Experiment and Discrete Element Based Modeling of Granular Flow: Tribocharging and Particle Size Reduction in Pharmaceutical Ma

Total Page:16

File Type:pdf, Size:1020Kb

Experiment and Discrete Element Based Modeling of Granular Flow: Tribocharging and Particle Size Reduction in Pharmaceutical Ma University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 11-18-2014 Experiment and Discrete Element Based Modeling of Granular Flow: Tribocharging and Particle Size Reduction in Pharmaceutical Manufacturing Shivangi Naik University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Naik, Shivangi, "Experiment and Discrete Element Based Modeling of Granular Flow: Tribocharging and Particle Size Reduction in Pharmaceutical Manufacturing" (2014). Doctoral Dissertations. 640. https://opencommons.uconn.edu/dissertations/640 Experiment and Discrete Element Based Modeling of Granular Flow: Tribocharging and Particle Size Reduction in Pharmaceutical Manufacturing Shivangi Naik, Ph.D. University of Connecticut, 2014 Abstract In the pharmaceutical industry, over 75 percent of all products are in the solid dosage form. Considering their prevalence, the aim of this study was to employ experimental methods and process modeling tools viz. Discrete Element Method (DEM) to ascertain the effect of powder flow and material properties during triboelectrification and particle size reduction. Considering electron exchange to be the dominant mechanism for charge transfer, work function all powders viz. Ibuprofen, theophylline, microcrystalline cellulose and lactose monohydrate was estimated from quantum chemical calculations. Tribocharging of individual powders in a V-blender revealed a higher specific charge for Ibuprofen against all surfaces. Moreover, for mixtures, charge mitigation was observed. To facilitate model development, a hopper-chute assembly was employed to investigate the effect of coefficient of friction (COF) and coefficient of restitution (COR). The specific charge increased with COF due to longer contact time and greater particle- wall collisions. Secondly, the specific charge increased as COR was decreased, suggesting that continuous contacts transfer more charge than bouncing contacts. The model was able to capture the collisional nature of tribocharging although discrepancies were observed between numerical results and experimental observations. Thus, a collective experimental and simulation approach was found to be beneficial in identifying gaps and enabling a comprehensive interpretation of an intricate process. To study the effect of process parameters on milling, dynamic mechanical analyzer was employed to investigate the effect of damage accumulation during breakage. Damage accumulation was found to be low since the change in breakage force upon repeated impacts was insignificant. High feed rates at lower speeds resulted in flood feed conditions, which changed i the mode of breakage from fragmentation to attrition. Additionally, this effect was verified from the velocity profiles obtained from simulations that revealed stagnation of the powder bed, which consequently reduced the breakage rate. Although, the DEM model does not account for any attrition, simulations could qualitatively capture the effect of impeller speed and feed rate on the average particle size. Consequently, a combined experimental and simulations approach can be employed to direct experiment and equipment design thereby providing a better understanding of a process. ii Experiment and Discrete Element Based Modeling of Granular Flow: Tribocharging and Particle size reduction in Pharmaceutical Manufacturing Shivangi Santosh Naik B. Pharm, University of Mumbai, India, 2007 M. Pharm, University of Mumbai, India, 2009 A Dissertation Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy At the University of Connecticut 2014 iii APPROVAL PAGE Doctor of Philosophy Dissertation Experiment and Discrete Element Based Modeling of Granular Flow: Tribocharging and Particle size reduction in Pharmaceutical Manufacturing Presented by Shivangi Santosh Naik B. Pharm, University of Mumbai, India, 2007 M. Pharm, University of Mumbai, India, 2009 Major Advisor ________________________________________ Bodhisattwa Chaudhuri Associate Advisor _______________________________________ Montgomery Shaw Associate Advisor________________________________________ Ramesh Malla Associate Advisor ________________________________________ Robin Bogner University of Connecticut 2014 iv Dedication To all my grandparents, for their affection and support v Acknowledgements The writing of this dissertation has been one of the most significant academic accomplishments in my life which could not have been achieved by the help and support of family, friends and Almighty. I am deeply indebted to my adviser Dr. Bodhisattwa Chaudhuri for his fundamental role in my doctoral work. Quite simply, his input has been immeasurable. Along with his help in DEM coding, he has kept me focused on the task at hand and provided advice and guidance at all hours. He gave me the freedom for research and at the same time continued to provide valuable feedback, and encouragement. In addition to our academic collaboration, I greatly value the close personal rapport that Dr. Chaudhuri and I have forged over the years. I am also grateful to my associate advisors, Dr. Montgomery Shaw, Dr. Ramesh Malla and Dr. Robin Bogner for their careful appraisal and direction throughout the project. The good advice, support and friendship of my committee members have been invaluable on both an academic and a personal level, for which I am extremely grateful. I sincerely appreciate their constant motivation and thank them for their belief in me as student. They always encouraged me to “Stay Hungry and Stay Foolish”. I would also like to thank Dr. Bruno Hancock, Dr. Yu Weili and Dr. Yuri Abramov for their critical comments and valuable inputs during my research. Their constant involvement has helped me to gain a better understanding of this subject. A sincere thanks to Dr. Martin Rowland for his suggestions and practical remarks during my research. I am extremely thankful to the Pharmaceutics faculty for providing a comprehensive graduate curriculum. The graduate seminars, courses and symposiums provided ample training and experience to grow as scientist. I would also like to thank Dr. Burgess, Dr. Xiuling, Dr. Kalonia and Dr. Pikal for useful comments and suggestions throughout my graduate study. vi I personally thank Leslie Lebel and Mark Armati for their prompt assistance and special care for international students. I am indebted to my friends including Shweta, Bindu, Raj, Saurabh, Japneet, Masha, Liz, Bruna, Ekneet, Xiaoming, Chaitra, Deepthi, Meera, Sangeetha, Sandhya, Rima, Kinjal, Ruchita, Eric, Dave, Joe, Johanna, Janet and Yan for their support. I would also like to thank Mark Drobney from Depot Campus. Mark has been a great friend who is always ready to help. I have never heard Mark say the word “Impossible”. In fact, his dedication and enthusiasm for his work has been a great inspiration. I am deeply thankful to my family for their love, support, and sacrifices. Without them, this thesis would never have been written. No measure of gratitude is sufficient for their patience, love and understanding. vii Table of contents Approval Page iv Dedication v Acknowledgements vi Table of Contents viii Chapter 1 1-7 Introduction and Organization of this thesis Chapter 2 8-42 Triboelectrification: A review of experimental and mechanistic modelling approaches with a special focus on pharmaceutical powder Chapter 3 43-80 An experimental and numerical based study of tribocharging during granular flow Chapter 4 81-123 Triboelectrification of pharmaceutical blenders in a V-blender: An experimental and model based study Chapter 5 124-151 An experimental and numerical based study of tribocharging of pharmaceutical mixtures Chapter 6 152-188 Quantifying dry milling in pharmaceutical processing: A review on experimental and modeling approaches Chapter 7 Chapter 7 189-226 Investigation of Comminution in a Wiley Mill: Experiments and DEM Simulations viii Chapter 8 227 - 230 Summary and Future studies ix Chapter 1 Introduction and Organization of Thesis Processes involving particulate matter are prevalent throughout the pharmaceutical industry where close to 75 percent of pharmaceutical products are formulated as tablets and capsules. These processes often consist of series of unit operations, each intended to alter the properties of material to facilitate processing and imparting desired attributes to the final product. Hence, the need for understanding the behavior of such complex particulate systems is of