Rsc.Li/Pccp Before Technical Editing, Formatting and Proof Reading

Total Page:16

File Type:pdf, Size:1020Kb

Rsc.Li/Pccp Before Technical Editing, Formatting and Proof Reading View Article Online View Journal PCCP Physical Chemistry Chemical Physics Accepted Manuscript This article can be cited before page numbers have been issued, to do this please use: S. Tischer, M. Börnhorst, J. Amsler, G. Schoch and O. Deutschmann, Phys. Chem. Chem. Phys., 2019, DOI: 10.1039/C9CP01529A. Volume 19 Number 1 This is an Accepted Manuscript, which has been through the 7 January 2017 Pages 1-896 Royal Society of Chemistry peer review process and has been PCCP accepted for publication. Physical Chemistry Chemical Physics Accepted Manuscripts are published online shortly after acceptance, rsc.li/pccp before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard ISSN 1463-9076 Terms & Conditions and the Ethical guidelines still apply. In no event PAPER H.-P. Loock et al. shall the Royal Society of Chemistry be held responsible for any errors Determination of the thermal, oxidative and photochemical degradation rates of scintillator liquid by fluorescence EEM spectroscopy or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. rsc.li/pccp Page 1 of 14 Physical Chemistry Chemical Physics View Article Online DOI: 10.1039/C9CP01529A Thermodynamics and reaction mechanism of urea de- composition † Steffen Tischer,∗a Marion Börnhorst,b Jonas Amsler,b Günter Schoch,b and Olaf Deutschmanna;b Manuscript The selective catalytic reduction technique for automotive applications depends on ammonia pro- duction from a urea-water solution by thermolysis and hydrolysis. In this process, undesired liquid and solid by-products are formed in the exhaust pipe. The formation and decomposition of these by-products have been studied by thermogravimetric analysis and differential scanning calorime- try. A new reaction scheme is proposed that emphasizes the role of thermodynamic equilibrium of the reactants in liquid and solid phases. Thermodynamic data for triuret have been refined. The observed phenomenon of liquefaction and re-solidification of biuret in the temperature range ◦ 193–230 C is explained by formation of a eutectic mixture with urea. Accepted Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1 Introduction from experimental results and literature data, 23 possible reac- Air pollution by nitrogen oxides from Diesel engines is a main tions including urea and its by-products biuret, cyanuric acid, am- problem concerning environment and society. Therefore, gov- melide, ammeline and melamine are presented. Further, cyanate ernments follow the need to regulate emissions by law (e.g. and cyanurate salts and cyanamide are proposed as possible in- 715/2007/EG, "Euro 5 and Euro 6"). 1 The favored method to termediates of high temperature urea decomposition. Triuret pro- Physics reduce nitrogen oxides is selective catalytic reduction (SCR) us- duction and decomposition is not accounted for in this study. ing ammonia as reducing agent. Due to security issues, passenger The authors classify urea decomposition into four temperature cars cannot be equipped with an ammonia tank. Consequently, regions. The first temperature regime from room temperature This article is licensed under a ammonia is provided in form of a urea-water solution, which de- to 190 ◦C comprises urea melting and vaporization starting from composes through thermolysis and hydrolysis when dispersively 133 ◦C. With increasing temperature, urea decomposes to am- dosed into the hot exhaust pipe. During the desired decomposi- monia and isocyanic acid, the latter leading to biuret, cyanuric Open Access Article. Published on 08 July 2019. Downloaded 7/8/2019 1:28:28 PM. ◦ tion of urea at temperatures above 130 C undesired intermedi- acid and ammelide formation. The second temperature region ◦ ates and by-products in liquid and solid form occur and stick to of 190–250 C is dedicated to biuret decomposition accompanied Chemical the wall of the exhaust pipe due to the inevitable spray-wall in- by several side reactions forming cyanuric acid and ammelide. At teraction. 2–4 These condensed deposits in the exhaust pipe bear 225 ◦C the melt is observed to be converted into a sticky, solid the risk of increased pressure drop and insufficient conversion matrix, which is assumed to originate from ionic formations of to ammonia. Thus there is a need to understand the decompo- different by-products without evidence. Besides small amounts sition kinetics of urea and its by-products, that has been exten- of ammelide, ammeline and melamine, cyanuric acid is the main sively studied by many authors. 