POLARIZABLE TWISTOR D-MODULES Claude Sabbah

Total Page:16

File Type:pdf, Size:1020Kb

POLARIZABLE TWISTOR D-MODULES Claude Sabbah POLARIZABLE TWISTOR D-MODULES Claude Sabbah Abstract. — We prove a Decomposition Theorem for the direct image of an irreducible local system on a smooth complex projective variety under a morphism with values in another smooth complex projective variety. For this purpose, we construct a category of polarized twistor D-modules and show a Decomposition Theorem in this category. Résumé (D-modules avec structure de twisteur polarisable). — Nous montrons un théorème de décomposition pour l’image directe d’un système local irréductible sur une variété projective complexe lisse par un morphisme à valeurs dans une autre variété projective complexe lisse. À cet effet, nous construisons une catégorie de D- modules avec structure de twisteur polarisée et nous montrons un théorème de dé- composition dans cette catégorie. CONTENTS Introduction ................................................... ............... 1 0. Preliminaries ................................................... ........... 11 1. Coherent and holonomic RX -modules ................................. 19 1.1. Coherent and good RX -modules ........................................ 19 1.2. The involutivity theorem ......................... ....................... 20 1.3. Examples ....................................... ......................... 23 1.4. Direct and inverse images of RX -modules .............................. 25 1.5. Sesquilinear pairings on RX -modules ................................... 29 1.6. The category R- Triples(X) ............................................. 31 2. Smooth twistor structures ............................................... 39 2.1. Twistor structures in dimension 0 .................. ..................... 39 2.2. Smooth twistor structures in arbitrary dimension . ................... 47 3. Specializable RX -modules ............................................... 55 3.1. V -filtrations ........................................ ..................... 55 3.2. Review on specializable DX -modules .................................... 64 3.3. The category S 2(X,t).................................................. 66 3.4. Localization and minimal extension across a hypersurface ............... 81 3.5. Strictly S(upport)-decomposable RX -modules .......................... 84 3.6. Specialization of a sesquilinear pairing ........... ....................... 87 3.7. Noncharacteristic inverse image .................. ....................... 98 3.8. A local computation .............................. .......................103 4. Polarizable twistor D-modules ..........................................107 4.1. Definition of a twistor D-module ........................................107 4.2. Polarization ................................... ..........................117 vi CONTENTS 5. Polarizable regular twistor D-modules on curves .....................123 5.1. A basic example .................................. .......................123 5.2. Review of some results of C.Simpson and O.Biquard ..... ..............128 5.3. Proof of Theorem 5.0.1, first part ................... ....................132 5.4. Proof of Theorem 5.0.1, second part ................. ....................145 5.A. Mellin transform and asymptotic expansions . ...................149 5.B. Some results of O.Biquard ......................... .....................151 6. The decomposition theorem for polarizable regular twistor D-modules ...................155 6.1. Statement of the main results and proof of the Main Theorems .........155 6.2. Proof of (6.1.1)(1,0) when Supp T is smooth ............................156 6.3. Proof of (6.1.1)(n,m) ⇒ (6.1.1)(n+1,m+1) .................................170 6.4. Proof of (6.1.1)(6(n−1),0) and ((6.1.1)(1,0) with Supp T smooth) ⇒ (6.1.1)(n,0) for n > 1 .................................................. ..171 6.5. Proof of Theorem 6.1.3 ............................ ......................174 7. Integrability ................................................... ............177 7.1. Integrable RX -modules and integrable triples ....................... ....177 7.2. Integrable smooth twistor structures .............. ......................181 7.3. Integrability and specialization ................. .........................185 7.4. Integrable polarizable regular twistor D-modules ........................188 Appendix. Monodromy at infinity and partial Fourier Laplace transform ............................191 A.1. Exponential twist ............................... ........................191 A.2. Partial Fourier-Laplace transform of RX -modules ......................193 A.3. Partial Fourier-Laplace transform and specialization ....................197 A.4. Partial Fourier-Laplace transform of regular twistor D-modules ........198 Bibliography ................................................... ...............201 Notation ................................................... ...................207 INTRODUCTION Let X be a smooth complex projective manifold and let F be a locally constant sheaf of C-vector spaces of finite dimension on X. We assume that F is semisimple, i.e., a direct sum of irreducible locally constant sheaves on X. Then it is known that, given any ample line bundle on X, the corresponding Hard Lefschetz Theorem holds for the cohomology of X with values in F : if F is