critical importance. To allow acceptable variations, the importance of mechanistic and parametric factors of the processes should be studied. These aspects of different unit operations pose a challenge owing to the complexities of the process involved [1-4]. For instance, electrostatic charges are known to develop upon interaction between dissimilar surfaces depend. The process of tribocharging is complex and is dependent on many factors such as shape, humidity, contact surface and mechanical factors. It is reported that flow of granular material in a typical unit operation like pneumatic conveying, fluidization, spray deposition, blending can generate 10−7 – 10−4 C/kg of static charges. Discharge of these charges in the presence of volatile liquid can also lead to explosion hazard [5-6]. Hence, myriads of industries including pharmaceutical expend significantly on safety measures and hazard detection techniques in their processing facilities. Other processes
Recommended publications
  • Thomas Brand and Labforce Products
    Thomas Brand and labForce Products thomassci.com 800.345.2100 [email protected] For Latin Ameríca Thomas Scientic, LLC Family of Companies Phone: +1 786.314.7142 Address: MIAMI, FL 33182 1800 NW 135 Ave # 104 Email: [email protected] Table of Contents Equipment Supplies Balances .......................................................................... Pages 3 - 4 Bottles ............................................................................ Pages 9 -12 Bottle Top Filters ................................................................Page 12 Dry Baths .................................................................................Page 4 Jars .........................................................................................Page 12 Hot Plates/Hot Plate Stirrers .........................................Page 4-5 Jugs ....................................................................................... Page 13 Lab Lifts ...................................................................................Page 5 Microscope Slides/Cover Glass ..............................Page 13 - 14 Petri Dishes ..........................................................................Page 14 Laboratory Seating ...............................................................Page 6 Pipet Tips...................................................................... Page 14 - 15 Microscopes .......................................................................Page 6-7 Plates .....................................................................................Page
    [Show full text]
  • Application of Discrete-Element Methods to Approximate Sea-Ice
    Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES) 1 Application of discrete-element methods to approximate sea-ice 2 dynamics 1 1 1 3 A. Damsgaard , A. Adcroft , and O. Sergienko 1 4 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA 5 Key Points: • 6 Abrupt strengthening under dense ice-packing configurations induces granular jam- 7 ming • 8 Cohesive bonds can provide similar behavior as Coulomb-frictional parameteriza- 9 tions • 10 A probabilistic model characterizes the likelihood of jamming over time Corresponding author: A. Damsgaard, [email protected] –1– Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES) 11 Abstract 12 Lagrangian models of sea-ice dynamics have several advantages over Eulerian continuum 13 models. Spatial discretization on the ice-floe scale are natural for Lagrangian models and 14 offer exact solutions for mechanical non-linearities with arbitrary sea-ice concentrations. 15 This allows for improved model performance in ice-marginal zones. Furthermore, La- 16 grangian models can explicitly simulate jamming processes such as sea ice movement 17 through narrow confinements. Granular jamming is a chaotic process that occurs when 18 the right grains arrive at the right place at the right time, and the jamming likelihood over 19 time can be described by a probabilistic model. While difficult to parameterize in contin- 20 uum formulations, jamming emerges spontaneously in dense granular systems simulated 21 in a Lagrangian framework. Here, we present a flexible discrete-element framework for 22 approximating Lagrangian sea-ice mechanics at the ice-floe scale, forced by ocean and at- 23 mosphere velocity fields.