5–11 Common experimental meth- component observed at 250 ◦C. The third temperature range from ods include Thermogravimetric Analysis (TG), Differential Scan- 250 to 360 ◦C represents the sublimation and decomposition of ning Calorimetry (DSC), High Performance Liquid Chromatogra- cyanuric acid. Ammelide, ammeline and melamine are proposed Chemistry phy (HPLC) and Fourier transform-infrared spectroscopy (FT-IR). to gradually decompose at temperatures above 360 ◦C marking A first detailed description of urea decomposition behavior was the fourth temperature region. The authors state elimination of proposed by Schaber et al. 8 based on TG, HPLC, FT-IR and am- ammelide at 600 ◦C and ammeline at 700 ◦C. High temperature monium ISE (ion-selective electrode) measurements. Concluding residues are not investigated. 8 Eichelbaum et al. 10 propose a reaction network for urea de- a Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technol- composition consisting of nine major reactions based on simul- ogy (KIT), Karlsruhe, Germany. Fax: +49 721 608 44805; Tel: +49 721 608 42114; taneous TG/DTA (Differential Thermal Analysis) coupled with Physical E-mail: [email protected] GC/MS (Gas Chromatography/Mass Spectrometry) gas analyses. b Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute Decomposition reactions of ammelide, ammeline and melamine of Technology (KIT), Karlsruhe, Germany. † Electronic Supplementary Information (ESI) available: [details of any supplemen- are defined and total decomposition is observed for temperatures ◦ tary information available should be included here]. See DOI: 00.0000/00000000. above 625 C. However, the proposed reaction scheme lacks in 1–13 | 1 Physical Chemistry Chemical Physics Page 2 of 14 View Article Online DOI: 10.1039/C9CP01529A description of relevant parallel and equilibrium reactions of urea Table 1 Experiments used for this study by-products. Acceleration of urea pyrolysis by different metal 10 Type Crucible Substance Initial Ramp exchanged zeolites is demonstrated. A more detailed reaction weight (mg) (K/min) scheme derived by flow reactor experiments using FTIR spec- TG plate urea 6.23 2 troscopy for gaseous and HPLC for solid reaction product analysis TG cylinder urea 6.18 2 11 TG cylinder urea 60.3 2 covers 15 decomposition reactions. For the first time, triuret TG cylinder urea 10.8 10 production and decomposition is included and several reactions TG cylinder 32.5 wt-% UWS 27.5 10 are proposed to be equilibrium reactions. TG plate biuret 5.24 2 TG cylinder biuret 5.18 2 Based on the proposed reaction schemes, a first kinetic model TG cylinder biuret 9.8 10 TG cylinder biuret 95.8 2 (to 195 ◦C) for evaporation and decomposition of urea water solution was de- ◦ 12 TG cylinder biuret 94.6 2 (to 200 C) veloped by Ebrahimian et al. The model describes urea decom- TG cylinder biuret 94.4 2 (to 210 ◦C) position to ammonia and isocyanic acid and the equilibrium re- TG cylinder triuret 6.98 2 action forming biuret. Reactions from biuret to cyanuric acid and TG cylinder triuret 10.31 10 TG plate cyanuric acid 5.87 2 from cyanuric acid to ammelide and isocyanic acid are included. TG cylinder cyanuric acid 5.37 2 Manuscript Ammelide is assumed to decompose to gaseous by-products. TG cylinder cyanuric acid 10.1 10 Current kinetic models are based on the reaction network pro- TG plate ammelide 5.58 2 TG cylinder ammelide 8.72 2 11 posed by Bernhard et al. and validated against TG and HPLC TG cylinder ammelide 9.34 10 experimental data. The model includes formation and decompo- DSC cylinder urea 14.2 2 sition reactions of the most relevant by-products and reproduces DSC cylinder biuret 12.8 2 DSC cylinder triuret 5.9 2 the characteristic decomposition stages of urea adequately. 13 DSC cylinder cyanuric acid 16.4 2 However, important physical and chemical processes are not ac- counted for. A biuret matrix species is defined to cover the effect Accepted ◦ of solidification at 220 C. Ammelide decomposition is modeled gravimetrical analysis, a Netzsch STA 409 C was equipped with Creative Commons Attribution-NonCommercial 3.0 Unported Licence. as sublimation while further high molecular by-products are not the thermal controller TASC 414/2. The following standard pro- included in the model. Further, recent investigations have shown cedure is conducted for each deposit sample and for reference that the current kinetic model lacks in reproduction of mass trans- measurements. Representative samples are ground and placed in fer effects at the sample surface and in the prediction of reactions a corundum crucible with an initial sample mass of 5–100 mg. including gas phase species. The samples are heated from 40 to 700 ◦C at a constant heating Physics Thermogravimetric measurements have shown a strong influ- rate of 2 or 10 K/min. TG analysis is performed in synthetic air ence of the experimental boundary conditions on urea decompo- (20.5% O2 in N2) using a purge gas flow rate of 100 mL/min.
