DARWINIANA 50(2): 218-251. 2012 ISSN 1850-1699 (electrónica) Versión final, efectivamente publicada ISSN 0011-6793 (impresa) el 28 de diciembre de 2012

AREAS OF ENDEMISM IN THE SOUTHERN CENTRAL ANDES

Lone Aagesen1, Maria J. Bena1, Soledad Nomdedeu1, Adela Panizza1, Ramiro P. López2, 3 & Fernando O. Zuloaga1

1 Instituto de Botánica Darwinion (ANCEFN-CONICET), Labardén 200, Casilla de Correo 22, B1642HYD San Isidro, Buenos Aires, Argentina; [email protected] (author for correspondence). 2 Herbario Nacional de Bolivia, Campus Universitario, Cotacota, calle 27 s/n, Casilla 3-35121 La Paz, Boliva. 3 Laboratorio de Ecofisiología-IEB, Departamento de Biología, Universidad de La Serena, Casilla de correo 599, La Serena, Chile.

Abstract. Aagesen, L.; M. J. Bena, S. Nomdedeu, A. Panizza, R. P. López & F. O. Zuloaga. 2012. Areas of endemism in the southern central Andes. Darwiniana 50(2): 218-251.

This paper analyzes the distribution of vascular species endemic to the southern central Andes (south-western Bolivia and north-western Argentina). All 540 species endemic to the study regions (ap- prox. 720600 km2) have been included in the analysis. The main part of the endemic species is found in semiarid habitats between 1500-3500 m asl pointing to the topographically complex plateau, slope, and valley system of the southern central Andes as the main locations for its endemic flora. The distribution of the endemic species within arid sites is in contrast with that of vascular diversity in general, as the most diverse habitat of the region is the moist subtropical Tucumano-Bolivian Yungas forest of the eastern Andes slope. A total of 17 well defined and partly overlapping distribution patterns were indentified. The broadest distribution pattern defines a general area of endemism for the southern central Andes. This area extends through nearly the entire region and is defined by species that are widespread within the region in desert to sub-humid environments of the high Andes, slopes, or valleys. Nearly all other areas of endemism are nested within this broad distribution pattern as successively north-south overlapping areas along the slopes and valleys of the Andes and the Pampeanas Range. Despite the distributional bias of endemism towards the arid sites almost half of the endemic species are restricted to a few high endemic areas that lie in juxtaposition to the main rainfall zones. These areas contain the widest habitat ranges in terms of altitude and rainfall within the region with the endemic species being equally variable in altitude and moisture requirements. Previous defined phytogeographic units were not recognized among the distribution patterns. However, the northern part of the Prepuna can be defined as two partly overlapping distribution patterns.

Keywords. Areas of endemism; Argentina; biogeography; Bolivia; endemic vascular plants; southern central Andes.

Resumen. Aagesen, L.; M. J. Bena, S. Nomdedeu, A. Panizza, R. P. López & F. O. Zuloaga. 2012. Áreas de endemis- mo en el sur de los Andes Centrales. Darwiniana 50(2): 218-251.

Este trabajo analiza la distribución de especies de plantas vasculares endémicas de la porción sur de los Andes centrales (sudoeste de Bolivia y noroeste de Argentina). En el análisis se incluyeron 540 especies endémicas de la región estudiada (aproximadamente 720.600 km2). La mayoría de las especies endémicas se halla en ambientes semiáridos, entre 1500-3500 m s.m., encontrándose principalmente en valles, laderas y mesetas del topográficamente complejo sur de los Andes centrales. Las áreas de ende- mismos aquí halladas se presentan consecuentemente en ambientes áridos y no en ambientes húmedos subtropicales de las Yungas tucumano-bolivianas, a pesar de que en esta última región la diversidad de plantas vasculares es mayor. Se identificaron un total de 17 patrones de distribución bien definidos, y parcialmente solapados. El patrón de distribución más amplio define un área general de endemismos para los Andes centrales. Esta área se extiende a lo largo de casi toda la región y está delimitada por especies que se distribuyen en ambientes desérticos a sub-húmedos en laderas, valles o regiones altoan- dinas. Casi todas las restantes áreas de endemismo se encuentran anidadas dentro del patrón de distri- bución amplio antes citado, superponiéndose en el sentido norte-sur a lo largo de pendientes y valles de los Andes y de las Sierras Pampeanas. A pesar del sesgo observado en la distribución hacia ambientes