    [Show full text]
  • Agriculture CLASSI- FICATION 8
    A09NCY FOR INTERNATIONAL DEVELOPMENT FOR AID USE ONLY WASIIdOTON, 0. C. 20623 BIBLIOGRAPHIC INPUT SHEET A. PRIMARY I. SUBJECT Agriculture CLASSI- FICATION 8. SECONDARY Cereal Crops 2. TITLE AND SUBTITLE Simple chemical and biological methods used at Purdue University to evaluate - r pgngte fnr rrntdain u,,-1lity 3. AUTNOR(S) Mertz, E.T.; Jambunathan, R.; Misra, P.S. 4. DOCUMENT DATE 15. NUMBER OF PAGES 6. ARC NUMBER 1975 25 p. ARC 7. REFERENCE ORGANIZATION NAME AND ADDRESS Agronomy Department, Purdue University, Lafayette, Indiana 47907 S. NOT) a 0 Izal.n Pub.liherp AvaIlabit Su se inT nernaiona1 programs ,i agricuiural station Bul. No. 70 9. ABSTRACT A lack of the amino acid lycine in cereals of economic importance makes them inferior to other high protein foods. The recent discovery that cereal proteins can be improved thrcugh genetic manipulation has made determina­ tion of the protein quality of these grains essential. This report details the simple methods by which even the most elementary equipped laboratory can produce reliable data for a plant-breeding program for protein qualtiy. Chemical reagents and procedures are described for nitrogen content analysis, tryptophan determination in maize, lysine levels in non-piymented cereals, lysine screening using a ninhydrin reagent, and dye binding for high lysine cereals. Procedures for biological assay, based on the diets of young rats who receive all their protein from cereals, is also provided. Both the ninhydrin and dye binding tests are recommended for mass screening of large populations. 10. CONTROL NUMBER 11. PRICE OF DOCUMENT PN-AAB-490 12. rESCRIPTORS -iS, PROJECT NUMBtR 14.
    [Show full text]
  • Contact Dynamics As a Nonsmooth Discrete Element Method Farhang Radjai, Richefeu Vincent
    Contact dynamics as a nonsmooth discrete element method Farhang Radjai, Richefeu Vincent To cite this version: Farhang Radjai, Richefeu Vincent. Contact dynamics as a nonsmooth discrete element method. Me- chanics of Materials, Elsevier, 2009, 41, pp.715–728. 10.1016/j.mechmat.2009.01.028. hal-00689866 HAL Id: hal-00689866 https://hal.archives-ouvertes.fr/hal-00689866 Submitted on 20 Apr 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Contact dynamics as a nonsmooth discrete element method Farhang Radjai and Vincent Richefeu Laboratoire de M´ecanique et G´enieCivil, CNRS - Universit´eMontpellier 2, Place Eug`eneBataillon, 34095 Montpellier cedex 05 Abstract The contact dynamics (CD) method is presented as a discrete element method for the simulation of nonsmooth granular dynamics at the scale of particle rear- rangements where small elastic response times and displacements are neglected. Two central ingredients of the method are detailed: 1) The contact laws expressed as complementarity relations between the contact forces and velocities and 2) The nonsmooth motion involving velocity jumps with impulsive unresolved forces as well as smooth motion with resolved static forces. We show that a consistent descrip- tion of the dynamics at the velocity level leads to an implicit time-stepping scheme together with an explicit treatment of the evolution of the particle configuration.
    [Show full text]
  • A Coupled SPH-DEM Model for Fluid-Structure Interaction Problems with Free-Surface Flow and Structural Failure
    This is a repository copy of A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103460/ Version: Accepted Version Article: Wu, K, Yang, D and Wright, N (2016) A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Computers and Structures, 177. pp. 141-161. ISSN 0045-7949 https://doi.org/10.1016/j.compstruc.2016.08.012 © 2016 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure Ke Wu1, Dongmin Yang1,*, Nigel Wright2 1 School of Civil Engineering, University of Leeds, LS2 9JT, UK 2 Faculty of Technology, De Montfort University, LE1 9BH, UK Abstract An integrated particle model is developed to study fluid-structure interaction (FSI) problems with fracture in the structure induced by the free surface flow of the fluid.