Recommended publications
  • This Item Was Submitted to Loughborough University
    This item was submitted to Loughborough University as an MPhil thesis by the author and is made available in the Institutional Repository (https://dspace.lboro.ac.uk/) under the following Creative Commons Licence conditions. For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/ LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY LIBRARY AUTHOR/FILING TITLE . -------------~§'~£~~~-~-;::r------_...: __________ i , ----------------!.------------------------ -- ----- - .....- , ACCESSION/COPY NO. --------------___ _L~~~~~/~~-----~- _____ ______ _ VOL. NO. CLASS MARK ISO C YA N I C ACID B Y D. J. BEL SON N .rkl ' A'~OCIORAL THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR , . ." , THE AWARD OF ~,_~,.' , ~ kf\S-r.. tt ; ~eCTeR OF PHILOSOPHY OF THE LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY - 1981\ SUPERVISOR: DRI A, N, STRACHAN DEPARTMENT OF CHEM I STRY © BY D. J. BELSON J 1981. ..... ~- ~~c. \0) 'to 'b/O"2- .-'-' , C O,N TEN T S Chapter 1 Intr6duction .. 1 2 Preparation and storage of isocyanic acid.­ 3 3 Physical properties and structure of isocyanic acid. 11 4 Methods of analysis for isocyanic acid. 17 5 The polymerisation of isocyanic acid. 21 6 Pyrolysis and photolysis of isocyanicacid. 34 7 Reactions in water. 36 8: Reaction 'with alcohols. 48 9 Reactions with ammonia and amines. 52 10 Other addition reactions across th'e N=C double bond. 57· 11 Addition of isocyanic acid to unsaturated molecules. 65 12 Summary and conclUsions. 69 Acknowledgements. 82 Ref erenc es. 83 Figures Opposite Page 1 Van't Hoff equation plot for the gas- 23 phase depolymerisation of cyanuric acid. 2 Values of pKfor isocyanic acid 37 dissociation~;'- plotted against temperature.
    [Show full text]
  • Guidelines for G-Vvater Quality
    WHO/EOS/98.1 Guidelines for d g-vvater quality SECOND EDITION Addendum to Volume 2 Health criteria and other supporting.information World Health Organization Geneva Guidelines for drinking-water quality SECOND EDITION WHO/EOS/98.1 Distribution: General English Only Guidelines for drinking-water quality SECOND EDITION Addendum to Volume 2 Health criteria and other supporting information World Health Organization Geneva 1998 ©World Health Organization 1998 Reprinted 2002 This document is not a formal publication of the World Health Organization and all rights are reserved by the Organization. The document may, however, be freely reviewed, abstracted, or reproduced or translated in part, but not for sale or for use in conjunction with commercial purposes. For authorization to reproduce or translate the work in full, and for any use by commercial entities, applications and enquiries should be addressed to the Division of Operational Support in Environmental Health, World Health Organization, Geneva, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and the reprints, adaptations and translations already available. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Methodologies for Food Fraud
    Food Fraud Guide Methodologies for Food Fraud Tips for robust experimental results Executive summary Knowing that food fraud scandals often drive public awareness and regulatory changes, the goal of this paper is to present analytical techniques and experimental methodologies, and introduce multivariate statistics and sample class prediction as it relates to food adulteration. Some approaches such as molecular spectroscopy tend to be less expensive, and a few of these instruments have been miniaturized to the point where they can be field-deployed. Spectroscopic instruments are useful in fingerprinting food because small changes in a sample’s spectral profile can be detected with the latest technology, assuming appropriate data normalization techniques are applied. Similarly, the use of both unit- and high-resolution-based mass spectrometry (MS) can be important in food fraud testing because they can fingerprint food based on the pattern of discrete compounds they detect. While other techniques such as inductively coupled plasma mass spectrometry (ICP/MS) and inductively coupled plasma optical emission spectrometry (ICP/OES) have proven adept at identifying geographic origin based on trace element analysis. Genomic testing can accurately identify fish DNA, even from processed samples. From a methodological perspective, nontargeted approaches have proven effective in fingerprinting samples. The advent of inexpensive computer workstations and statistical software has made it possible to link nontargeted workflows with multivariate statistical analysis to extract useful information from analytical data. Until recently, these approaches have been too expensive or complex for researchers to perform by themselves; instead, the data had been handed over to dedicated statisticians or never fully investigated.
