3 Functions of More Than One Variable

Total Page:16

File Type:pdf, Size:1020Kb

3 Functions of More Than One Variable 3 Functions of More Than One Variable Learning Outcome: 3. Understand single-valued functions of two or three variables and their derivatives, perform associated computations, and apply understanding and computations to solve problems. 3.1 Introduction During the first and second terms of calculus you worked with functions of one variable, which were usually denoted y = f(x) (for example, y = x2). We could think of such a function as a “machine” named f, with the variable x being the input to the machine and the variable y being the output. We will now investigate functions of more than one input variable; the ones with which we will work will have the form z = f(x, y) or w = f(x, y, z). Examples would be things like f(x, y)= x2 + y2 and w = xyz +3y + z2. Consider the function w. There are three input variables x, y and z, and one output variable, w. We say that w is a function of three variables, the number of input variables. Similarly, f is a function of two variables. OK, so those two examples are bit abstract. Some more concrete (and practical!) examples would be the following: • The perceived temperature (“wind-chill”) depends on the actual air temperature and the speed of the wind. • The temperature in a well depends on the depth of the well and the time of year. • The pressure at a point in a room depends on the location (x, y, z) of the point. • The temperature on a plate of metal depends on the location (x, y) of the point. In the first two semesters of calculus the two main themes were differentiation and integration of functions of one variable. We will now take up differentiation and, a bit later, integration of functions of more than one variable. 3.2 Representing Functions of More Than One Variable Learning Outcome: 3. (a) Determine a function value of a function of more than one variable from an equation, a table of values, or a level curve plot. In the past, when you were given a function of one variable, you often considered several repre- sentations of such a function: an equation of the function, a table of corresponding input and output values, a graph of the function. Each has their own advantages and disadvantages. Exact function values can be obtained from either the equation or the table, but the table has a limited number of values, whereas the equation can be used to get an unlimited number of input-output pairs. Exact input-output values are impossible to obtain from a graph, but the overall behavior of a function can be obtained quickly from looking at a graph. Functions of three or more variables are challenging to represent in any form other than an equation, so we will often focus on functions of two variables, which are more easily represented. There are four common representations of such functions; we will use three of the four regularly. • An equation can be given, from which function values can be obtained by simply inserting input values and obtaining corresponding output values. The two equations f(x, y) = x2 + y2 and w = xyz +3y + z2 are examples of this. An equation can easily be used to describe a function of any number of variables. The following three methods are only possible for functions of two variables. • A table of values can be given. Such a table lists values of one input variable horizontally across the top or bottom of the table and values of the other input variable along one of the sides (usually the left side). The output value is for a given pair of input values is then located in the cell of the table where the row and column of the two input values intersect. An example is the table below, which gives (in the “body” of the table) the wind-chill temperature W (in degrees Fahrenheit) for various actual temperature/wind speed combinations (in that order). Wind speed is in miles per hour and actual temperature is given in degrees Fahrenheit. Actual Temperature (◦F ) T v −10 0 10 20 30 40 5 −22 −11 1 13 25 36 10 −28 −16 −4 9 21 34 15 −32 −19 −7 6 19 32 −35 −22 −9 Wind Speed (mph) 20 4 17 30 • A level curve plot (contour plot) is essentially a “map” of the two input variables, with points having certain fixed output values connected by curves. The one below represents temperatures T on a rectangular sheet of metal. The temperatures are in degrees Fahrenheit, and the distances are in feet (with x-values being on the horizontal axis and y-values on the vertical, as usual). 