constant, this follows from Hodge theory; for general semisimple local systems, this was proved by C. Simpson [63] using the existence of a harmonic metric [13]. The existence of such a metric also allows him to show easily that the restriction of F to any smooth subvariety of X remains semisimple. In this article, we extend to such semisimple local systems other properties known to be true for the constant sheaf, properties usually deduced from Hodge theory. These properties will concern the behaviour with respect to morphisms. They were first proved for the constant sheaf (cf. [15, 17, 60, 66, 3, 28]) and then, more generally, for local systems underlying a polarizable Hodge Module, as a consequence of the work of M. Saito [56]. Given a local system F of finite dimensional C-vector spaces on a complex man- ifold X, it will be convenient to denote by pF the associated perverse complex F [dim X], i.e., the complex having F as its only nonzero term, this term being in degree − dim X. The proof of the following results will be given in § 6.1. Main Theorem 1 (Decomposition Theorem). — Let X be a smooth complex projective variety and let F be a semisimple local system of finite dimensional C-vector spaces on X. Let U be an open set of X and let f : U → Y be a proper holomorphic mapping in a complex manifold Y . Fix an ample line bundle on X. Then (1) the relative Hard Lefschetz Theorem holds for the perverse cohomology sheaves p i p H (Rf∗ F|U ) of the direct image; p (2) the direct image complex Rf∗ F|U decomposes (maybe non canonically) as the direct sum of its perverse cohomology sheaves: p p i p Rf∗ F|U ≃⊕ H (Rf∗ F|U )[−i]; i 2 INTRODUCTION p i p (3) each perverse cohomology sheaf H (Rf∗ F|U ) decomposes as the direct sum of intersection complexes supported on closed irreducible analytic subsets Z of Y , i.e., of the form IC•(pL ), where L is a local system on a smooth open dense set Z r Z′, with Z′ closed analytic in Z; (4) if moreover U = X and Y is projective, then each perverse cohomology sheaf p i p H (Rf∗ F ) is semisimple, i.e., the local systems L are semisimple. Main Theorem 2 (Vanishing cycles). — Let X be a smooth complex projective variety and let F be a semisimple local system on X. Let U be an open set of X and let f : U → C be a holomorphic function on U which is proper. Then, for any ℓ ∈ Z, Mp p Mp p the perverse complexes grℓ ψf F and grℓ φf F , obtained by grading with respect to the monodromy filtration the perverse complexes of nearby or vanishing cycles, are semisimple perverse sheaves on f −1(0). Remarks (1) We note that (1) ⇒ (2) in Main Theorem 1 follows from an argument of Deligne [15]. (2) The nearby and vanishing cycles functors ψf and φf defined by Deligne [19] are shifted by −1, so that they send perverse sheaves to perverse sheaves. They are p p denoted by ψf and φf , following M. Saito [56]. (3) It is known that the Main Theorem 1 implies the local invariant cycle theorem for the cohomology with coefficients in F (cf. [3, Cor.6.2.8 and 6.2.9], see also [57, Cor. 3.6 and 3.7]). If for instance Y = C then, for any k > 0 and for t 6= 0 small enough, there is an exact sequence T − Id Hk(f −1(0), F ) −→ Hk(f −1(t), F ) −−−−−−→ Hk(f −1(t), F ), where T denotes the monodromy. It also implies the exactness of the Clemens-Schmid sequence. (4) Owing to the fact that, if FQ is a perverse complex of Q-vector spaces on a complex analytic manifold, then FQ is semisimple if and only if FC = C ⊗Q FQ is so, the previous results apply as well to Q-local systems, giving semisimple Q-perverse complexes as a result. (5) It would be possible to define a category of perverse complexes “of smooth origin”, obtained after iterating various operations starting from a semisimple local system on a smooth complex projective variety, e.g., taking perverse cohomology of a projective direct image, taking monodromy-graded nearby or vanishing cycles relative to a projective holomorphic function, taking sub-quotients of such objects. The perverse complexes in this category are semisimple. (6) A conjecture of M. Kashiwara [34] —which was the main motivation for this work— asserts in particular that these results should hold when F is any semisimple perverse sheaf (with coefficients in C) on X. In the complex
Recommended publications
  • Mixed Hodge Structure of Affine Hypersurfaces
    R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Hossein MOVASATI Mixed Hodge structure of affine hypersurfaces Tome 57, no 3 (2007), p. 775-801. <http://aif.cedram.org/item?id=AIF_2007__57_3_775_0> © Association des Annales de l’institut Fourier, 2007, tous droits réservés. L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute re- production en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement per- sonnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 57, 3 (2007) 775-801 MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES by Hossein MOVASATI Abstract. — In this article we give an algorithm which produces a basis of the n-th de Rham cohomology of the affine smooth hypersurface f −1(t) compatible with the mixed Hodge structure, where f is a polynomial in n + 1 variables and satisfies a certain regularity condition at infinity (and hence has isolated singulari- ties). As an application we show that the notion of a Hodge cycle in regular fibers of f is given in terms of the vanishing of integrals of certain polynomial n-forms n+1 in C over topological n-cycles on the fibers of f.