    [Show full text]
  • ) (51) International Patent Classification: A01N 43/58
    ) ( 0 (51) International Patent Classification: Declarations under Rule 4.17: A01N 43/58 (2006.01) A01P 15/00 (2006.01) — as to applicant's entitlement to apply for and be granted a (21) International Application Number: patent (Rule 4.17(H)) PCT/EP20 19/055007 — of inventorship (Rule 4.17(iv)) (22) International Filing Date: Published: 28 February 2019 (28.02.2019) — with international search report (Art. 21(3)) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 18159322.9 28 February 2018 (28.02.2018) EP (71) Applicant: BASF SE [DE/DE]; Carl-Bosch-Str. 38, 67056 Ludwigshafen am Rhein (DE). (72) Inventors: NESVADBA, Peter; Klybeckstrasse 141, 4002 Basel (CH). CUNNINGHAM, Allan Francis; Klybeck¬ strasse 141, 4002 Basel (CH). NAVE, Barbara; Speyerer Strasse 2, 67 117 Limburgerhof (DE). WALLQUIST, Olof; Klybeckstrasse 141, 4002 Basel (CH). WISSEMEIER, Alexander; Speyerer Strasse 2, 671 17 Limburgerhof (DE). HINDALEKAR, Shirang; 1st Floor, VIBGYOR Towers, Plot C62, 40005 1 Mumbai (IN). POTHI, Tejas; G Block, Bandra Kurla Complex, 40005 1 Mumbai (IN). (74) Agent: MAIWALD PATENTANWALTS- UND RECHTSANWALTSGESELLSCHAFT MBH; Eva Dbrner, Postfach 33 05 23, 80065 Mtinchen (DE). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • USP Roundtable for DS Protein Standards
    USP Roundtable for DS Protein Standards Hosted on February 07, 2017 USP–U.S., Rockville, MD Discussion Agenda Identification Tests for Proteins from Various Sources Quantitative Determination of Proteins Determination of the Purity of Proteins Limits for Contaminants in Proteins Labelling, Packaging, Storage, and Handling 2 Identification Tests for Proteins from Various Sources Current identification tests for proteins used in industry Comprehensive supplier chain qualification program helps reduce routine ID tests at the manufacturing site. Some manufacturers audit suppliers on a quarterly or annual basis. Typical identification tests: appearance, organoleptic, Kjeldahl, Near Infrared (NIR) for process monitoring and QC release. Amino acid profiling is used on a demand basis by customers. Suggested identification tests for proteins from various sources Manufacturers were aware of advanced tests: electrophoresis, CE, peptide mapping, mass spectrometry, ELISA for plant based proteins. Suggested that amino acid profiling in combination with protein profiling with electrophoresis (SDS PAGE) is feasible and suitable. 3 Quantitative Determination of Proteins from Various Sources Current quantification tests for different sources The standard method for protein quantification in industry is Kjeldahl or combustion (Dumas). NIR is commonly used for protein quantification. Total amino acid (AA) contents is believed to provide accurate protein contents. Suggested quantification tests for protein ingredients and finished products containing proteins from various sources Suggested that Kjeldahl or Dumas is a widely accepted quantification method. Total Amino Acids (AA) can be used as a complementary method to Kjeldahl or Dumas. Total AA methods require further standardization and validation. 4 Determination of the Purity of Proteins from Various Sources Impurities/specific tests for proteins Dairy protein industry routinely test for loss on drying (LOD), ash, fat and lactose.