40 10 90 50 80 60 70 70 60 5 50 90 80 40 30 5 10 • A surface plot, which is a three-dimensional representation of the function, where the input values represent points in the xy-plane and the output values are z-values. When the z-values are plotted above (or below) their corresponding x and y values, a surface is obtained. Such plots are valuable for seeing the behavior of the function, but they are challenging to draw by hand, and almost impossible to get input-output values from. We will rarely (never?) use these. For examples of these, see page 792 1st Ed., page 779 2nd Ed. 3.3 Average Rates of Change Learning Outcome: 3. (b) Determine the average rate of change of a function of two or three variables from one point to another from either a level curve graph or the equation of the function. • Examples: 780: 8, 9 • Exercises: 786: 40, 41, 43, 45 Answer to 786: 40 is −1.67 × 10−4 ppt/◦C Looking at either the table of values or the level curve plot from the previous page, it is clear that the values of the functions (wind chill temperatures for the table, temperatures on the metal plate for the level curves) vary as the input values change. The main focus of our next couple weeks will be the rates at which the function values change as the input values change. We will begin by calculating average rates of change as one or the other (or perhaps both) of the input values change. Suppose that for a function f(x, y) we go from inputs of (x1,y1) to (x2,y2). Then the corresponding outputs go from f(x1,y1) to f(x2,y2). The average rate of change of the function is then the change in output divided by the change in input, which we show symbolically like this: f(x ,y ) − f(x ,y ) Ave ROC = 2 2 1 1 “distance” from (x1,y1) to (x2,y2) x1, y1, x2 and y2 should all be the appropriate numbers, and instead of f you should use the letter for whatever function you are working with. The “distance” from (x1,y1) to (x2,y2) will always be either a subtraction or an application of the Pythagorean Theorem. I’ve put distance in quotes because in many cases it will not actually represent a geometric distance, but simply a distance between numbers. Note that we generally find the difference by taking the final values minus the initial values. Here are a few examples, demonstrating the way that I’d like you to show your calculations: ⋄ Example 3.3(a): For the temperature function with level curves shown on the previous page, find the average rate of change of the temperature from (7, 1) to (7, 5). T (7, 5) − T (7, 1) 65 − 38 Ave ROC = = =6.75◦F/foot ♠ 5 − 1 4 ⋄ Example 3.3(b): For the function given by the table on the previous page, find the rate of change in wind-chill from a actual temperature/wind speed combination of 0◦F and −10 mph to 0◦F and −20 mph. W (0, −20) − W (0, −10) −22 − (−16) Ave ROC = = = −0.6◦F/mph ♠ 60 − 30 10 Note that in this last example the “distance” is really the change in wind speed. In both of the above example we have held one of the input variables fixed while the other changes. In the next example we let both of the input variables vary. This only makes sense to do when both input variables measure the same quantity and have the same units. (In this case the quantity is true distance, measured in feet. ⋄ Example 3.3(c): For the temperature function from Exercise 1 of Assignment 8, find the average rate of change in temperature from (5, 6) to (9, 1). T (9, 1) − T (5, 6) 60 − 75 Ave ROC = = = −2.3◦F/foot ♠ (9 − 5)2 + (1 − 6)2 6.4 p The quantity (9 − 5)2 + (1 − 6)2, is just the distance from (5, 6) to (9, 1), calculated using the distance formulap for two dimensions. ⋄ Example 3.3(d): In some location the temperature T in degrees Fahrenheit of the ground at a depth of d feet and at time t days from some zero date is modeled by T (d, t)=30e−0.2d cos(0.0172t − 0.2d)+60 . Find the average rate of change of temperature at time fifty days, from a depth of 3 feet to a depth of 40 feet. T (40, 50) − T (3, 50) 60.0066 − 75.9110 Ave ROC = = = −0.4282◦F/foot ♠ 40 − 3 37 3.4 Partial Derivatives Learning Outcome: 3. (c) Find and interpret (give location, direction, change in dependent variable per unit of change in independent variable) partial derivatives of a function at a point.
Recommended publications
  • 1 Probelms on Implicit Differentiation 2 Problems on Local Linearization
    Math-124 Calculus Chapter 3 Review 1 Probelms on Implicit Di®erentiation #1. A function is de¯ned implicitly by x3y ¡ 3xy3 = 3x + 4y + 5: Find y0 in terms of x and y. In problems 2-6, ¯nd the equation of the tangent line to the curve at the given point. x3 + 1 #2. + 2y2 = 1 ¡ 2x + 4y at the point (2; ¡1). y 1 #3. 4ey + 3x = + (y + 1)2 + 5x at the point (1; 0). x #4. (3x ¡ 2y)2 + x3 = y3 ¡ 2x ¡ 4 at the point (1; 2). p #5. xy + x3 = y3=2 ¡ y ¡ x at the point (1; 4). 2 #6. x sin(y ¡ 3) + 2y = 4x3 + at the point (1; 3). x #7. Find y00 for the curve xy + 2y3 = x3 ¡ 22y at the point (3; 1): #8. Find the points at which the curve x3y3 = x + y has a horizontal tangent. 2 Problems on Local Linearization #1. Let f(x) = (x + 2)ex. Find the value of f(0). Use this to approximate f(¡:2). #2. f(2) = 4 and f 0(2) = 7. Use linear approximation to approximate f(2:03). 6x4 #3. f(1) = 9 and f 0(x) = : Use a linear approximation to approximate f(1:02). x2 + 1 #4. A linear approximation is used to approximate y = f(x) at the point (3; 1). When ¢x = :06 and ¢y = :72. Find the equation of the tangent line. 3 Problems on Absolute Maxima and Minima 1 #1. For the function f(x) = x3 ¡ x2 ¡ 8x + 1, ¯nd the x-coordinates of the absolute max and 3 absolute min on the interval ² a) ¡3 · x · 5 ² b) 0 · x · 5 3 #2.