    [Show full text]
  • Derived Categories. Winter 2008/09
    Derived categories. Winter 2008/09 Igor V. Dolgachev May 5, 2009 ii Contents 1 Derived categories 1 1.1 Abelian categories .......................... 1 1.2 Derived categories .......................... 9 1.3 Derived functors ........................... 24 1.4 Spectral sequences .......................... 38 1.5 Exercises ............................... 44 2 Derived McKay correspondence 47 2.1 Derived category of coherent sheaves ................ 47 2.2 Fourier-Mukai Transform ...................... 59 2.3 Equivariant derived categories .................... 75 2.4 The Bridgeland-King-Reid Theorem ................ 86 2.5 Exercises ............................... 100 3 Reconstruction Theorems 105 3.1 Bondal-Orlov Theorem ........................ 105 3.2 Spherical objects ........................... 113 3.3 Semi-orthogonal decomposition ................... 121 3.4 Tilting objects ............................ 128 3.5 Exercises ............................... 131 iii iv CONTENTS Lecture 1 Derived categories 1.1 Abelian categories We assume that the reader is familiar with the concepts of categories and func- tors. We will assume that all categories are small, i.e. the class of objects Ob(C) in a category C is a set. A small category can be defined by two sets Mor(C) and Ob(C) together with two maps s, t : Mor(C) → Ob(C) defined by the source and the target of a morphism. There is a section e : Ob(C) → Mor(C) for both maps defined by the identity morphism. We identify Ob(C) with its image under e. The composition of morphisms is a map c : Mor(C) ×s,t Mor(C) → Mor(C). There are obvious properties of the maps (s, t, e, c) expressing the axioms of associativity and the identity of a category. For any A, B ∈ Ob(C) we denote −1 −1 by MorC(A, B) the subset s (A) ∩ t (B) and we denote by idA the element e(A) ∈ MorC(A, A).
    [Show full text]
  • Perverse Sheaves
    Perverse Sheaves Bhargav Bhatt Fall 2015 1 September 8, 2015 The goal of this class is to introduce perverse sheaves, and how to work with it; plus some applications. Background For more background, see Kleiman's paper entitled \The development/history of intersection homology theory". On manifolds, the idea is that you can intersect cycles via Poincar´eduality|we want to be able to do this on singular spces, not just manifolds. Deligne figured out how to compute intersection homology via sheaf cohomology, and does not use anything about cycles|only pullbacks and truncations of complexes of sheaves. In any derived category you can do this|even in characteristic p. The basic summary is that we define an abelian subcategory that lives inside the derived category of constructible sheaves, which we call the category of perverse sheaves. We want to get to what is called the decomposition theorem. Outline of Course 1. Derived categories, t-structures 2. Six Functors 3. Perverse sheaves—definition, some properties 4. Statement of decomposition theorem|\yoga of weights" 5. Application 1: Beilinson, et al., \there are enough perverse sheaves", they generate the derived category of constructible sheaves 6. Application 2: Radon transforms. Use to understand monodromy of hyperplane sections. 7. Some geometric ideas to prove the decomposition theorem. If you want to understand everything in the course you need a lot of background. We will assume Hartshorne- level algebraic geometry. We also need constructible sheaves|look at Sheaves in Topology. Problem sets will be given, but not collected; will be on the webpage. There are more references than BBD; they will be online.