    [Show full text]
  • Thermodynamics and Reaction Mechanism of Urea Decomposition† Cite This: Phys
    PCCP View Article Online PAPER View Journal | View Issue Thermodynamics and reaction mechanism of urea decomposition† Cite this: Phys. Chem. Chem. Phys., 2019, 21,16785 a b b b Steffen Tischer, * Marion Bo¨rnhorst, Jonas Amsler, Gu¨nter Schoch and Olaf Deutschmann ab The selective catalytic reduction technique for automotive applications depends on ammonia production from a urea–water solution via thermolysis and hydrolysis. In this process, undesired liquid and solid by-products are formed in the exhaust pipe. The formation and decomposition of these Received 18th March 2019, by-products have been studied by thermogravimetric analysis and differential scanning calorimetry. Accepted 5th July 2019 A new reaction scheme is proposed that emphasizes the role of thermodynamic equilibrium of the DOI: 10.1039/c9cp01529a reactants in liquid and solid phases. Thermodynamic data for triuret have been refined. The observed phenomenon of liquefaction and re-solidification of biuret in the temperature range of 193–230 1Cis rsc.li/pccp explained by formation of a eutectic mixture with urea. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1 Introduction and ammonium ISE (ion-selective electrode) measurements. Concluding from experimental results and literature data, 23 Air pollution by nitrogen oxides from Diesel engines is a major possible reactions including urea and its by-products biuret, problem concerning the environment and society. Therefore, cyanuric acid, ammelide, ammeline and melamine are presented. governments follow the need to regulate emissions by law (e.g., Further, cyanate and cyanurate salts and cyanamide are 715/2007/EG, ‘‘Euro 5 and Euro 6’’).1 The favored method to proposed as possible intermediates of high temperature urea reduce nitrogen oxides is selective catalytic reduction (SCR) decomposition.
    [Show full text]
  • 4 Hazard Evaluation of Flame Retardants for Printed Circuit Boards
    FLAME RETARDANTS IN PRINTED CIRCUIT BOARDS Chapter 4 FINAL REPORT August 2015 EPA Publication 744-R-15-001 4 Hazard Evaluation of Flame Retardants for Printed Circuit Boards This chapter summarizes the toxicological and environmental hazards of each flame-retardant chemical that was identified for potential functional use in printed circuit boards (PCBs) laminates. Evaluations of chemical formulations may also include associated substances (e.g., starting materials, by-products, and impurities) if their presence is specifically required to allow that alternative to fully function in the assigned role. Otherwise, pure substances were analyzed in this assessment. Users of the alternative assessments should be aware of the purity of the trade product they purchase, as the presence of impurities may alter the hazard of the alternative. Toxicological and environmental endpoints included in the hazard profiles are discussed in Section 4.1 along with the criteria used to evaluate each hazard endpoint. Data sources and the review methodology are described in Section 4.2. The report then offers a detailed description of the utility of physical-chemical properties in understanding hazard in Section 4.3 and the process of evaluating human health and environmental endpoints in Section 4.4 and Section 4.5, respectively. A discussion of the evaluation of endocrine activity is included in Section 4.6. The characteristics of each chemical included in the alternatives assessment are summarized in the comparative hazard summary table in Section 4.8. Lastly, the collected data and hazard profile of each chemical are presented in Section 4.9. 4.1 Toxicological and Environmental Endpoints The assessment of endpoints with the intent to create hazard profiles for a Design for the Environment (DfE) alternatives assessment follows the guidance of the DfE Program Alternatives Assessment Criteria for Hazard Evaluation (U.S.
