Parvovirus Vaccine (Canine). Secutive Days Postchallenge

Total Page:16

File Type:pdf, Size:1020Kb

Parvovirus Vaccine (Canine). Secutive Days Postchallenge Animal and Plant Health Inspection Service, USDA § 113.317 vaccine is administered and individ- virus infection; or, if less than 19 of 20 ually tested on susceptible cell cul- vaccinates show serum neutralization tures for the presence of canine titers of 1:4 or greater; or, if there is parainfluenza virus. Blood samples not a significant reduction in virus iso- shall also be drawn and individual lation rate in vaccinates when com- serum samples tested for neutralizing pared with controls, the Master Seed is antibody. Dogs shall be considered sus- unsatisfactory. ceptible if all swabs are negative for (5) An Outline of Production change virus isolation and if all serums are shall be made before authority for use negative for canine parainfluenza anti- of a new lot of Master Seed shall be body at a 1:2 final dilution in a con- granted by Animal and Plant Health stant virus-varying serum neutraliza- Inspection Service. tion test using 50 to 300 TCID50 of ca- (c) Test requirements for release. Each nine parainfluenza virus. serial and subserial shall meet the ap- (2) A geometric mean titer of vaccine plicable general requirements pre- produced at the highest passage from scribed in § 113.300 and the require- the Master Seed shall be established ments in this paragraph. Any serial or before the immunogenicity test is con- subserial found unsatisfactory by a ducted. The 20 dogs used as vaccinates prescribed test shall not be released. shall be administered a predetermined (1) Virus titer requirements. Final con- quantity of vaccine virus. Five rep- tainer samples of completed product licate virus titrations shall be con- shall be tested for virus titer using the ducted on a sample of the vaccine virus titration method used in paragraph dilution used to confirm the dosage ad- (b)(2) of this section. To be eligible for ministered. If two doses are used, five release, each serial and each subserial replicate confirming titrations shall be shall have a virus titer sufficiently conducted on each dose. greater than the titer of vaccine virus (3) Three to 4 weeks after the final used in the immunogenicity test pre- dose of vaccine, all dogs shall be bled scribed in paragraph (b) of this section for serum antibodies and nasal swabs to assure that, when tested at any time shall be collected for canine within the expiration period, each se- parainfluenza virus isolation. On the rial and subserial shall have a virus same day, all vaccinates and controls titer at least 100.7 greater than that shall be challenged with canine used in the immunogenicity test but 2.5 parainfluenza virus furnished or ap- not less than 10 TCID50 per dose. proved by Animal and Plant Health In- (2) [Reserved] spection Service. [50 FR 436, Jan. 4, 1985. Redesignated at 55 (4) The rectal temperature of each FR 35562, Aug. 31, 1990, as amended at 56 FR dog shall be taken and the presence of 66784, 66786, Dec. 26, 1991; 72 FR 72564, Dec. 21, respiratory or other clinical signs of 2007] canine parainfluenza virus infection noted and recorded each day for 14 con- § 113.317 Parvovirus Vaccine (Canine). secutive days postchallenge. Nasal Parvovirus Vaccine recommended for swabs shall be collected from each dog use in dogs shall be prepared from each day for at least 10 consecutive virus-bearing cell culture fluids. Only days postchallenge. Individual swabs Master Seed which has been estab- shall be tested for virus isolation by lished as pure, safe, and immunogenic culture in canine parainfluenza virus shall be used for preparing seeds for susceptible cells for at least 7 days. Re- vaccine production. All serials of vac- sults shall be evaluated according to cine shall be prepared from the first the following criteria: through the fifth passage from the (i) If five of five controls have not re- Master Seed. mained seronegative at a final serum (a) The Master Seed shall meet the dilution of 1:2 during the prechallenge applicable general requirements pre- period, the test is inconclusive and scribed in § 113.300 and the require- may be repeated. ments in this section. (ii) If more than one vaccinate shows (b) The Master Seed shall be tested febrile response, respiratory or other for reversion to virulence in dogs using clinical signs of canine parainfluenza a method acceptable to Animal and 769 VerDate Nov<24>2008 12:41 