Small Molecule Inhibitors of RAS-Effector Protein Interactions Derived Using an Intracellular Antibody Fragment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Allosteric Regulation in Drug Design
Mini Review Curr Trends Biomedical Eng & Biosci Volume 4 Issue 1 - May 2017 Copyright © All rights are reserved by Ashfaq Ur Rehman DOI: 10.19080/CTBEB.2017.04.5555630 Allosteric regulation in drug design Ashfaq Ur Rehman1,2*, Shah Saud3, Nasir Ahmad4, Abdul Wadood2 and R Hamid5 1State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, China 2Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan 3Laboratory of Analytical Biochemistry and Bio separation, Shanghai Jiao Tong University, China 4Department of Chemistry, Islama College University Peshawar, Pakistan 5Department of Bioinformatics, Muhammad Ali Jinnah University Islamabad, Pakistan Submission: May 02, 2017; Published: May 23, 2017 *Corresponding author: Ashfaq Ur Rehman, State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, Tel: ; Fax: 86-21-34204348; Email: Abstract mechanism, which are initiated through attachment of ligand or inhibitors with the protein or enzymes other than active (orthosteric) sites. ThisProtein mini review and enzymes involved play mechanism, significant types roles and in importancebiological processes of allosteric of all regulations living organisms; in drug theirdesign functions process. are regulated through allosteric Keywords: Allosteric, Activator: Drug design Introduction and ultimately cause disease. While various biological processes expressed the control at different points in life time of protein function is pivotal. As all the cell processes are under carful For the survival of all organisms the significance of protein included regulation of gene expression, translation into protein control and if not properly controls this leads to the abnormality through control of activity and at last degradation of protein [1]. -
Design Principles for Regulator Gene Expression in a Repressible Gene
Design of Repressible Gene Circuits: M.E. Wall et al. 1 Design Principles for Regulator Gene Expression in a Repressible Gene Circuit Michael E. Wall1,2, William S. Hlavacek3* and Michael A. Savageau4+ 1Computer and Computational Sciences Division and 2Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 3Theoretical Biology and Biophysics Group (T-10), Theoretical Division, Mail Stop K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 4Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA +Current address: Department of Biomedical Engineering, One Shields Avenue, University of California, Davis, CA 95616, USA. *Corresponding author Tel.: +1-505 665 1355 Fax: +1-505 665 3493 E-mail address of the corresponding author: [email protected] Design of Repressible Gene Circuits: M.E. Wall et al. 2 Summary We consider the design of a type of repressible gene circuit that is common in bacteria. In this type of circuit, a regulator protein acts to coordinately repress the expression of effector genes when a signal molecule with which it interacts is present. The regulator protein can also independently influence the expression of its own gene, such that regulator gene expression is repressible (like effector genes), constitutive, or inducible. Thus, a signal-directed change in the activity of the regulator protein can result in one of three patterns of coupled regulator and effector gene expression: direct coupling, in which regulator and effector gene expression change in the same direction; uncoupling, in which regulator gene expression remains constant while effector gene expression changes; or inverse coupling, in which regulator and effector gene expression change in opposite directions. -
Raman Imaging of Small Biomolecules
BB48CH15_Min ARjats.cls April 16, 2019 13:8 Annual Review of Biophysics Raman Imaging of Small Biomolecules Yihui Shen, Fanghao Hu, and Wei Min Department of Chemistry, Columbia University, New York, NY 10027, USA; email: [email protected] Annu. Rev. Biophys. 2019. 48:347–69 Keywords First published as a Review in Advance on Raman microscopy, small molecule imaging, vibrational tags, lipid March 20, 2019 metabolism, drug imaging The Annual Review of Biophysics is online at biophys.annualreviews.org Abstract Access provided by Columbia University on 06/21/19. For personal use only. https://doi.org/10.1146/annurev-biophys-052118- Imaging techniques greatly facilitate the comprehensive knowledge of Annu. Rev. Biophys. 