    [Show full text]
  • Mixed Hodge Structures
    Mixed Hodge structures 8.1 Definition of a mixed Hodge structure · Definition 1. A mixed Hodge structure V = (VZ;W·;F ) is a triple, where: (i) VZ is a free Z-module of finite rank. (ii) W· (the weight filtration) is a finite, increasing, saturated filtration of VZ (i.e. Wk=Wk−1 is torsion free for all k). · (iii) F (the Hodge filtration) is a finite decreasing filtration of VC = VZ ⊗Z C, such that the induced filtration on (Wk=Wk−1)C = (Wk=Wk−1)⊗ZC defines a Hodge structure of weight k on Wk=Wk−1. Here the induced filtration is p p F (Wk=Wk−1)C = (F + Wk−1 ⊗Z C) \ (Wk ⊗Z C): Mixed Hodge structures over Q or R (Q-mixed Hodge structures or R-mixed Hodge structures) are defined in the obvious way. A weight k Hodge structure V is in particular a mixed Hodge structure: we say that such mixed Hodge structures are pure of weight k. The main motivation is the following theorem: Theorem 2 (Deligne). If X is a quasiprojective variety over C, or more generally any separated scheme of finite type over Spec C, then there is a · mixed Hodge structure on H (X; Z) mod torsion, and it is functorial for k morphisms of schemes over Spec C. Finally, W`H (X; C) = 0 for k < 0 k k and W`H (X; C) = H (X; C) for ` ≥ 2k. More generally, a topological structure definable by algebraic geometry has a mixed Hodge structure: relative cohomology, punctured neighbor- hoods, the link of a singularity, .
    [Show full text]
  • Weak Positivity Via Mixed Hodge Modules
    Weak positivity via mixed Hodge modules Christian Schnell Dedicated to Herb Clemens Abstract. We prove that the lowest nonzero piece in the Hodge filtration of a mixed Hodge module is always weakly positive in the sense of Viehweg. Foreword \Once upon a time, there was a group of seven or eight beginning graduate students who decided they should learn algebraic geometry. They were going to do it the traditional way, by reading Hartshorne's book and solving some of the exercises there; but one of them, who was a bit more experienced than the others, said to his friends: `I heard that a famous professor in algebraic geometry is coming here soon; why don't we ask him for advice.' Well, the famous professor turned out to be a very nice person, and offered to help them with their reading course. In the end, four out of the seven became his graduate students . and they are very grateful for the time that the famous professor spent with them!" 1. Introduction 1.1. Weak positivity. The purpose of this article is to give a short proof of the Hodge-theoretic part of Viehweg's weak positivity theorem. Theorem 1.1 (Viehweg). Let f : X ! Y be an algebraic fiber space, meaning a surjective morphism with connected fibers between two smooth complex projective ν algebraic varieties. Then for any ν 2 N, the sheaf f∗!X=Y is weakly positive. The notion of weak positivity was introduced by Viehweg, as a kind of birational version of being nef. We begin by recalling the { somewhat cumbersome { definition.
    [Show full text]
  • Hodge Polynomials of Singular Hypersurfaces
    HODGE POLYNOMIALS OF SINGULAR HYPERSURFACES ANATOLY LIBGOBER AND LAURENTIU MAXIM Abstract. We express the difference between the Hodge polynomials of the singular and resp. generic member of a pencil of hypersurfaces in a projective manifold by using a stratification of the singular member described in terms of the data of the pencil. In particular, if we assume trivial monodromy along all strata in the singular member of the pencil, our formula computes this difference as a weighted sum of Hodge polynomials of singular strata, the weights depending only on the Hodge-type information in the normal direction to the strata. This extends previous results (cf. [19]) which related the Euler characteristics of the generic and singular members only of generic pencils, and yields explicit formulas for the Hodge χy-polynomials of singular hypersurfaces. 1. Introduction and Statements of Results Let X be an n-dimensional non-singular projective variety and L be a bundle on X. Let L ⊂ P(H0(X; L)) be a line in the projectivization of the space of sections of L, i.e., a pencil of hypersurfaces in X. Assume that the generic element Lt in L is non-singular and that L0 is a singular element of L. The purpose of this note is to relate the Hodge polynomials of the singular and resp. generic member of the pencil, i.e., to understand the difference χy(L0) − χy(Lt) in terms of invariants of the singularities of L0. A special case of this situation was considered by Parusi´nskiand Pragacz ([19]), where the Euler characteristic is studied for pencils satisfying the assumptions that the generic element Lt of the pencil L is transversal to the strata of a Whitney stratification of L0.