Mar 16, 2010 Jkt 220028 PO 00000 Frm 00779 Fmt 8010 Sfmt 8010 Y:\SGML\220028.XXX 220028 cprice-sewell on DSK89S0YB1PROD with CFR § 113.318 9 CFR Ch. I (1–1–10 Edition) Plant Health Inspection Service. If a controls do not show at least three of significant increase in virulence is seen the four criteria of infection during the within five backpassages, the Master observation period, the test is incon- Seed is unsatisfactory. clusive and may be repeated. (c) Each lot of Master Seed shall be (ii) If at least 19 of the 20 vaccinates tested for immunogenicity. The se- do not survive the observation period lected virus dose shall be established as without showing more than one cri- follows: terion of infection described in para- (1) Twenty-five canine parvovirus graph (c)(3)(i), of this section, the Mas- susceptible dogs (20 vaccinates and 5 ter Seed is unsatisfactory. controls) shall be used as test animals. (4) An Outline of Production change Blood samples drawn from each dog shall be made before authority for use shall be individually tested for neutral- of a new lot of Master Seed shall be izing antibody against canine granted by Animal and Plant Health parvovirus to determine susceptibility. Inspection Service. Dogs shall be considered susceptible if (d) Each there is no neutralization at a 1:2 final Test requirements for release. serum dilution in a constant virus- serial and subserial shall meet the ap- varying serum neutralization test in plicable general requirements pre- scribed in § 113.300 and the require- cell culture using 50 to 300 TCID50 of canine parvovirus. ments in this paragraph. Any serial or (2) A geometric mean titer of the vac- subserial found unsatisfactory by a cine produced at the highest passage prescribed test shall not be released. from the Master Seed shall be estab- (1) Virus titer requirements. Final con- lished before the immunogenicity test tainer samples of completed product is conducted. The 20 dogs used as vac- shall be tested for virus titer using the cinates shall be administered a pre- titration method used in paragraph determined quantity of vaccine virus (c)(2) of this section. To be eligible for by the method recommended on the release, each serial and each subserial label. To confirm the dosage calcula- shall have a virus titer sufficiently tions, five replicate virus titrations greater than the titer of vaccine used shall be conducted on a sample of the in the immunogenicity test in para- vaccine virus dilution used. If two graph (c) of this section to assure that, doses are used, five replicate con- when tested at any time within the ex- firming titrations shall be conducted piration period, each serial and sub- on each dose. serial shall have a virus titer of 100.7 (3) Fourteen days or more after the greater than that used in the final dose of vaccine the vaccinates and immunogenicity test, but not less than 2.5 the controls shall be challenged with 10 ID50 per dose. virulent canine parvovirus furnished or approved by Animal and Plant Health [50 FR 436, Jan. 4, 1985. Redesignated at 55 Inspection Service and the dogs ob- FR 35562, Aug. 31, 1990, as amended at 56 FR 66784, 66786, Dec. 26, 1991; 72 FR 72564, Dec. 21, served each day for 14 days. Rectal 2007] temperature, blood lymphocyte count, and feces for viral detection shall be § 113.318 Pseudorabies Vaccine. taken from each dog each day for at least 10 days postchallenge and the Pseudorabies Vaccine shall be pre- presence or absence of clinical signs pared from virus-bearing cell culture noted and recorded each day. fluids. Only Master Seed which has (i) The immunogenicity of the Mas- been established as pure, safe, and ter Seed shall be evaluated on the fol- immunogenic shall be used for pre- lowing criteria of infection: tempera- paring seeds for vaccine production. All ture ≥103.4 ° F; lymphopenia of ≥50 per- serials of vaccine shall be prepared cent of prechallenge normal; clinical from the first through the fifth passage signs such as diarrhea, mucus in feces, from the Master Seed. or blood in feces; and viral (a) The Master Seed shall meet the hemagglutinins at a level of ≥1:64 in a applicable general requirements pre- 1:5 dilution of feces or a test of equal scribed in § 113.300 and the require- sensitivity. If at least 80 percent of the ments in this section. 770 VerDate Nov<24>2008 12:41 Mar 16, 2010 Jkt 220028 PO 00000 Frm 00780 Fmt 8010 Sfmt 8010 Y:\SGML\220028.XXX 220028 cprice-sewell on DSK89S0YB1PROD with CFR.
