhh REVIEW ARTICLE Why is plasma renin activity lower in populations of African origin? GA Sagnella Blood Pressure Unit, St George’s Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK Plasma renin activity is significantly lower in black the molecular level suggests that the lower PRA may people compared with whites independent of age and arise from gene variation in the renal epithelial sodium blood pressure status. The lower PRA appears to be due channel. The functional significance of the lower PRA in to a reduction in the rate of secretion of renin but the relation to the different pattern of cardiovascular and exact mechanistic events underlying such differences in renal disease between blacks and whites remains renin release between blacks and whites are still not unclear. Moreover, direct investigations of pre-treat- fully understood. Nevertheless, given the paramount ment renin status in hypertensive blacks in relation to importance of the renin-angiotensin system in the con- blood pressure response have demonstrated that the trol of sodium balance, a most likely explanation is that pre-treatment PRA is not a good index of subsequent the lower renin is a consequence of differences in renal blood pressure response to pharmacological treatment. sodium handling between blacks and whites. The lower Nevertheless, the blood pressure reduction to short PRA does not reflect differences in dietary sodium term sodium restriction is greater in blacks compared intake but the evidence available suggests that the low with whites and, in the black subjects, the greater PRA could be part of the corrective mechanisms reduction in blood pressure to sodium restriction designed to maintain sodium balance in the presence appears to be related, at least in part, to the decreased of an increased tendency for sodium retention in black responsiveness of the renin-angiotensin system. -
High and Non-Suppressible Plasma Renin Activity in a Patient with Aldosterone Producing Adenoma: Pathophysiologic and Diagnostic Implications
Journal of Human Hypertension (1999) 13, 75–78 1999 Stockton Press. All rights reserved 0950-9240/99 $12.00 http://www.stockton-press.co.uk/jhh CASE REPORT High and non-suppressible plasma renin activity in a patient with aldosterone producing adenoma: pathophysiologic and diagnostic implications E Shyong Tai and PHK Eng Department of Endocrinology, Singapore General Hospital, Singapore We describe a case of primary aldosteronism due to an possible pathophysiological causes of a rise in PRA in aldosterone producing adenoma with high and non-sup- this clinical setting and suggest that underlying arteri- pressible plasma renin activity (PRA). She had sup- olar disease due to prolonged hypertension may be the pressed PRA at initial diagnosis. This rose above the cause of increased and non-suppressible PRA in pri- reference range for normal individuals over a period of mary aldosteronism. 7 years with untreated hypertension. We discuss the Keywords: primary aldosteronism; plasma renin activity; diagnosis Introduction Case report Primary aldosteronism is classically associated with Our patient was a 34-year-old woman who was hypertension, hypokalaemia and suppressed plasma found to have hypertension during the fifteenth renin activity (PRA). Most cases are due to an aldo- week of pregnancy. Plasma aldosterone was sterone producing adenoma (APA). We present a 2039 pmol/l, PRA Ͻ0.15 g/l/h and a diagnosis of case of prolonged, untreated, primary aldosteronism primary aldosteronism was made. Following the due to an APA. She had suppressed PRA at the time delivery of her child, she defaulted follow-up and of diagnosis, which became elevated and non-sup- was not treated with any antihypertensives nor pot- pressible by intravenous salt loading. -
Aldosterone-Renin Ratio (Arr)
RENIN -ALDOSTERONE PROFILING: ALDOSTERONE-RENIN RATIO (ARR) 1. Obtain a morning specimen for serum aldosterone (redtop tube) and plasma renin (lavender-top) tube from an upright patient sitting for a period of 15 min prior to (being seated for) blood drawing. Fasting is not required and no salt restriction is necessary. 2. Spironolactone. The ratio cannot be assessed in patients receiving spironlactone. If primary aldosteronism (PA) is suspected in a patient receiving this drug, treatment should be discontinued for 4-6 weeks (1). 3. Hypokalemia should be corrected before ARR is measured as a low K will lower aldosterone and can lead to a falsely negative ARR (1). 4. Preferred antihypertensives that have a minimal effect on the ARR are doxazozin (Cardura), prazosin (Minipress), verapramil slow release, or hydralazine, singly or in combination for one month before sampling (1). 5. False-positive ARR: Beta-blockers, clonidine, methyldopa, and NSAID’s lower levels of renin and can cause a falsely positive ARR (1). A minimum 3-day cessation prior to sampling is recommended (3). The renin direct assay is also lower in patients on oral contraceptives and hormone replacement therapy potentially causing the ARR to be falsely increased. Measurement of plasma renin activity is preferred in this situation, calculating the aldosterone/PRA ratio (positive if >20/1). 6. False-negative ARR: Diuretics cause false negatives by causing K loss lowering aldosterone and stimulating renin through volume loss. Angiotensin blockers (ARB’s), ACE inhibitors, and some calcium channel blockers raise renin and can cause false negatives (1). A minimum three-day cessation prior to sampling is recommended (3). -
Reduced Na+,K+-Atpase Activity in Patients with Pseudohypoaldosteronism