    [Show full text]
  • ESI) for Green Chemistry
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2016 Electronic Supporting Information (ESI) A facile and fast method for quantitating lignin in lignocellulosic biomass using acidic lithium bromide trihydrate (ALBTH) Ning Li, Xuejun Pan*, and Jane Alexander Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA * To whom the correspondence should be addressed. Email: [email protected] Table of Contents page 1. Table S1. Formation of pseudo lignin fraction from extractives of herbaceous biomass by ALBTH method………………………………………………..…..2 2. Table S2. Formation of humins from cellulose in ALBTH assay at 110 °C………………..2 3. Table S3. Residual carbohydrates in insoluble lignin of various biomass by ALBTH method………………………………………………………………………….2 4. Figure S1. UV spectra of HMF (2.02 to 6.06 mg/L) and furfural (2.14 to 6.42 mg/L) and acidic lithium bromide solution (220 mg/L LiBr)………………………………………3 5. Figure S2. Linear correlation of absorption deduction (퐴푏푠(284) ‒ 0.1431퐴푏푠(240)) with furan absorption correction (퐴푏푠푓) based on the multiple linear regression results…………4 6. Figure S3. SEM-EDS analysis of ALBTH lignin residue from extractives-free aspen……..5 7. Figure S4. The aromatic region of 2D 1H-13C correlation (HSQC) spectra from corn stover lignin residue by ALBTH method dissolved in DMSO-d6………………..6 8. Figure S5. Comparison of ALBTH, NREL and TAPPI reaction duration for lignin quantitation……………………………………………………………………………….…..6 9. The determination of Absf in equation (3) by direct HPLC quantitative analysis and pseudo double-wavelength spectrophotometric method……………………………………..7 10. Recommended ALBTH protocol for lignin quantitation in lignocellulosic biomass………...9 1 of 12 Table S1.
    [Show full text]
  • Virtual Experiments of Particle Mixing Process with the SPH-DEM Model
    materials Article Virtual Experiments of Particle Mixing Process with the SPH-DEM Model Siyu Zhu, Chunlin Wu and Huiming Yin * Department of Civil Engineering and Engineering Mechanics, Columbia University, 610 S.W. Mudd, 500 West 120th Street, New York, NY 10027, USA; [email protected] (S.Z.); [email protected] (C.W.) * Correspondence: [email protected]; Tel.: +1-212-851-1648 Abstract: Particle mixing process is critical for the design and quality control of concrete and composite production. This paper develops an algorithm to simulate the high-shear mixing process of a granular flow containing a high proportion of solid particles mixed in a liquid. DEM is employed to simulate solid particle interactions; whereas SPH is implemented to simulate the liquid particles. The two-way coupling force between SPH and DEM particles is used to evaluate the solid-liquid interaction of a multi-phase flow. Using Darcy’s Law, this paper evaluates the coupling force as a function of local mixture porosity. After the model is verified by two benchmark case studies, i.e., a solid particle moving in a liquid and fluid flowing through a porous medium, this method is applied to a high shear mixing problem of two types of solid particles mixed in a viscous liquid by a four-bladed mixer. A homogeneity metric is introduced to characterize the mixing quality of the particulate mixture. The virtual experiments with the present algorithm show that adding more liquid or increasing liquid viscosity slows down the mixing process for a high solid load mix. Although the solid particles can be mixed well eventually, the liquid distribution is not homogeneous, especially when the viscosity of liquid is low.
    [Show full text]
  • Modelling Complex Particle–Fluid Flow with a Discrete Element Method Coupled with Lattice Boltzmann Methods (DEM-LBM)
    chemengineering Article Modelling Complex Particle–Fluid Flow with a Discrete Element Method Coupled with Lattice Boltzmann Methods (DEM-LBM) Wenwei Liu and Chuan-Yu Wu * Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; [email protected] * Correspondence: [email protected] Received: 1 July 2020; Accepted: 29 September 2020; Published: 7 October 2020 Abstract: Particle–fluid flows are ubiquitous in nature and industry. Understanding the dynamic behaviour of these complex flows becomes a rapidly developing interdisciplinary research focus. In this work, a numerical modelling approach for complex particle–fluid flows using the discrete element method coupled with the lattice Boltzmann method (DEM-LBM) is presented. The discrete element method and the lattice Boltzmann method, as well as the coupling techniques, are discussed in detail. The DEM-LBM is thoroughly validated for typical benchmark cases: the single-phase Poiseuille flow, the gravitational settling and the drag force on a fixed particle. In order to demonstrate the potential and applicability of DEM-LBM, three case studies are performed, which include the inertial migration of dense particle suspensions, the agglomeration of adhesive particle flows in channel flow and the sedimentation of particles in cavity flow. It is shown that DEM-LBM is a robust numerical approach for analysing complex particle–fluid flows. Keywords: particle–fluid flow; discrete element method; lattice Boltzmann method 1. Introduction Particulate flows are extensively encountered in nature and industrial processes, attracting tremendous engineering research interests in almost all areas of sciences [1–3], including astrophysics, chemical engineering, biology, life science and so on.