Recommended publications
  • Health Survey on the Wolf Population in Tuscany, Italy
    Published by Associazione Teriologica Italiana Volume 30 (1): 19–23, 2019 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00100-2018 Research Article Health survey on the wolf population in Tuscany, Italy Cecilia Ambrogi1,∗, Charlotte Ragagli1, Nicola Decaro2, Ezio Ferroglio3, Marco Mencucci1, Marco Apollonio4, Alessandro Mannelli5 1Comando Unità Tutela Forestale Ambientale Agroalimentare Carabinieri 2Dipartimento di Medicina Veterinaria, Strada Provinciale per Casamassima 3, 70010 Valenzano (Ba) 3Dipartimento di Scienze Veterinarie, Largo Paolo Braccini 2, 10095 Grugliasco (TO) 4Department of Veterinary Medicine, University of Sassari, Sassari, Sardinia, Italy 5Dipartimento di Scienze Veterinarie, Largo Paolo Braccini 2, 10095 Grugliasco (TO) Keywords: Abstract wolf dog The objective of our study was to survey the occurence of transmissible agents in wolf (Canis lupus) monitoring population living in the northern Apennines. A total of 703 wolf fecal samples were collected in parasites the Appennino Tosco-Emiliano National Park (ATENP) and the Foreste Casentinesi National Park parvovirus (FCNP) in Tuscany, Italy. Parasitic forms (eggs or oocists) were detected in 74.3% of fecal samples, mainly infested by Trichuroidae (60.4%) and Coccidia (27.3%); heavy Trichuroidea and Coccidia Article history: infestation were found in 8.5% and 17.4% of samples (the intensity of infestation measured as EPG Received: 26/05/2018 >1000, OPG >10000). Taking into consideration the main canine viruses, we evaluated the presence Accepted: 29/04/2019 of Parvovirus in feces: 54 specimens from the study area in the ATENP and 71 from the study area in the FCNP were negative by PCR for the detection of Parvovirus.
    [Show full text]
  • Molecular Analysis of Carnivore Protoparvovirus Detected in White Blood Cells of Naturally Infected Cats
    Balboni et al. BMC Veterinary Research (2018) 14:41 DOI 10.1186/s12917-018-1356-9 RESEARCHARTICLE Open Access Molecular analysis of carnivore Protoparvovirus detected in white blood cells of naturally infected cats Andrea Balboni1, Francesca Bassi1, Stefano De Arcangeli1, Rosanna Zobba2, Carla Dedola2, Alberto Alberti2 and Mara Battilani1* Abstract Background: Cats are susceptible to feline panleukopenia virus (FPV) and canine parvovirus (CPV) variants 2a, 2b and 2c. Detection of FPV and CPV variants in apparently healthy cats and their persistence in white blood cells (WBC) and other tissues when neutralising antibodies are simultaneously present, suggest that parvovirus may persist long-term in the tissues of cats post-infection without causing clinical signs. The aim of this study was to screen a population of 54 cats from Sardinia (Italy) for the presence of both FPV and CPV DNA within buffy coat samples using polymerase chain reaction (PCR). The DNA viral load, genetic diversity, phylogeny and antibody titres against parvoviruses were investigated in the positive cats. Results: Carnivore protoparvovirus 1 DNA was detected in nine cats (16.7%). Viral DNA was reassembled to FPV in four cats and to CPV (CPV-2b and 2c) in four cats; one subject showed an unusually high genetic complexity with mixed infection involving FPV and CPV-2c. Antibodies against parvovirus were detected in all subjects which tested positive to DNA parvoviruses. Conclusions: The identification of FPV and CPV DNA in the WBC of asymptomatic cats, despite the presence of specific antibodies against parvoviruses, and the high genetic heterogeneity detected in one sample, confirmed the relevant epidemiological role of cats in parvovirus infection.