    [Show full text]
  • DYNAMICAL SYSTEMS Contents 1. Introduction 1 2. Linear Systems 5 3
    DYNAMICAL SYSTEMS WILLY HU Contents 1. Introduction 1 2. Linear Systems 5 3. Non-linear systems in the plane 8 3.1. The Linearization Theorem 11 3.2. Stability 11 4. Applications 13 4.1. A Model of Animal Conflict 13 4.2. Bifurcations 14 Acknowledgments 15 References 15 Abstract. This paper seeks to establish the foundation for examining dy- namical systems. Dynamical systems are, very broadly, systems that can be modelled by systems of differential equations. In this paper, we will see how to examine the qualitative structure of a system of differential equations and how to model it geometrically, and what information can be gained from such an analysis. We will see what it means for focal points to be stable and unstable, and how we can apply this to examining population growth and evolution, bifurcations, and other applications. 1. Introduction This paper is based on Arrowsmith and Place's book, Dynamical Systems.I have included corresponding references for propositions, theorems, and definitions. The images included in this paper are also from their book. Definition 1.1. (Arrowsmith and Place 1.1.1) Let X(t; x) be a real-valued function of the real variables t and x, with domain D ⊆ R2. A function x(t), with t in some open interval I ⊆ R, which satisfies dx (1.2) x0(t) = = X(t; x(t)) dt is said to be a solution satisfying x0. In other words, x(t) is only a solution if (t; x(t)) ⊆ D for each t 2 I. We take I to be the largest interval for which x(t) satisfies (1.2).
    [Show full text]
  • Linearization of Nonlinear Differential Equation by Taylor's Series
    International Journal of Theoretical and Applied Science 4(1): 36-38(2011) ISSN No. (Print) : 0975-1718 International Journal of Theoretical & Applied Sciences, 1(1): 25-31(2009) ISSN No. (Online) : 2249-3247 Linearization of Nonlinear Differential Equation by Taylor’s Series Expansion and Use of Jacobian Linearization Process M. Ravi Tailor* and P.H. Bhathawala** *Department of Mathematics, Vidhyadeep Institute of Management and Technology, Anita, Kim, India **S.S. Agrawal Institute of Management and Technology, Navsari, India (Received 11 March, 2012, Accepted 12 May, 2012) ABSTRACT : In this paper, we show how to perform linearization of systems described by nonlinear differential equations. The procedure introduced is based on the Taylor's series expansion and on knowledge of Jacobian linearization process. We develop linear differential equation by a specific point, called an equilibrium point. Keywords : Nonlinear differential equation, Equilibrium Points, Jacobian Linearization, Taylor's Series Expansion. I. INTRODUCTION δx = a δ x In order to linearize general nonlinear systems, we will This linear model is valid only near the equilibrium point. use the Taylor Series expansion of functions. Consider a function f(x) of a single variable x, and suppose that x is a II. EQUILIBRIUM POINTS point such that f( x ) = 0. In this case, the point x is called Consider a nonlinear differential equation an equilibrium point of the system x = f( x ), since we have x( t )= f [ x ( t ), u ( t )] ... (1) x = 0 when x= x (i.e., the system reaches an equilibrium n m n at x ). Recall that the Taylor Series expansion of f(x) around where f:.