    [Show full text]
  • Numerical Modelling of Deformation Within Accretionary Prisms
    IT 12 022 Examensarbete 45 hp Juni 2012 Numerical modelling of deformation within accretionary prisms Ting Zhang Institutionen för informationsteknologi Department of Information Technology Abstract Numerical modelling of deformation within accretionary prisms Ting Zhang Teknisk- naturvetenskaplig fakultet UTH-enheten A two dimensional continuous numerical model based on Discrete Element Method is used to investigate the behaviour of accretionary wedges with different basal frictions. Besöksadress: The models are based on elastic-plastic, brittle material and computational granular Ångströmlaboratoriet Lägerhyddsvägen 1 dynamics, and several characteristics of the influence of the basal friction are analysed. Hus 4, Plan 0 The model results illustrate that the wedge’s deformation and geometry, for example, fracture geometry, the compression force, area loss, displacement, height and length Postadress: of the accretionary wedge etc., are strongly influenced by the basal friction. In general, Box 536 751 21 Uppsala the resulting wedge grows steeper, shorter and higher, and the compression force is larger when shortened above a larger friction basement. Especially, when there is no Telefon: basal friction, several symmetrical wedges will distribute symmetrically in the domain. 018 – 471 30 03 The distribution of the internal stress when a new accretionary prime is forming is Telefax: also studied. The results illustrate that when the stress in a certain zone is larger than 018 – 471 30 00 a critical number, a new thrust will form there. Hemsida: http://www.teknat.uu.se/student Key words: Discrete Element Method, accretionary wedge, basal friction, compression force, area loss, displacement, height and length Handledare: Hemin Koyi Ämnesgranskare: Maya Neytcheva Examinator: Jarmo Rantakokko IT 12 022 Tryckt av: Reprocentralen ITC Numerical modelling of deformation within accretionary prisms Zhang Ting Content Abstract Content 1.
    [Show full text]
  • Hammering Beneath the Surface of Mars – Modeling and Simulation Of
    URN (Paper): urn:nbn:de:gbv:ilm1-2014iwk-155:2 58th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 08 – 12 September 2014 URN: urn:nbn:de:gbv:ilm1-2014iwk:3 Hammering beneath the surface of Mars – Modeling and simulation of the impact-driven locomotion of the HP3-Mole by coupling enhanced multi-body dynamics and discrete element method Roy Lichtenheldt1, Bernd Schäfer2, Olaf Krömer3 1 German Aerospace Center (DLR), Institute of System Dynamics and Control 1 Ilmenau University of Technology, Department of Mechanical Engineering, Mechanism Technology Group 2 German Aerospace Center (DLR), Institute of Robotics and Mechatronics 3German Aerospace Center (DLR), Institute of Space Systems ABSTRACT As the formation of the rocky planets in our inner solar system has always been a major sub- ject of scientific interest, NASA’s discovery mission InSight (Interior Seismic Investigations, Geodesy and Heat Transport) intends to gain further knowledge about the interior structure of Mars. In order to understand the processes that lead to planetary evolution, Mars’ seismic as well as thermal properties will be measured. DLR’s HP3-Mole (Heat Flow and Physical Prop- erties Package), an innovative self impelling nail, will hammer itself into the red planet deeper than any other instrument before, in order to measure the heat flux and thermal gradient down to a final depth of 5 m. To achieve this challenging goal, high fidelity simulation models have been used throughout the whole development process. To meet the demands on accuracy, two detailed models were created based on enhanced multi-body dynamics and discrete element techniques. For the most detailed analysis both methods are coupled to enable further understanding of the interaction between Mole mechanism and soil dynamics.