    [Show full text]
  • Canine Parvovirus Pathogenic Viruses in Veterinary Medicine
    Canine Parvovirus Pathogenic Viruses in Veterinary Medicine There are many important viral diseases in veterinary medicine. This PowerPage lists most of the important viral diseases, the name of the causative virus, the host species, and the type of virus. Chart of Important Viral Diseases in Veterinary Medicine Disease name Causative virus Host species Type of virus Parvovirus (“Parvo”) Parvovirus Canine Nonenveloped DNA virus Distemper Canine distemper virus Canine Enveloped RNA virus Rabies Rabies virus Many Enveloped RNA virus Coronaviral enteritis Canine coronavirus Canine Enveloped RNA virus Infectious canine hepatitis Canine adenovirus 1 Canine Nonenveloped DNA virus (CAV-1) Infectious canine Canine adenovirus 2 Canine Nonenveloped DNA virus tracheobronchitis (CAV-2) Parainfluenza Canine parainfluenza virus Canine Enveloped RNA virus Panleukopenia Feline parvovirus Feline Nonenveloped DNA virus Feline Infectious Peritonitis Feline coronavirus Feline Enveloped RNA virus FIV Feline immunodeficiency Feline Enveloped RNA virus virus FELV Feline leukemia virus Feline Enveloped RNA virus Feline rhinotracheitis Feline herpesvirus Feline Enveloped DNA virus Calicivirus Feline calicivirus Feline Nonenveloped RNA virus Equine infectious anemia Equine infectious anemia Equine Enveloped RNA virus virus (EIA) Equine influenza Equine influenza virus Equine Enveloped RNA virus Equine herpesvirus Equine herpesvirus 1-4 Equine Enveloped DNA virus (EHV-1, EHV2, EHV- 3 and EHV 4) West Nile West Nile virus Equine, avian Enveloped RNA virus (flavivirus) Bird Flu Influenza A Avian Enveloped RNA virus (H5N1, H7N9, H10N8) Myxomatosis Myxoma virus Rabbits Enveloped DNA virus (poxvirus) © 2018 VetTechPrep.com • All rights reserved. 1 .
    [Show full text]
  • ECOLOGY and IMMUNE FUNCTION in the SPOTTED HYENA, CROCUTA CROCUTA by Andrew S. Flies a DISSERTATION Submitted to Michigan State
    ECOLOGY AND IMMUNE FUNCTION IN THE SPOTTED HYENA, CROCUTA CROCUTA By Andrew S. Flies A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Zoology Ecology, Evolutionary Biology and Behavior 2012 ABSTRACT ECOLOGY AND IMMUNE FUNCTION IN THE SPOTTED HYENA, CROCUTA CROCUTA By Andrew S. Flies The immune system is one of the most complex physiological systems in animals. In light of this complexity, immunologists have traditionally tried to eliminate genetic and environmental variation by using highly inbred rodents reared in highly controlled and relatively hygienic environments. However, the immune systems of animals evolved in unsanitary, stochastic environments. Furthermore, socio-ecological variables affect the development and activation of immune defenses within an individual, resulting in a high degree of variation in immune defenses even among individuals with similar genetic backgrounds. The conventional immunology approach of eliminating these variables allows us to answer some questions with great clarity, but a fruitful complement is to quantify how the social and ecological factors impact the immune function of animals living in their natural, pathogen-rich environments. Spotted hyenas ( Crocuta crocuta ) have recently descended from carrion feeding ancestors, and they routinely survive infection by a plethora of deadly pathogens, such rabies, distemper virus, and anthrax. Additionally, spotted hyenas live in large, complex societies, called clans, in which the effects of social rank pervade many aspects of hyena biology. High-ranking hyenas have priority of access to food resources, and rank is positively correlated with fitness. However, very little research has been done to understand basic immune function in spotted hyenas or how socio-ecological variables such as rank can affect immune function.