Original recibido el 4 de abril de 2012, aceptado el 30 de octubre de 2012 218 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes

áridos, aproximadamente la mitad de las especies endémicas están restringidas a unas pocas áreas de alto endemismo, las que se encuentran en yuxtaposición con las zonas más lluviosas de la región. Estas áreas de alto endemismo incluyen los rangos de hábitat más amplios de la región en términos de altitud y precipitación, siendo las especies endémicas igualmente variables en sus requerimientos de humedad y elevación. Las unidades fitogeográficas previamente definidas por diversos autores no fueron encon- tradas entre los patrones de distribución hallados; no obstante, la parte norte de la provincia Prepuneña puede ser definida con dos patrones de distribución parcialmente superpuestos.

Palabras clave. Áreas de endemismo; Argentina; biogeografía; Bolivia; plantas vasculares endémi- cas; sur de los Andes centrales.

INTRODUCTION found within the more arid vegetation on the inner slopes and valleys. Located in the centre of the South American dry In their biogeographic analysis of South Amer- diagonal, the southern central Andes have received ica, Cabrera & Willink (1973) and Cabrera (1976) relatively little attention in terms of quantitative emphasised the distinctiveness of the slope vegeta- phytogeographic studies. At a continental scale, tion in the southern central Andes by differentiat- hotspots and areas of endemism have mainly been ing the vegetation between 2400-3500 m asl as the defined and explored in more humid portions of Prepuna phytogeographic province. The Prepuna the Andes, such as the northern Andes or northern was originally restricted to north-western Argenti- central Andes (e.g. Kier et al., 2005; Orme et al., na (Cabrera, 1976), but later expanded to include 2005; Sklenář et al., 2011) and in the southern An- the dry inter-Andean valleys of southern Bolivia des (Arroyo et al., 1999, 2004; Rodríguez-Cabral (López, 2000, 2003). Since the phytogeographic et al., 2008). units in the traditional scheme of Cabrera are based Within the southern cone of South America the on the presence of endemic taxa (Cabrera, 1951, endemic vascular flora is concentrated in the well 1953; Ribichich, 2002) it is reasonable to expect documented Chilean hotspot (Arroyo et al., 1999, that at least part of the endemic species are distrib- 2004; Bannister et al., 2012 and references therein). uted along the Prepuna, therefore defining the lim- However, the arid southern central Andes appear to its of this phytogeographic unit. be the second most important area of endemism, as Here we explore the distribution pattern of the checklists and catalogues show that north-western species endemic to the southern Argentina contains far more endemic species than central Andes including the Prepuna province in the remaining of the region including Uruguay, its entire extension. Defining areas of endemism southern Brazil, and southern Paraguay (Zuloaga et is considered fundamental for historical and eco- al., 1999, 2008). logical biogeography (Crisp et al., 2001), but During the Tertiary, the central Andes became also for conservation studies especially if ende- relatively dryer than the northern and southern part mism is found out of the high diverse vegetation (Simpson & Todzia, 1990). Comparative floristic types as protected area systems focus on diver- studies along the Andes have identified the flora sity hotspots (Orme et al., 2005). Our main aims of the southern central Andes as a separate unit are to explore how the endemic species are dis- among other arid plant formations (López et al., tributed within the southern central Andes, iden- 2006) and found more similarities at generic and tify areas of endemism, and examine to which family level between the high Andean flora of the extent these main areas of endemism correspond humid northern and southern Andes than between to pre-established phytogeographic units such as these and the high Andean flora of the dry central the Prepuna slope vegetation, or found within the Andes (Simpson & Todzia, 1990). Summer rainfall high diverse Yungas forest. We used the optimal- is sufficiently high on the eastern slopes to sup- ity criterion developed by Szumik et al. (2002) port humid subtropical Yungas forest that is one of and Szumik & Goloboff (2004) and implemented the most diverse habitats within the southern cone in the program NDM/VNDM (Goloboff, 2005) (Brown, 1995). However, no quantitative studies to analyze the distribution of the species endemic have examined whether endemism in the south- to the north-western Argentina and south-west- ern central Andes is related to the Yungas forest or ern Bolivia.