    [Show full text]
  • Perverse Sheaves in Algebraic Geometry
    Perverse sheaves in Algebraic Geometry Mark de Cataldo Lecture notes by Tony Feng Contents 1 The Decomposition Theorem 2 1.1 The smooth case . .2 1.2 Generalization to singular maps . .3 1.3 The derived category . .4 2 Perverse Sheaves 6 2.1 The constructible category . .6 2.2 Perverse sheaves . .7 2.3 Proof of Lefschetz Hyperplane Theorem . .8 2.4 Perverse t-structure . .9 2.5 Intersection cohomology . 10 3 Semi-small Maps 12 3.1 Examples and properties . 12 3.2 Lefschetz Hyperplane and Hard Lefschetz . 13 3.3 Decomposition Theorem . 16 4 The Decomposition Theorem 19 4.1 Symmetries from Poincaré-Verdier Duality . 19 4.2 Hard Lefschetz . 20 4.3 An Important Theorem . 22 5 The Perverse (Leray) Filtration 25 5.1 The classical Leray filtration. 25 5.2 The perverse filtration . 25 5.3 Hodge-theoretic implications . 28 1 1 THE DECOMPOSITION THEOREM 1 The Decomposition Theorem Perhaps the most successful application of perverse sheaves, and the motivation for their introduction, is the Decomposition Theorem. That is the subject of this section. The decomposition theorem is a generalization of a 1968 theorem of Deligne’s, from a smooth projective morphism to an arbitrary proper morphism. 1.1 The smooth case Let X = Y × F. Here and throughout, we use Q-coefficients in all our cohomology theories. Theorem 1.1 (Künneth formula). We have an isomorphism M H•(X) H•−q(Y) ⊗ Hq(F): q≥0 In particular, this implies that the pullback map H•(X) H•(F) is surjective, which is already rare for fibrations that are not products.
    [Show full text]
  • University of Alberta
    University of Alberta FILTRATIONS ON HIGHER CHOW GROUPS AND ARITHMETIC NORMAL FUNCTIONS by Jos´eJaime Hern´andezCastillo A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Department of Mathematical and Statistical Sciences c Jos´eJaime Hern´andezCastillo Spring 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-78000-8 Our file Notre référence ISBN: 978-0-494-78000-8 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distrbute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats.
    [Show full text]
  • Hodge Numbers of Landau-Ginzburg Models
    HODGE NUMBERS OF LANDAU–GINZBURG MODELS ANDREW HARDER Abstract. We study the Hodge numbers f p,q of Landau–Ginzburg models as defined by Katzarkov, Kont- sevich, and Pantev. First we show that these numbers can be computed using ordinary mixed Hodge theory, then we give a concrete recipe for computing these numbers for the Landau–Ginzburg mirrors of Fano three- folds. We finish by proving that for a crepant resolution of a Gorenstein toric Fano threefold X there is a natural LG mirror (Y,w) so that hp,q(X) = f 3−q,p(Y,w). 1. Introduction The goal of this paper is to study Hodge theoretic invariants associated to the class of Landau–Ginzburg models which appear as the mirrors of Fano varieties in mirror symmetry. Mirror symmetry is a phenomenon that arose in theoretical physics in the late 1980s. It says that to a given Calabi–Yau variety W there should be a dual Calabi–Yau variety W ∨ so that the A-model TQFT on W is equivalent to the B-model TQFT on W ∨ and vice versa. The A- and B-model TQFTs associated to a Calabi–Yau variety are built up from symplectic and algebraic data respectively. Consequently the symplectic geometry of W should be related to the algebraic geometry of W ∨ and vice versa. A number of precise and interrelated mathematical approaches to mirror symmetry have been studied intensely over the last several decades. Notable approaches to studying mirror symmetry include homological mirror symmetry [Kon95], SYZ mirror symmetry [SYZ96], and the more classical enumerative mirror symmetry.