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • Canine Parvovirus: a Predicting Canine Model for Sepsis F
    Alves et al. BMC Veterinary Research (2020) 16:199 https://doi.org/10.1186/s12917-020-02417-0 RESEARCH ARTICLE Open Access Canine parvovirus: a predicting canine model for sepsis F. Alves1†, S. Prata1,2†, T. Nunes1,3, J. Gomes2, S. Aguiar1,3, F. Aires da Silva1,3, L. Tavares1,3, V. Almeida1,3 and S. Gil1,2,3* Abstract Background: Sepsis is a severe condition associated with high prevalence and mortality rates. Parvovirus enteritis is a predisposing factor for sepsis, as it promotes intestinal bacterial translocation and severe immunosuppression. This makes dogs infected by parvovirus a suitable study population as far as sepsis is concerned. The main objective of the present study was to evaluate the differences between two sets of SIRS (Systemic Inflammatory Response Syndrome) criteria in outcome prediction: SIRS 1991 and SIRS 2001. The possibility of stratifying and classifying septic dogs was assessed using a proposed animal adapted PIRO (Predisposition, Infection, Response and Organ dysfunction) scoring system. Results: The 72 dogs enrolled in this study were scored for each of the PIRO elements, except for Infection, as all were considered to have the same infection score, and subjected to two sets of SIRS criteria, in order to measure their correlation with the outcome. Concerning SIRS criteria, it was found that the proposed alterations on SIRS 2001 (capillary refill time or mucous membrane colour alteration) were significantly associated with the outcome (OR = 4.09, p < 0.05), contrasting with the 1991 SIRS criteria (p = 0.352) that did not correlate with the outcome. No significant statistical association was found between Predisposition (p = 1), Response (p = 0.1135), Organ dysfunction (p = 0.1135), total PIRO score (p = 0.093) and outcome.
    [Show full text]
  • A Fatal Outbreak of Parvovirus Infection: First Detection of Canine Parvovirus Type 2C in Israel with Secondary Escherichia Coli
    Research Articles A Fatal Outbreak of Parvovirus Infection: First Detection of Canine Parvovirus Type 2c in Israel with Secondary Escherichia coli Septicemia and Meningoencephalitis Nivy, R.,1 Hahn, S.,1 Perl, S.,2 Karnieli, A.,3 Karnieli, O.3 and Aroch, I.1* 1 Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel 2 Department of Pathology, Kimron Veterinary Institute, Beit Dagan, Israel 3 Karnieli Ltd. Medicine & Biotechnology, Kiryat Tivon, Israel. * Corresponding author: Prof. Itamar Aroch, The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University of Jerusalem, Rehovot, Israel. P.O. Box 12, Rehovot, 76100, Israel; Tel: +972-3-9688556; Fax: +972-3-9604079; Email: [email protected] ABSTRACT A 10-week old female Italian Cane Corso puppy was presented with a history of mucoid diarrhea and vomiting, and a presumptive diagnosis of parvoviral infection. The dog presented with severe leukopenia and was hospitalized and treated intensively with intravenous fluids, electrolytes, glucose, antibiotics, hu- man albumin and antiemetics. Clinical and hematological improvement was noted, and the white blood cell count normalized. However, on the fifth day, neurological signs and intractable hypoglycemia had occurred and the dog was euthanized. Cerebrospinal fluid (CSF) analysis and necropsy revealed bacterial menin- goencephalitis due to a multi-resistant Escherichia coli strain. This same E. coli was isolated also from the lungs, liver and spleen, and likely spread systemically due to septicemia. Polymerase chain reaction analysis of blood identified the presence of DNA of the recently discovered canine parvovirus strain 2c (CPV-2c).