219 DARWINIANA 50(2): 218-251. 2012

MATERIALS AND METHODS

Study Region The study region comprises all west Argentinean provinces between the Bolivian border and ~32º S as well as the adjacent southern Bolivia depart- ments of Tarija, Chuquisaca, and Potosí (see maps in Fig. 1-2). The Chaco basin towards the east (Fig. 1) and the hyper arid northern Chile to the west make natural borders of the study region while the southern limit follows the northern limit of the Pa- tagonian biogeographic province (Cabrera, 1979; Cabrera & Willink, 1973; Morrone, 2001). The northern limit follows López (2000) and López & Beck (2002), authors who analyzed the floristic composition of the Bolivian Prepuna and stressed the floristic relationship between the southern Bo- livia and the north-western Argentina (see also Ibisch et al., 2003). The study region comprises ap- prox. 720.600 km2. Rainfall mainly occurs during the southern hemisphere summer where the South American Monsoon System (SAMS) brings moist air to the region (Zhou & Lau, 1998). The influence of the SAMS decreases by an east-west and north-south gradient (Fig. 2A). In the southernmost part of the study region rainfall due to the SAMS is low while winter rain is higher due to the influence of the Pa- Fig. 1. Study region, classic phytogeographic scheme cific westerlies that brings winter rain to central based on Cabrera and Willink (1973). Scale bar = 400 km. Chile (Montecinos & Aceituno, 2003). Traditionally the study region has been divid-

Table 1. General results for all analyses under different grid sizes, consensus criterion (%), and consensus rules (ae and aa). For more information on consensus rules and criterion see Materials and Methods.

0.2º x 0.2º 0.5º x 0.5º 0.5º x 1.0º

25%-50% 50%-75% 10%-20% 25%-50% 10-20%-5-10% 25%-50% Sub-sets 72 125 783 695 958 826 (number of (144) (192) (365) (425) (425) (505) defining species) ae 50% 48 64 305 264 355 286 ae 33% 39 52 211 184 248 203 ae 10% 29 40 104 106 123 92 ae 5% 28 37 87 82 92 70 aa 50% 40 48 80 65 81 64 aa 33% 25 26 29 22 7 8 aa 10% 15 17 9 7 2 2 aa 5% 14 17 9 7 2 2

220 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 2 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 Área 6.6 9.0 5.0 7.5 11.4 15.7 15.9 18.1 14.3 18.1 15.7 18.1 18.1 14.1 12.5 4.4 - 5.7 5.6 - 9.0 3.8 - 5.3 7.3 - 8.2 6.5 - 8.1 7.8 - 9.7 9.9 - 19.9 6.6 - 21.2 5.6 - 15.6 7.3 - 18.1 6.3 - 18.1 7.3 - 12.2 5.9 - 17.5 5.9 - 15.6 6.3 - 14.1 8.8 - 18.1 7.3 - 10.6 7.4 - 24.1 8.7 - 27.2 4.4 - 24.1 7.6 - 17.9 8.9 - 14.8 12.8 - 14.8 12.1 - 15.7 13.3 - 18.1 12.8 - 12.9 12.6 - 13.9 Aridity range 1420 2825 3460 3270 2170 3460 1420 2240 3460 1675 1710 2650 3750 2405 3530 (mas) 480 - 520 730 -1120 1160 - 2930 1160 2910 - 4090 3430 - 4070 2030 - 3480 1650 - 2590 1580 - 3000 1420 - 3040 2700 - 3720 2700 - 3460 1690 - 3410 1500 - 1900 1045 - 1910 2960 - 3615 2700 - 3460 1670 - 1960 1000 - 2150 3245 - 3945 3520 - 4150 2900 - 4250 2375 - 3245 3570 - 4530 3320 - 4810 3550 - 4440 4095 - 4305 3195 - 4070 Altitude range

0.70 0.83 0.54 0.77 0.40 0.78 0.75 0.82 0.70 0.69 0.71 0.77 0.63 0.66 0.75 0.55 0.77 0.69 1x0.5 0.70 0.72 1.00 0.75 0.85 0.88 0.82 0.83 0.85 0.75 0.82 0.86 0.87 0.88 0.71 0.70 0.67 0.83 0.83 0.88 1.00 0.79 0.61 0.83 1.00 0.32 0.76 0.74 0.70 0.69 0.72 0.50 0.81 0.67 0.5x0.5 Cell Size