    [Show full text]
  • Linearization Extreme Values
    Math 31A Discussion Notes Week 6 November 3 and 5, 2015 This week we'll review two of last week's lecture topics in preparation for the quiz. Linearization One immediate use we have for derivatives is local linear approximation. On small neighborhoods around a point, a differentiable function behaves linearly. That is, if we zoom in enough on a point on a curve, the curve will eventually look like a straight line. We can use this fact to approximate functions by their tangent lines. You've seen all of this in lecture, so we'll jump straight to the formula for local linear approximation. If f is differentiable at x = a and x is \close" to a, then f(x) ≈ L(x) = f(a) + f 0(a)(x − a): Example. Use local linear approximation to estimate the value of sin(47◦). (Solution) We know that f(x) := sin(x) is differentiable everywhere, and we know the value of sin(45◦). Since 47◦ is reasonably close to 45◦, this problem is ripe for local linear approximation. We know that f 0(x) = π cos(x), so f 0(45◦) = πp . Then 180 180 2 1 π 90 + π sin(47◦) ≈ sin(45◦) + f 0(45◦)(47 − 45) = p + 2 p = p ≈ 0:7318: 2 180 2 90 2 For comparison, Google says that sin(47◦) = 0:7314, so our estimate is pretty good. Considering the fact that most folks now have (extremely powerful) calculators in their pockets, the above example is a very inefficient way to compute sin(47◦). Local linear approximation is no longer especially useful for estimating particular values of functions, but it can still be a very useful tool.
    [Show full text]
  • Linearization Via the Lie Derivative ∗
    Electron. J. Diff. Eqns., Monograph 02, 2000 http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp) Linearization via the Lie Derivative ∗ Carmen Chicone & Richard Swanson Abstract The standard proof of the Grobman–Hartman linearization theorem for a flow at a hyperbolic rest point proceeds by first establishing the analogous result for hyperbolic fixed points of local diffeomorphisms. In this exposition we present a simple direct proof that avoids the discrete case altogether. We give new proofs for Hartman’s smoothness results: A 2 flow is 1 linearizable at a hyperbolic sink, and a 2 flow in the C C C plane is 1 linearizable at a hyperbolic rest point. Also, we formulate C and prove some new results on smooth linearization for special classes of quasi-linear vector fields where either the nonlinear part is restricted or additional conditions on the spectrum of the linear part (not related to resonance conditions) are imposed. Contents 1 Introduction 2 2 Continuous Conjugacy 4 3 Smooth Conjugacy 7 3.1 Hyperbolic Sinks . 10 3.1.1 Smooth Linearization on the Line . 32 3.2 Hyperbolic Saddles . 34 4 Linearization of Special Vector Fields 45 4.1 Special Vector Fields . 46 4.2 Saddles . 50 4.3 Infinitesimal Conjugacy and Fiber Contractions . 50 4.4 Sources and Sinks . 51 ∗Mathematics Subject Classifications: 34-02, 34C20, 37D05, 37G10. Key words: Smooth linearization, Lie derivative, Hartman, Grobman, hyperbolic rest point, fiber contraction, Dorroh smoothing. c 2000 Southwest Texas State University. Submitted November 14, 2000.
    [Show full text]
  • Linearization and Stability Analysis of Nonlinear Problems
    Rose-Hulman Undergraduate Mathematics Journal Volume 16 Issue 2 Article 5 Linearization and Stability Analysis of Nonlinear Problems Robert Morgan Wayne State University Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Morgan, Robert (2015) "Linearization and Stability Analysis of Nonlinear Problems," Rose-Hulman Undergraduate Mathematics Journal: Vol. 16 : Iss. 2 , Article 5. Available at: https://scholar.rose-hulman.edu/rhumj/vol16/iss2/5 Rose- Hulman Undergraduate Mathematics Journal Linearization and Stability Analysis of Nonlinear Problems Robert Morgana Volume 16, No. 2, Fall 2015 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 Email: [email protected] a http://www.rose-hulman.edu/mathjournal Wayne State University, Detroit, MI Rose-Hulman Undergraduate Mathematics Journal Volume 16, No. 2, Fall 2015 Linearization and Stability Analysis of Nonlinear Problems Robert Morgan Abstract. The focus of this paper is on the use of linearization techniques and lin- ear differential equation theory to analyze nonlinear differential equations. Often, mathematical models of real-world phenomena are formulated in terms of systems of nonlinear differential equations, which can be difficult to solve explicitly. To overcome this barrier, we take a qualitative approach to the analysis of solutions to nonlinear systems by making phase portraits and using stability analysis. We demonstrate these techniques in the analysis of two systems of nonlinear differential equations. Both of these models are originally motivated by population models in biology when solutions are required to be non-negative, but the ODEs can be un- derstood outside of this traditional scope of population models.