    [Show full text]
  • Hodge Theory and Geometry
    HODGE THEORY AND GEOMETRY PHILLIP GRIFFITHS This expository paper is an expanded version of a talk given at the joint meeting of the Edinburgh and London Mathematical Societies in Edinburgh to celebrate the centenary of the birth of Sir William Hodge. In the talk the emphasis was on the relationship between Hodge theory and geometry, especially the study of algebraic cycles that was of such interest to Hodge. Special attention will be placed on the construction of geometric objects with Hodge-theoretic assumptions. An objective in the talk was to make the following points: • Formal Hodge theory (to be described below) has seen signifi- cant progress and may be said to be harmonious and, with one exception, may be argued to be essentially complete; • The use of Hodge theory in algebro-geometric questions has become pronounced in recent years. Variational methods have proved particularly effective; • The construction of geometric objects, such as algebraic cycles or rational equivalences between cycles, has (to the best of my knowledge) not seen significant progress beyond the Lefschetz (1; 1) theorem first proved over eighty years ago; • Aside from the (generalized) Hodge conjecture, the deepest is- sues in Hodge theory seem to be of an arithmetic-geometric character; here, especially noteworthy are the conjectures of Grothendieck and of Bloch-Beilinson. Moreover, even if one is interested only in the complex geometry of algebraic cycles, in higher codimensions arithmetic aspects necessarily enter. These are reflected geometrically in the infinitesimal structure of the spaces of algebraic cycles, and in the fact that the convergence of formal, iterative constructions seems to involve arithmetic 1 2 PHILLIP GRIFFITHS as well as Hodge-theoretic considerations.
    [Show full text]
  • Characteristic Classes of Mixed Hodge Modules
    Topology of Stratified Spaces MSRI Publications Volume 58, 2011 Characteristic classes of mixed Hodge modules JORG¨ SCHURMANN¨ ABSTRACT. This paper is an extended version of an expository talk given at the workshop “Topology of Stratified Spaces” at MSRI in September 2008. It gives an introduction and overview about recent developments on the in- teraction of the theories of characteristic classes and mixed Hodge theory for singular spaces in the complex algebraic context. It uses M. Saito’s deep theory of mixed Hodge modules as a black box, thinking about them as “constructible or perverse sheaves of Hodge struc- tures”, having the same functorial calculus of Grothendieck functors. For the “constant Hodge sheaf”, one gets the “motivic characteristic classes” of Brasselet, Schurmann,¨ and Yokura, whereas the classes of the “intersection homology Hodge sheaf” were studied by Cappell, Maxim, and Shaneson. The classes associated to “good” variation of mixed Hodge structures where studied in connection with understanding the monodromy action by these three authors together with Libgober, and also by the author. There are two versions of these characteristic classes. The K-theoretical classes capture information about the graded pieces of the filtered de Rham complex of the filtered D-module underlying a mixed Hodge module. Appli- cation of a suitable Todd class transformation then gives classes in homology. These classes are functorial for proper pushdown and exterior products, to- gether with some other properties one would expect for a satisfactory theory of characteristic classes for singular spaces. For “good” variation of mixed Hodge structures they have an explicit clas- sical description in terms of “logarithmic de Rham complexes”.
    [Show full text]
  • Mixed Hodge Structures with Modulus Is Abelian
    MIXED HODGE STRUCTURES WITH MODULUS FLORIAN IVORRA AND TAKAO YAMAZAKI Abstract. We define a notion of mixed Hodge structure with modulus that generalizes the classical notion of mixed Hodge structure introduced by Deligne and the level one Hodge structures with additive parts introduced by Kato and Russell in their description of Albanese varieties with modulus. With modulus triples of any dimension we attach mixed Hodge structures with modulus. We combine this construction with an equivalence between the category of level one mixed Hodge structures with modulus and the category of Laumon 1-motives to generalize Kato-Russell’s Albanese varieties with modulus to 1-motives. Contents 1. Introduction 1 2. Mixed Hodge structures with modulus 3 3. Laumon 1-motives 8 4. Cohomology of a variety with modulus 12 5. Duality 21 6. Picard and Albanese 1-motives 24 7. Relation with enriched and formal Hodge structures 26 References 29 1. Introduction 1.1. Background. Unlike K-theory, classical cohomology theories, such as Betti cohomology, étale cohomology or motivic cohomology (in particular Chow groups) are not able to distinguish a smooth variety from its nilpotent thickenings. This inability to detect nilpotence makes those cohomologies not the right tool to study arXiv:1712.07423v2 [math.AG] 12 Jun 2018 non-homotopy invariant phenomena. One very important situation where these kind of phenomena occur, is at the boundary of a smooth variety. More precisely if X is a smooth proper variety and D is an effective Cartier Divisor on X, then D can be seen as the non-reduced boundary at infinity of the smooth variety X := X \ D.
    [Show full text]