    [Show full text]
  • Echocardiographic Assessment of Left Ventricular Systolic and Diastolic Functions in Dogs with Severe Sepsis and Septic Shock; Longitudinal Study
    animals Article Echocardiographic Assessment of Left Ventricular Systolic and Diastolic Functions in Dogs with Severe Sepsis and Septic Shock; Longitudinal Study Mehmet Ege Ince 1,* , Kursad Turgut 1 and Amir Naseri 2 1 Department of Internal Medicine, Faculty of Veterinary Medicine, Near East University, 99100 Nicosia, North Cyprus, Turkey; [email protected] 2 Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, 42130 Konya, Turkey; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +90-533-822-92-50 Simple Summary: Sepsis is associated with cardiovascular changes. The aim of the study was to determine sepsis-induced myocardial dysfunction in dogs with severe sepsis and septic shock using transthoracic echocardiography. Clinical, laboratory and cardiologic examinations for the septic dogs were performed at admission, 6 and 24 h, and on the day of discharge from the hospital. Left ventricular (LV) systolic dysfunction, LV diastolic dysfunction, and both types of the dysfunction were present in 13%, 70%, and 9% of dogs with sepsis, respectively. Dogs with LV diastolic dysfunction had a worse outcome and short-term mortality. Transthoracic echocardiography can be used for monitoring cardiovascular dysfunction in dogs with sepsis. Citation: Ince, M.E.; Turgut, K.; Abstract: The purpose of this study was to monitor left ventricular systolic dysfunction (LVSD) and Naseri, A. Echocardiographic diastolic dysfunction (LVDD) using transthoracic echocardiography (TTE) in dogs with severe sepsis Assessment of Left Ventricular and septic shock (SS/SS). A prospective longitudinal study using 23 dogs with SS/SS (experimental Systolic and Diastolic Functions in group) and 20 healthy dogs (control group) were carried out.
    [Show full text]
  • Canine Parvovirus Information for Dog Owners
    Canine Parvovirus Information for Dog Owners Key Facts Canine parvovirus is a very contagious viral infection that occurs globally. Disease typically affects unvaccinated puppies (< 6 months of age) but can occur in unvaccinated dogs of any age. Clinical signs often include depression, not eating, vomiting and profuse diarrhea which is often blood tinged. Severe disease can result in death. Testing and subsequent treatment need to be initiated immediately; mortality is high and prognosis worsens as dogs develop more severe illness. Vaccination is highly effective at protecting against parvovirus. The virus is extremely hardy; contaminated environments can remain a source of infection for months. What is it? Canine parvovirus (CPV) is a highly infectious The virus usually enters the dog through sniffing and environmentally resistant virus that occurs or eating infected feces or direct contact with an throughout the world. Veterinarians most often infected dog. Dogs can shed the virus before diagnose infection after owners bring their dog they show signs of illness and for several weeks (usually a puppy) to be examined because they after disease has resolved. Therefore, even dogs are suddenly very sick (e.g. not eating, vomiting, that appear healthy can transmit parvovirus. The not wanting to run or play, severe diarrhea). virus is very hardy - it can remain active in the Infected dogs are typically unvaccinated or environment for months (e.g. on soil, cages, toys) incompletely vaccinated (have not received their and serve as a continued source of infection. entire puppy series) and have a history of being around other dogs or places where other dogs visit Who gets it? (e.g.
    [Show full text]
  • Pathogens in Free-Ranging African Carnivores: Evolution, Diversity and Co-Infection
    Pathogens in free-ranging African carnivores: evolution, diversity and co-infection DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom Biologin Katja Verena Goller Präsident der Humboldt-Universität zu Berlin Prof. Dr. Jan-Hendrik Olbertz Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Andreas Herrmann Gutachter: 1. Prof. Dr. Richard Lucius 2. Prof. Dr. Heribert Hofer 3. Prof. Dr. Alex D. Greenwood Tag der mündlichen Prüfung: 04.04.2011 SUMMARY The ecological role of most wildlife pathogens is poorly understood because pathogens are rarely studied in relation to the long-term population dynamics of wildlife hosts. Instead, pathogen infections are reported on a case basis or studies are focused on periods when patho- gens cause noticeable mortality in their hosts. However, pathogens that appear to be of low virulence may also have an important effect if they operate in a synergistic fashion or affect life history parameters such as longevity or reproductive success. Furthermore, the effect of pathogens on population dynamics may be difficult to detect in wildlife, for example if they reduce the survival of young age classes that are rarely observed. Until now, research on the life history consequences of pathogen infection has mainly been confined to laboratory stud- ies where animals are raised and kept under strictly defined conditions, or to small, short lived species such as rodents, birds or insects, as well as to human populations. The aim of this thesis was to address these problems by assessing the impact of single infec- tions and co-infections by pathogens on key life history parameters and the influence of life history traits on infection status in a free-ranging social carnivore species, the spotted hyena Crocuta crocuta.