    [Show full text]
  • 1 Introduction 2 Linearization
    I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying Q(λ)x = 0, (1.1) where Q(λ)= λ2M + λD + K, M, D and K are given n × n matrices. Sometimes, we are also interested in finding the left eigenvectors y: yH Q(λ) = 0. Note that Q(λ) has 2n eigenvalues λ. They are the roots of det[Q(λ)] = 0. 2 Linearization A common way to solve the QEP is to first linearize it to a linear eigenvalue problem. For example, let λu z = , u Then the QEP (1.1) is equivalent to the generalized eigenvalue problem Lc(λ)z = 0 (2.2) where M 0 D K L (λ)= λ + ≡ λG + C. c 0 I −I 0 Lc(λ) is called a companion form or a linearization of Q(λ). Definition 2.1. A matrix pencil L(λ)= λG + C is called a linearization of Q(λ) if Q(λ) 0 E(λ)L(λ)F (λ)= (2.3) 0 I for some unimodular matrices E(λ) and F (λ).1 For the pencil Lc(λ) in (2.2), the identity (2.3) holds with I λM + D λI I E(λ)= , F (λ)= . 0 −I I 0 There are various ways to linearize a quadratic eigenvalue problem. Some are preferred than others. For example if M, D and K are symmetric and K is nonsingular, then we can preserve the symmetry property and use the following linearization: M 0 D K L (λ)= λ + .
    [Show full text]
  • Graduate Macro Theory II: Notes on Log-Linearization
    Graduate Macro Theory II: Notes on Log-Linearization Eric Sims University of Notre Dame Spring 2017 The solutions to many discrete time dynamic economic problems take the form of a system of non-linear difference equations. There generally exists no closed-form solution for such problems. As such, we must result to numerical and/or approximation techniques. One particularly easy and very common approximation technique is that of log linearization. We first take natural logs of the system of non-linear difference equations. We then linearize the logged difference equations about a particular point (usually a steady state), and simplify until we have a system of linear difference equations where the variables of interest are percentage deviations about a point (again, usually a steady state). Linearization is nice because we know how to work with linear difference equations. Putting things in percentage terms (that's the \log" part) is nice because it provides natural interpretations of the units (i.e. everything is in percentage terms). First consider some arbitrary univariate function, f(x). Taylor's theorem tells us that this can be expressed as a power series about a particular point x∗, where x∗ belongs to the set of possible x values: f 0(x∗) f 00 (x∗) f (3)(x∗) f(x) = f(x∗) + (x − x∗) + (x − x∗)2 + (x − x∗)3 + ::: 1! 2! 3! Here f 0(x∗) is the first derivative of f with respect to x evaluated at the point x∗, f 00 (x∗) is the second derivative evaluated at the same point, f (3) is the third derivative, and so on.
    [Show full text]
  • Chapter 3. Linearization and Gradient Equation Fx(X, Y) = Fxx(X, Y)
    Oliver Knill, Harvard Summer School, 2010 An equation for an unknown function f(x, y) which involves partial derivatives with respect to at least two variables is called a partial differential equation. If only the derivative with respect to one variable appears, it is called an ordinary differential equation. Examples of partial differential equations are the wave equation fxx(x, y) = fyy(x, y) and the heat Chapter 3. Linearization and Gradient equation fx(x, y) = fxx(x, y). An other example is the Laplace equation fxx + fyy = 0 or the advection equation ft = fx. Paul Dirac once said: ”A great deal of my work is just playing with equations and see- Section 3.1: Partial derivatives and partial differential equations ing what they give. I don’t suppose that applies so much to other physicists; I think it’s a peculiarity of myself that I like to play about with equations, just looking for beautiful ∂ mathematical relations If f(x, y) is a function of two variables, then ∂x f(x, y) is defined as the derivative of the function which maybe don’t have any physical meaning at all. Sometimes g(x) = f(x, y), where y is considered a constant. It is called partial derivative of f with they do.” Dirac discovered a PDE describing the electron which is consistent both with quan- respect to x. The partial derivative with respect to y is defined similarly. tum theory and special relativity. This won him the Nobel Prize in 1933. Dirac’s equation could have two solutions, one for an electron with positive energy, and one for an electron with ∂ antiparticle One also uses the short hand notation fx(x, y)= ∂x f(x, y).