    [Show full text]
  • United States Patent Office E
    Unitede States- Patent- Office 3,845,059E. 1. 2 The reaction of biuret with diethanolamine to form PREPARATION OF N,N'-DIETHANOL3,845,059 PIPERAZINE N,N'-diethanol piperazine can be illustrated as follows: Alvin F. Beale, Jr., Lake Jackson, Tex., assignor to The Dow Chemical Company, Midland, Mich. 2(HOCH)NH -- NH2CONHCONH --> No Drawing. Filed June 19, 1972, Ser. No. 264,704 5 CHO Int, C. C07d51/70 U.S. C. 260-268. SY 8 Claims /N al-woman-mamm CH, CH, ABSTRACT OF THE DISCLOSURE + 2CO. 1 + 8NHat Diethanolamine is reacted with urea or a urea pyrol- lo Y yzate (e.g. biuret, triuret, or cyanuric acid) to form N,N'-diethanol piperazine. The following chart illustrates the balanced stoichiom BACKGROUND OF THE INVENTION la etry for reacting diethanolamine with urea, biuret, triuret, N,N'-diethanol piperazine has been previously prepared and cyanuric acid. Reaction products Moles of Empirical Moles N,N'- Moles of formula of of diethanol Moles Moles (HOCH)NH Name of reactant reactant reactant piperazine of Co2 of NH3 2---------------------- Urea------------------------ CHNO 2 2 4. 2- ---. Biuret---. C2HNO2 2 3 6-- --- Triuret.----- ... C3HNO3 2 3. 6 8 6.----- ... Cyanuric aci - C3H3NO3 2 3. 6 6 by the condensation of piperazine with ethylene chloro- The reaction has been found to be specific for dieth hydrin as reported in J. Am. Chem. Soc., Vol. 55, p. 3823 anolamine since analogous dialkanolamines do not give (1933). The compound has been reported to have phar- corresponding dialkanol-substituted cyclic structures con macological properties as an anesthetic or sedative in 30 taining nitrogens within a carbon ring.
    [Show full text]
  • Asian Journal of Chemistry Asian Journal of Chemistry
    Asian Journal of Chemistry; Vol. 27, No. 9 (2015), 3149-3151 ASIAN JOURNAL OF CHEMISTRY http://dx.doi.org/10.14233/ajchem.2015.16726 Synthesis and Antimicrobial Activities of 2-S-Hepta-O-benzoyl lactosyl-1-aryl-5-hepta-O-benzoyl-β-lactosyl-2-isothiobiurets * REENA J. DESHMUKH and SHIRISH P. D ESHMUKH P.G. Department of Chemistry, Shri Shivaji College, Akola-444 001, India *Corresponding author: E-mail: [email protected] Received: 20 April 2014; Accepted: 14 March 2015; Published online: 26 May 2015; AJC-17213 A series of novel 2-S-hepta-O-benzoyl lactosyl-1-aryl-5-hepta-O-benzoyl-β-lactosyl-2-isothiobiurets have been synthesized by the interaction of S-hepta-O-benzoyl lactosyl-1-arylisothiocarbamides and hepta-O-benzoyl-β-D-lactosyl isocyanate. These compounds were screened for their antibacterial and antifungal activities against Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Aspergillus niger. The newly synthesized compounds have been characterized by analytical and IR, 1H NMR and mass spectral studies. Keywords: Arylisothiocarbamides, Lactosyl thiocyanate, Isothiobiurets. INTRODUCTION an efficient synthetic route to novel lactosyl isothiourea derivatives and their antimicrobial activities are reported. A number of thiourea derivatives have been reported to 1 2 exhibit antibacterial , herbicidal and fungicidal activities. EXPERIMENTAL Sugar thioureas3 has synthetic applications in neoglycocon- jugate synthetic strategies4, including neoglycoproteins5, Melting points determined are uncorrected. IR Spectra glycodendrimers6, glycoclusters7 and pseudooligosaccharides8. were recorded on Perkin-Elmer spectrum RXI FTIR spectro- Thiobiurets (mono and di) are also important derivatives meter. 1H NMR was obtained on Bruker DRX-300 MHz NMR of (thio) urea which may increase the biological activity of Spectrometer.