    [Show full text]
  • Canine Parvovirus
    1 CE Credit Canine Parvovirus Brandy Tabor, CVT, VTS (ECC) very sick 4-month-old puppy presents at your veterinary is first vaccinated, the bitch’s antibody titer may still be high clinic. The owner reports acute onset of vomiting and enough to interfere with the immune response but too low for A bloody, foul-smelling diarrhea. When the owner mentions protection.2 This leaves the puppy susceptible for a period of time that the puppy has not been vaccinated, an “alarm sounds” in your because neither the bitch’s antibodies nor the immune response mind. You hope that the puppy is not infected with parvovirus. to the CPV-2 vaccine is enough to prevent infection.2 Canine parvovirus (CPV) is one of the most common infectious CPV-2 is most commonly spread via the fecal–oral route, diseases in unvaccinated dogs younger than 6 months.1 Without although it can also be spread through the fecal–nasal route.1 After treatment of CPV infection, the mortality rate can be as high as the virus is ingested, it replicates in the oropharynx, thymus, and 91%; with aggressive treatment, the mortality rate drops to 4% to mesenteric lymph nodes for 2 days.1,2 The virus then moves into 48%.2 Understanding the pathophysiology of CPV infection is the blood, and marked viremia develops within 1 to 5 days after important for enabling veterinary technicians to provide prompt exposure.1 The virus reaches the intestinal crypts via the blood.1,6 treatment and adequate patient care. Viral shedding begins on day 3 and continues for 7 to 10 days.1 Etiology, Epidemiology, and Transmission Normal Physiology and the Effects of Infection Most viruses create disease by causing degeneration of the cells in Parvovirus attacks rapidly dividing cells such as those in the lym- which they replicate.3 Viruses contain genetic material in the form phoid tissue, thymus, intestinal epithelium, bone marrow, and of RNA or DNA, which produces viral material such as enzymes heart.
    [Show full text]
  • Management of the Patient with Canine Parvovirus Enteritis
    PROCEEDINGS OF THE NEW ZEALAND VETERINARY NURSING ASSOCIATION ANNUAL CONFERENCE 2015 5 Management of the Patient with Canine Parvovirus Enteritis Philip R Judge BVSc MVS PG Cert Vet Stud MACVSc (Veterinary Emergency and Critical Care; Medicine of Dogs) Senior Lecturer: Veterinary Emergency and Critical Care, James Cook University, Australia Director: Vet Education Pty Ltd (www.veteducation.net) All documents are copyright to Vet Education Pty Ltd. Permission has been granted for inclusion in the NZVNA conference proceedings. Canine Parvovirus is a highly contagious virus that aects typically causes symptoms of disease in tissue with rapidly dogs, resulting in severe gastrointestinal disease and dividing cells such as the gastrointestinal tract and bone occasionally cardiac disease. e virus itself is what is termed marrow: “non-enveloped”, and is made up of viral DNA. Canine - Cells of the intestines replicate rapidly on an ongoing parvovirus infection is a serious viral infection in dogs, basis, and are therefore aected by (and destroyed by) and as mentioned above, is highly contagious, being readily parvovirus infection, which results in diarrhoea and transmitted from one dog to another through contact with vomiting. infected faeces. - Cells of the bone marrow of young dogs are replicating, producing red and white blood cells. Infection with ere are some important facts about the virus itself that parvovirus aects production of white blood cells, and underpin some important aspects of patient management… can result in profound leukopaenia in infected patients. • Canine parvovirus is a stable virus that can survive for up - In young dogs that are born to unvaccinated parents, to ve to seven months in the environment.
    [Show full text]