    [Show full text]
  • Note: Linearization @ 2020-01-21 01:01:05-08:00
    Note: Linearization @ 2020-01-21 01:01:05-08:00 EECS 16B Designing Information Devices and Systems II Fall 2019 Note: Linearization Overview So far, we have spent a great deal of time studying linear systems described by differential equations of the form: d ~x(t) = A~x(t) + B~u(t) +~w(t) dt or linear difference equations (aka linear recurrence relations) of the form: ~x(t + 1) = A~x(t) + B~u(t) +~w(t): Here, the linear difference equations came from either discretizing a continuous model or were learned from data. In the real world, however, it is very rare for physical systems to perfectly obey such simple linear differential equations. The real world is generally continuous, but our systems will obey nonlinear differential equations of the form: d ~x = ~f (~x(t);~u(t)) +~w(t); dt where ~f is some non-linear function. Through linearization, we will see how to approximate general systems as locally linear systems, which will in turn allow us to apply all the techniques we have developed so far. 1 Taylor Expansion First, we must recall how to approximate the simplest nonlinear functions — scalar functions of one variable — as linear functions. To do so, we will use the Taylor expansion we learned in calculus. This expansion tells us that for well-behaved functions f (x), we can write 2 d f 1 d f 2 f (x) = f (x0) + (x − x0) + (x − x0) + ··· dx 2 dx2 x=x0 x=x0 near any particular point x = x0, known as the expansion point.
    [Show full text]
  • 32-Linearization.Pdf
    Math S21a: Multivariable calculus Oliver Knill, Summer 2011 1 What is the linear approximation of the function f(x, y) = sin(πxy2) at the point (1, 1)? We 2 2 2 have (fx(x, y),yf (x, y)=(πy cos(πxy ), 2yπ cos(πxy )) which is at the point (1, 1) equal to f(1, 1) = π cos(π), 2π cos(π) = π, 2π . Lecture 10: Linearization ∇ h i h− i 2 Linearization can be used to estimate functions near a point. In the previous example, 0.00943 = f(1+0.01, 1+0.01) L(1+0.01, 1+0.01) = π0.01 2π0.01+3π = 0.00942 . In single variable calculus, you have seen the following definition: − ∼ − − − The linear approximation of f(x) at a point a is the linear function 3 Here is an example in three dimensions: find the linear approximation to f(x, y, z)= xy + L(x)= f(a)+ f ′(a)(x a) . yz + zx at the point (1, 1, 1). Since f(1, 1, 1) = 3, and f(x, y, z)=(y + z, x + z,y + ∇ − x), f(1, 1, 1) = (2, 2, 2). we have L(x, y, z) = f(1, 1, 1)+ (2, 2, 2) (x 1,y 1, z 1) = ∇ · − − − 3+2(x 1)+2(y 1)+2(z 1)=2x +2y +2z 3. − − − − 4 Estimate f(0.01, 24.8, 1.02) for f(x, y, z)= ex√yz. Solution: take (x0,y0, z0)=(0, 25, 1), where f(x0,y0, z0) = 5. The gradient is f(x, y, z)= y=LHxL x x x ∇ (e √yz,e z/(2√y), e √y).
    [Show full text]
  • 1.4 Stability and Linearization
    42 Introduction 1.4 Stability and Linearization Suppose we are studying a physical system whose states x are described by points in Rn. Assume that the dynamics of the system is governed by a given evolution equation dx = f(x). dt Let x0 be a stationary point of the dynamics, i.e., f(x0) = 0. Imagine that we perform an experiment on the system at time t = 0 and determine that the initial state is indeed x0. Are we justified in predicting that the system will remain at x0 for all future time? The mathematical answer to this question is yes, but unfortunately it is probably not the question we really wished to ask. Experiments in real life seldom yield exact answers to our idealized models, so in most cases we will have to ask whether the system will remain near x0 if it started near x0. The answer to the revised question is not always yes, but even so, by examining the evolution equation at hand more carefully, one can sometimes make predictions about the future behavior of a system starting near x0. A simple example will illustrate some of the problems involved. Consider the following two differential equations on the real line: x!(t)= x(t) (1.4.1) − and x!(t)=x(t). (1.4.2) The solutions are, respectively, t x(x0,t)=x0e− (1.4.3) and +t x(x0,t)=x0e . (1.4.4) Note that 0 is a stationary point of both equations. In the first case, for all x0 R, we have limt x(x0,t) = 0.
    [Show full text]