0031-399819413503-0372$03.00/0 PEDIATRIC RESEARCH Vol. 35, No. 3. 1994 Copyright O 1994 International Pediatric Research Foundation, Inc. Prinrc7d in U.S. A. Reduced Na+,K+-ATPase Activity in Patients with Pseudohypoaldosteronism TZW BISTRITZER, SANDRA EVANS, DITA COTARIU, MICHAEL GOLDBERG, AND MORDECHAI ALADJEM Departments of Pediatrics [T.B., hf.A.1, Bioche~nicalPathology [S.E., D.C.], and Neonatology [Jf.G.], Assaf Harofeh hfedical Center, Sackler Faclclty ofhfedicine, TeI Aviv University, Zerfi~i70300. Israel ABSTRACT. Pseudohypoaldosteronism is a hereditary wasting syndrome varies widely with age and is particularly salt-wasting syndrome usually seen in infancy with weight severe in infancy. Spontaneous improvement in sodium conser- loss, dehydration, and failure to thrive. The patho- vation occurs as the individuals become older. Aldosterone de- physiologic origin of pseudohypoaldosteronism is un- ficiency in the face of overproduction of zona glomerulosa 18- known. The defect could be related to the unresponsiveness hydroxycorticosterone (10) was found, an abnormality for which of target organs to mineralocorticoids resulting in hypo- the term type 2 corticosterone methyl-oxidase defect was coined natremia, hyperkalemia, and markedly elevated plasma (1 1). Treatment with mineralocorticoids and high-sodium diet aldosterone and renin levels. Red blood cell Na+,K+-ATP reduces the secretion of the aldosterone precursor, restores elec- ase activity was measured in a pair of twins with pseudo- trolyte balance, and normalizes the growth rate (3). hypoaldosteronism, in an unrelated child with hypoaldos- Little information has been added in regard to the patho- teronism, and in an age-matched group of 50 healthy physiologic expression of PHA since its original description by infants and young children. -
The Renin-Angiotensin System and the Heart: a Historical Review Heart: First Published As 10.1136/Hrt.76.3 Suppl 3.7 on 1 November 1996
Heart (Supplement 3) 1996;76:7-12 7 The renin-angiotensin system and the heart: a historical review Heart: first published as 10.1136/hrt.76.3_Suppl_3.7 on 1 November 1996. Downloaded from Stephen J Cleland, John L Reid Early observations on a possible link effect but was in fact an enzyme. The names between the kidney and the "hypertensin""l and "angiotonin"12 were given cardiovascular system to the pressor substance formed from the renin In 1836 an English clinician Richard Bright substrate by the enzymatic action of renin. observed that patients dying with contracted Subsequently, it was agreed that the term kidneys often had a hard, full pulse and cardiac "angiotensin" would be used to describe this hypertrophy.' In 1889 Brown-Sequard, the substance. During this period the potential for "father" of endocrinology, showed that injec- pathological effects of renin was recognised. tions of extracts from guinea pig testicles were Winternitz described necrotising arteriolar able to produce systemic effects of vigour and lesions in animals which had undergone renal the perception of rejuvenation.2 On this back- artery ligation and also in nephrectomised ani- ground, in 1896 the Finnish physiologist mals which had been given kidney extracts.'3 Robert Tigerstedt and his student Per Finally, the relevance of renal control of blood Bergman began to explore the possibility that pressure in man was described by Young who, kidney extracts from rabbits may have some in 1936, cured a case of malignant hyperten- systemic effects on the cardiovascular system. sion by removing an ischaemic kidney.'4 In 1898 their classic paper was published showing that intravenous injection of these renal extracts exerted a pressor effect. -
Primary Aldosteronism, a Common Entity? the Myth Persists
Journal of Human Hypertension (2002) 16, 159–162 2002 Nature Publishing Group All rights reserved 0950-9240/02 $25.00 www.nature.com/jhh REVIEW ARTICLE Primary aldosteronism, a common entity? the myth persists PL Padfield Department of Medical Sciences, Western General Hospital, University of Edinburgh, Scotland, UK Primary aldosterone excess or hyperaldosteronism is aldosterone is in fact inappropriately elevated if the an important cause of hypertension which, when asso- renin level is low. A single measurement of the ratio of ciated with an aldosterone secreting adenoma, is amen- aldosterone to renin levels is claimed to be highly pre- able to surgical cure. The biochemical hallmarks of the dictive of patients who will have primary aldosterone condition are a relative excess of aldosterone pro- excess. This paper examines the logic behind such duction with suppression of plasma levels of renin (a claims and presents evidence from the literature that an proxy for angiotensin II, the major trophic substance abnormal ratio is simply a different description of the regulating aldosterone secretion). This combination of low renin state and that such patients do not necessarily a high aldosterone and a low renin is however more have mineralocorticoid hypertension. Most patients ‘dis- commonly associated with ‘nodular hyperplasia’ of the covered’ by this test will have what many call low-renin adrenal glands, a condition not improved by surgery hypertension, a condition not amenable to specific ther- and variably responsive to the effects of the mineral- apy. Claims that they are peculiarly sensitive to the ocorticoid antagonist, spironolactone. Until recently the hypotensive effects of spironolactone have not been prevalence of either form of secondary hypertension tested in controlled trials.