    [Show full text]
  • Spray Foam Event 2013, Session a Presentations Contents List
    Spray Foam Event 2013, Session A Presentations Contents List 1. Introduction to Spray Polyurethane Foam (Click to go to PDF Page 2) 2. OSHA’s Isocyanates National Emphasis Program (Click to go to PDF Page 58) 3. EOLWD On-site Consultation Program (Click to go to PDF Page 76) 4. Essential Resources and Training, American Chemistry Council (Click to go to PDF Page 109) 5. Safe Spray Foam (Click to go to PDF Page 126) 6. EPA Safe Use of Polyurethane Products (Click to go to PDF Page 137) Return to Contents List Introduction to Spray Polyurethane Foam This presentation will provide important background information on SPF, including history, product categories and delivery methods and applications. It will also address chemical concerns and include tips for a quality installation, and briefly cover environmental impacts of the product COPYRIGHTED MATERIALS This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of any part of this presentation without written permission of the speaker is prohibited. © 2013 Spray Polyurethane Foam Alliance Presentation Content 1. History 2. Product Categories 3. Basic Chemistry 4. Delivery Methods 5. Chemical Concerns 6. Environmental Impact 7. Quality Installation 8. Summary History of SPF in Buildings in construction for 50 years • Late 60’s ‐ Medium Density (agricultural and industrial) • Mid 70’s ‐Roofing ‐ Medium Density (general const.) ‐ Sealants • Mid 90’s ‐ Low Density (residential) Product Category Four general categories of SPF Spray Foam
    [Show full text]
  • Title Synthesis of Melamine from Urea, II Author(S)
    Title Synthesis of melamine from urea, II Author(s) Kinoshita, Hideo The Review of Physical Chemistry of Japan (1954), 24(1): 19- Citation 27 Issue Date 1954-09-10 URL http://hdl.handle.net/2433/46705 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University The Review of Physical Chemistry of Japan Vol. 24 No. 1 (1954) SYNTHESIS OF MELAMINE FROM UREA, II BS' HILan 1{IYU$H IT Ai it Introduction It was reportedil that the reaction of yielding melamine from urea begins from 275'G, reaches equi]ibrium within 6 hours at 325`C and there is no considerable change in the quantity and the yield of melamine above 325°C. And it was recognized that the reaction velocity is faster, as the packing ratioisgreater and so the pressure of gas phase is-higher. The yield of melamine was calculated from the following equation and the maximum yield was 99.4b. 6NH,CONH_ _ (NH_CN), + 6NH, + 3C0. (1) Moreover, as the intermediate products of this reaction, biuret, cyanuric acid and the water insoluble were obtained. The nitrogen content of this water insoluble ~cas dis- tributedbetween 45.4 and 55.7%. For the purpose of studying the process of this reaction, the author experimented the following cases, the reaction of urea under the condition of existing excess ammonia, the reaction between cyanuric acid and ammonia, the reaction between the water Insoluble and ammonia, and the reaction between melamine and water. These results are compared with those of the previous paper, and moreover the author makes clear that the water insoluble consists of ammelide and ammeline.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,822,624 Young (45) Date of Patent: Apr
    United States Patent (19) 11 Patent Number: 4,822,624 Young (45) Date of Patent: Apr. 18, 1989 54 PRESERVATIVE FOR HARVESTED CROPS 4,033,747 7/1977 Young ................................... 426/69 (75) Inventor: Donald C. Young, Fullerton, Calif. 4,426,396 l/1984 Young .... ... 426/69 73 Assignee: Union Oil Company of California, FOREIGN PATENT DOCUMENTS Los Angeles, Calif. 117171 1/1976 German Democratic Rep. ... 426/69 Appl. No.: 1191470 5/1970 United Kingdom.................. 426/69 (21) 79,347 Primary Examiner-R. B. Penland 22 Filed: Jul. 30, 1987 Attorney, Agent, or Firm-Michael H. Laird; G. Wirzbicki Related U.S. Application Data (57) ABSTRACT 60 Continuation of Ser. No. 568,067, Jan. 4, 1984, aban doned, which is a division of Ser. No. 272,687, Jun. 11, The growth of microorganisms in stored crops, and 1981, Pat. No. 4,426,396. especially in animal feedstuffs, is inhibited by the appli (51) Int. C.'................................................ A23K 1/22 cation of a preservative composition which comprises (52) U.S. C. ........................................ 426/53; 426/69; ammonia, urease enzyme urea and/or urea polymers in 426/332; 426/532; 426/623; 426/630; 426/636; . a fluid medium. Urea polymers which are useful include 426/807 biuret, triuret, cyanuric acid, urea cyanurate and other (58) Field of Search ................... 426/53, 69,332, 532, compounds which decompose to form ammonia. The 426/623, 630, 807, 636 effect of treatment with the preservative composition is to provide an immediate microorganism-inhibiting am 56) References Cited monia level, which, due to delayed decomposition of U.S. PATENT DOCUMENTS the urea and urea polymers, is sustained to some signifi 1,702,735 2/1929 Legendre ...........................
    [Show full text]