2019.48:347-369. Downloaded from www.annualreviews.org 115500 biological systems. Although imaging methodology for biomacromolecules Copyright © 2019 by Annual Reviews. such as protein and nucleic acids has been long established, micro- All rights reserved scopic techniques and contrast mechanisms are relatively limited for small biomolecules, which are equally important participants in biological pro- cesses. Recent developments in Raman imaging, including both microscopy and tailored vibrational tags, have created exciting opportunities for non- invasive imaging of small biomolecules in living cells, tissues, and organ- isms. Here, we summarize the principle and workflow of small-biomolecule imaging by Raman microscopy. Then, we review recent efforts in imaging, for example, lipids, metabolites, and drugs. The unique advantage of Raman imaging has been manifested in a variety of applications that have provided novel biological insights. 347 BB48CH15_Min ARjats.cls April 16, 2019 13:8 Contents THENEEDFORIMAGINGSMALLBIOMOLECULES........................ 348 IMAGINGSMALLMOLECULESBYVIBRATIONALCONTRAST............. 349 LINEAR AND NONLINEAR RAMAN SCATTERING SPECTROSCOPY ANDMICROSCOPY......................................................... -
Small Molecules, Big Impact
FOR RESEARCH USE ONLY. NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES. STEMCELL TECHNOLOGIES INC.’S QUALITY MANAGEMENT SYSTEM IS CERTIFIED TO ISO 13485 MEDICAL DEVICE STANDARDS. TGFβ: The TGFβ superfamily members are major regulators of self-renewal and differentiation to mesendodermal lineages. p38 / p53: p38 MAPK is activated in response to cellular stresses, and influences apoptosis and cellular differentiation. p53 is activated in Pathway Activators: IDE1, IDE2; Pathway Inhibitors: SB431542, LY364947, RepSox, Dorsomorphin, LDN193189 response to cellular stresses and regulates growth arrest, apoptosis and/or DNA repair. Inhibition of p53 is used to facilitate reprogramming. Pathway Inhibitors: BIRB-796, SB202190, SB203580, Cyclic Pifithrin-α, Pifithrin-μ Hedgehog: The Hedgehog pathway is important in the differentiation of mesenchymal subtypes (e.g. osteocytes) and in neural subtypes (e.g. dopaminergic neurons). FGF: FGF signaling via MEK/ERK is critical for self-renewal and proliferation of human PSCs. However, other receptor tyrosine kinases can Pathway Activator: Purmorphamine; Pathway Inhibitors: Cyclopamine, HPI-1 also act through the MEK/ERK and PI3K signaling pathways. Pathway Activators: Pyrintegrin, PS-48; Pathway Inhbitors: Pluripotin, PD0325901, PD98059, Reversine IWP-2 WNT: The WNT pathway regulates differentiation to the mesoendodermal lineages, induces self-renewal of PSCs, and aids in reprogramming. IWP-3 Pathway Activators: BIO, CHIR99021, Kenpaullone, SB216763; Pathway Inhibitors: IWP-2, IWP-3, IWP-4, -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Monoclonal Antibodies and Small-Molecule Drugs: WHAT GENERAL NEUROLOGISTS NEED to KNOW
THIS CONTENT IS SPONSORED BY AMGEN INC. AND NOVARTIS PHARMACEUTICALS CORPORATION USA-334-83498 Monoclonal Antibodies and Small-Molecule Drugs: WHAT GENERAL NEUROLOGISTS NEED TO KNOW APRIL 2020 I VOL. 28 NO. 4 A Member of the Network Introduction plasma concentration 1–8 days) than IV, but this route permits self- Numerous drug modalities have been approved to treat neurologic administration at home.9,22 diseases, including small-molecule drugs (SMDs) and biologics SMDs generally have wide distribution into tissues, organs and such as monoclonal antibodies (mAbs).1-3 While both are consid- plasma.10,23 They are metabolized by CYP450 enzymes via oxidation, ered targeted therapies,2-7 each has unique characteristics that may leading to renal elimination in the urine, and by conjugation reac- affect their use in clinical practice.5,8,9 This article describes the gen- tions (eg, glucuronidation), leading to hepatic/biliary elimination in eral characteristics of SMDs and mAbs and discusses some of their the stool.10,24,25 mAbs have a small range of distribution.10,23 Particu- safety implications relevant to their use by general neurologists in larly relevant to neurology, therapeutic mAbs do not readily cross clinical practice. the blood–brain barrier and therefore have minimal distribution in the central nervous system (CNS).8,9 Therapeutic mAbs are also Characteristics of SMDs and mAbs too large for clearance by renal or hepatic mechanisms, and instead The general characteristics and pharmacokinetics (PK) of are metabolized by two primary -
Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery
International Journal of Molecular Sciences Review Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery Qingxin Li 1,* and CongBao Kang 2,* 1 Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou 510316, China 2 Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore * Correspondence: [email protected] (Q.L.); [email protected] (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.) Received: 12 June 2020; Accepted: 20 July 2020; Published: 24 July 2020 Abstract: Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins. These compounds have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. A target-based drug discovery project usually includes target identification, target validation, hit identification, hit to lead and lead optimization. Understanding molecular interactions between small molecules and their targets is critical in drug discovery. Although many biophysical and biochemical methods are able to elucidate molecular interactions of small molecules with their targets, structural biology is the most powerful tool to determine the mechanisms of action for both targets and the developed compounds. Herein, we reviewed the application of structural biology to investigate binding modes of orthosteric and allosteric inhibitors. It is exemplified that structural biology provides a clear view of the binding modes of protease inhibitors and phosphatase inhibitors. -
RAP2 Mediates Mechanoresponses of the Hippo Pathway Zhipeng Meng1, Yunjiang Qiu2,3, Kimberly C
LETTER https://doi.org/10.1038/s41586-018-0444-0 RAP2 mediates mechanoresponses of the Hippo pathway Zhipeng Meng1, Yunjiang Qiu2,3, Kimberly C. Lin1, Aditya Kumar4, Jesse K. Placone4, Cao Fang1, Kuei-Chun Wang4,5, Shicong Lu1, Margaret Pan1, Audrey W. Hong1, Toshiro Moroishi1,6,7, Min Luo1,8, Steven W. Plouffe1, Yarui Diao2, Zhen Ye2, Hyun Woo Park1,9, Xiaoqiong Wang10, Fa-Xing Yu11, Shu Chien4,5, Cun-Yu Wang12, Bing Ren2,13, Adam J. Engler4 & Kun-Liang Guan1* Mammalian cells are surrounded by neighbouring cells and Extended Data Fig. 1b). Expression of the YAP and TAZ target extracellular matrix (ECM), which provide cells with structural genes CTGF, CYR61, and ANKRD1 was repressed by low stiffness in support and mechanical cues that influence diverse biological wild-type cells, but not in RAP2-KO cells (Fig. 1f). Similar results were processes1. The Hippo pathway effectors YAP (also known as YAP1) observed in human mesenchymal stem cells (Extended Data Fig. 1c–e), and TAZ (also known as WWTR1) are regulated by mechanical in which RAP2 deletion suppressed differentiation into adipocytes cues and mediate cellular responses to ECM stiffness2,3. Here we (Extended Data Fig. 1f, g). In luminal breast cancer MCF7 cells, identified the Ras-related GTPase RAP2 as a key intracellular ECM stiffness modulated localization of YAP and TAZ in a RAP2- signal transducer that relays ECM rigidity signals to control dependent manner, whereas the basal type MDA-MB-468 cells showed mechanosensitive cellular activities through YAP and TAZ. constitutively cytoplasmic localization of YAP and TAZ regardless RAP2 is activated by low ECM stiffness, and deletion of RAP2 of stiffness (Extended Data Fig. -
Small Molecule and Protein Docking Introduction
Small Molecule and Protein Docking Introduction • A significant portion of biology is built on the paradigm sequence structure function • As we sequence more genomes and get more structural information, the next challenge will be to predict interactions and binding for two or more biomolecules (nucleic acids, proteins, peptides, drugs or other small molecules) Introduction • The questions we are interested in are: – Do two biomolecules bind each other? – If so, how do they bind? – What is the binding free energy or affinity? • The goals we have are: – Searching for lead compounds – Estimating effect of modifications – General understanding of binding – … Rationale • The ability to predict the binding site and binding affinity of a drug or compound is immensely valuable in the area or pharmaceutical design • Most (if not all) drug companies use computational methods as one of the first methods of screening or development • Computer-aided drug design is a more daunting task, but there are several examples of drugs developed with a significant contribution from computational methods Examples • Tacrine – inhibits acetylcholinesterase and boost acetylcholine levels (for treating Alzheimer’s disease) • Relenza – targets influenza • Invirase, Norvir, Crixivan – Various HIV protease inhibitors • Celebrex – inhibits Cox-2 enzyme which causes inflammation (not our fault) Docking • Docking refers to a computational scheme that tries to find the best binding orientation between two biomolecules where the starting point is the atomic coordinates of the two molecules • Additional data may be provided (biochemical, mutational, conservation, etc.) and this can significantly improve the performance, however this extra information is not required Bound vs. Unbound Docking • The simplest problem is the “bound” docking problem. -
Reporting Data from High-Throughput Screening of Small-Molecule Libraries