    [Show full text]
  • Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) Applied to Centrifuges
    6 Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) Applied to Centrifuges Xiana Romani Fernandez, Lars Egmont Spelter and Hermann Nirschl Karlsruhe Institute of Technology, Campus South, Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Germany 1. Introduction The simulation of fluid flow in e.g. air channels, pipes, porous media and turbines has been the emphasis of many research projects and optimization processes in the academic and industrial community during the last years. A key advantage of the calculation of fluid flow through a given geometry when compared to the experimental determination is the efficient identification of disadvantages of the current state and the fast cycle of change in geometry and analysis of its effects. This saves time and costs and furthermore opens up new fields of research and development. There are, however, few drawbacks of the new optimisation and research methods. The numerically obtained results need validation before it can be stated whether they are correct or misrepresent the true state. In some cases, such as the optimisation of existing systems, the experience of the user may be sufficient to evaluate the calculated flow pattern. In the case of the prediction of flow in new geometries or process conditions, the numerical result can be validated only by measuring the flow pattern at representative process conditions (flow velocity, pressure, and temperature). For non- moving geometries, many measurements have been conducted in order to determine the flow behaviour in various geometries and for different process conditions. These measurements are readily available for the evaluation of new simulations. However, only little research has been conducted to evaluate the flow conditions in centrifuges, especially at high rotational speeds.
    [Show full text]
  • Lab Equipment and Supplies Available in the Rosenburg Center Wet and Dry Labs
    Lab Equipment and Supplies Available in the Rosenburg Center Wet and Dry Labs Item Quantity Description Comments Brand Location Lab Equipment Analytical Balance 1 Mettler H51AR Mettler Wet Lab Balance (electronic) 2 electronic; one 200 x 0.01g and newer models Ohaus Cabinet 7 one 400 x 0.01g Balance (electronic) 2 beige color, grams older models Ohaus Drawer 20 Balance Scale 2 Mettler balance weight scale Mettler Wet Lab model P163 Battery 4 Battery Marine Deep Cycle Die Hard Wet Lab fume hood Digital Camera 2 silver, small with SD card, no cases Kodak; Canon Office 10x200m; silver 6.0mpx 4x optical zoom Discecting Scope 9 six older grey; three off white Wolfe; unkown Cabinet 6 newer Drying Oven 1 Large, floor unit Wet Lab Folding Pocket 1 5x-20x, small Bausch & Lamb W.33 Magnifier Freezer, chest 1 appx. 8 cu. ft. basement Incubator/Dryer 1 Thelco Precision Model 17 Thelco Wet Lab Incubator Refrigerator 1 Kitchen unit with freezer 18 cu. Ft. Frigidaire Dry lab Video Projector 2 Sanyo, InFocus (portable) set up for PC Sanyo, InFocus Dry lab Weighing Paper 2000 6X6" 1000pcs; 3x3" 1000pcs packages are Fisher Scientific W.34 opened; may be less Co. then 1000 in ea Wiley Mill 1 Attic Glassware Beaker 12 one 1500ml, two 1000ml, one 250 Kimax; Pyrex Wet Lab ml, three 150ml, two 100ml, three Flask 3 four50ml 1000ml + sidearm, three Kiramax, Pyrex Wet Lab 1000ml, 13 250ml, two 500ml, two 500ml + sidearm Funnel 3 one plastic; two glass the glass ones are 60 Pyrex (glass) wet lab degrees Graduated Cylinder 13 one 1000ml, one 100ml, eight Pyrex, Kiramax Wet Lab 50ml, one 25ml, two 10ml Volumetric Flask 8 five 500ml, three 100ml Kiramax Wet Lab.
    [Show full text]