COMMENTARY Reporting data from high-throughput screening of small-molecule libraries James Inglese, Caroline E Shamu & R Kiplin Guy Publications reporting results of small-molecule screens are becoming more common as academic researchers increasingly make use of high-throughput screening (HTS) facilities. However, no standards have been formally established for reporting small-molecule screening data, and often key information important for the evaluation and interpretation of results is omitted in published HTS protocols. Here, we propose concise guidelines for reporting small-molecule HTS data. High-throughput screening (HTS) is becoming providing a basis for evaluation, comparison in the assay. Controls are used to determine a routine method for identifying probes used in and replication of small-molecule screens. We an assay ‘window’ and validate the biological chemical biology. The flexibility of the process have divided small-molecule screen protocol response. It is often desirable to provide an has allowed numerous and disparate areas of information into five categories: the assay, the indication as to the efficacy of the controls. biology to engage with an equally diverse palate library, the HTS process, the post-HTS analy- For example, here is an assay strategy descrip- of chemistry. However, with this diversity, the sis of data and compound structures, and the tion that might be written for a fluorescence many components associated with HTS—the screen results (Fig. 1). Within each category, polarization assay: bioassay, the assay format, the nature of the we describe key pieces of information that are library, reagent and sample delivery meth- important for interpretation and replication This screen was carried out to identify compounds ods, the detection instrumentation, the level of a screen (Table 1). -
E3 Ubiquitin Ligase SYVN1 Is a Key Positive Regulator for GSDMD
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.453219; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 E3 ubiquitin ligase SYVN1 is a key positive regulator for 2 GSDMD-mediated pyroptosis 3 4 Yuhua Shi 1,2,#, Yang Yang3,#, Weilv Xu1,#, Wei Xu1, Xinyu Fu1, Qian Lv1, Jie Xia1, 5 Fushan Shi1,2,* 6 1 Department of Veterinary Medicine, College of Animal Sciences, Zhejiang 7 University, Hangzhou 310058, Zhejiang, PR China 8 2 Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang 9 University, Hangzhou 310058, Zhejiang, PR China 10 3 Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of 11 Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health 12 Inspection & Internet Technology, College of Animal Science and Technology & 13 College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, 14 Zhejiang, China 15 # These authors contributed equally to this work 16 *Corresponding author: Fushan Shi, E-mail: [email protected], Tel: 17 +086-0571-88982275 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.453219; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Gasdermin D (GSDMD) participates in activation of inflammasomes and pyroptosis. 21 Meanwhile, ubiquitination strictly regulates inflammatory responses. However, how 22 ubiquitination regulates Gasdermin D activity is not well understood. -
SHOC2–MRAS–PP1 Complex Positively Regulates RAF Activity and Contributes to Noonan Syndrome Pathogenesis
SHOC2–MRAS–PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis Lucy C. Younga,1, Nicole Hartiga,2, Isabel Boned del Ríoa, Sibel Saria, Benjamin Ringham-Terrya, Joshua R. Wainwrighta, Greg G. Jonesa, Frank McCormickb,3, and Pablo Rodriguez-Vicianaa,3 aUniversity College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom; and bHelen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158 Contributed by Frank McCormick, September 18, 2018 (sent for review November 22, 2017; reviewed by Deborah K. Morrison and Marc Therrien) Dephosphorylation of the inhibitory “S259” site on RAF kinases CRAF/RAF1 mutations are also frequently found in NS and (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. cluster around the S259 14-3-3 binding site, enhancing CRAF ac- The MRAS GTPase, a close relative of RAS oncoproteins, interacts tivity through disruption of 14-3-3 binding (8) and highlighting the with SHOC2 and protein phosphatase 1 (PP1) to form a heterotri- key role of this regulatory step in RAF–ERK pathway activation. meric holoenzyme that dephosphorylates this S259 RAF site. MRAS is a very close relative of the classical RAS oncoproteins MRAS and SHOC2 function as PP1 regulatory subunits providing (H-, N-, and KRAS, hereafter referred to collectively as “RAS”) the complex with striking specificity against RAF. MRAS also func- and shares most regulatory and effector interactions as well as tions as a targeting subunit as membrane localization is required transforming ability (9–11). However, MRAS also has specific for efficient RAF dephosphorylation and ERK pathway regulation functions of its own, and uniquely among RAS family GTPases, it in cells.