0.92 0.77 0.90 0.77 0.21 0.92 0.48 0.77 0.83 0.83 0.81 0.2x0.2 Table 2b. Table (1) (3) (6) (3) (1) (K. Schum.) Backeb. (7) (1) (1) F. Ritter F. Wedd. (22) Wedd. I.M. Johnst. (1) Sleumer Moldenke (1) Barros (7) C.V. Morton (4) C.V. (4) Torres (6) Yunck. Backeb. ex R. Kiesling (1) R.L. Pérez-Mor. Borsini (3) Gómez-Sosa (4) Cabrera (1) Gómez-Sosa (6) (Lillo) Goyder W. Becker W. (Hicken) Pontiroli (1) (4) Krapov. Hieron. (2) Viola flos-evae Viola Aphyllocladus spartioides Valeriana corynodes Valeriana Alstroemeria bakeri Pax (5) Alstroemeria Senecio ambatensis Habranthus pictus Ravenna Philibertia coalita Zahn (8) Hieracium lorentzianum Griseb. (8) Hieracium sordidum Hieracium vervoorstii Anderb. & S.E. Freire (1) (Cabrera) Luciliocline catamarcense Species (number of georeferenced records) (A. Cast.) A. Cast. (5) Puya harmsii (A. Cast.) Acanthocalycium glaucum Gymnocalycium hybopleurum Lobivia crassicaulis Boopis castillonii Cuscuta argentinana Hauman (1) trifurcata Dioscorea C.P. Sm. (2) Lupinus burkartianus C.P. (L. Bravo) H.S. Irwin & Barneby (1) Senna pachyrrhiza Sisyrinchium biflorum Griseb. (2) ambatoensis Asteg. Agrostis (1) Digitaria catamarcensis Rúgolo (2) Digitaria catamarcensis (1) Torres Nassella catamarcensis (4) Nassella ragonesei Torres Morton ex L.B. Sm. (1) C.V. Solanum crebrum Solanum mortonii Hunz. (4) andalgalensis Verbena joergensenii Viola Cabrera Aphyllocladus ephedroides Huarpea andina Cabrera (3) I.M. Johnst. (3) Senecio cremnophilus Cryptantha latefissa Sarcodraba andina O.E. Schulz (2) Sarcodraba Adesmia sanjuanensis Burkart (2) Astragalus boelckei Astragalus nelidae Astragalus pulviniformis Nototriche copon Nassella famatinensis Solanum glaberrimum Oxychloë castellanosii Violaceae Asteraceae Valerianaceae Alstroemeriaceae Asteraceae Amaryllidaceae Asteraceae Asteraceae Asteraceae Asteraceae Familiy Bromeliaceae Cactaceae Cactaceae Cactaceae Calyceraceae Convolvulaceae Dioscoreaceae Fabaceae Fabaceae Iridaceae Poaceae Poaceae Poaceae Poaceae Solanaceae Solanaceae Verbenaceae Violaceae Asteraceae Asteraceae Asteraceae Boraginaceae Brassicaceae Fabaceae Fabaceae Fabaceae Fabaceae Malvaceae Poaceae Solanaceae Juncaceae List of endemic species. Each species is assigned to the area of endemism in which it obtained the best score. Altitudinal ranges were obtained from the georeferenced the from obtained were ranges Altitudinal score. best the obtained it which in endemism of area the to assigned is species Each species. endemic of Table 2a. List locations and therefore are suggestive - not observed field data. For area names see

221 DARWINIANA 50(2): 218-251. 2012 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 5 5 4 4 5 5 5 5 3 3 3 3 4 5 3 7.3 - 9.6 8.8 - 8.9 13.8 - 24 5.5 - 11.1 5.4 - 13.8 5.7 - 12.5 8.9 - 19.7 8.1 - 12.9 5.9 - 14.7 7.5 - 18.1 4.6 - 10.4 7.6 - 14.5 7.0 - 10.8 5.5 - 14.4 7.2 - 13.7 8.8 - 18.6 6.8 - 10.1 5.8 - 15.7 9.7 - 20.4 4.8 - 14.8 8.0 - 18.6 6.7 - 18.6 9.5 - 18.1 8.3 - 19.6 6.9 - 19.2 9.9 - 17.0 8.4 - 18.1 10.5 -15.2 11.6 - 19.6 11.6 11.0 - 14.8 11.0 11.7 - 17.8 11.7 12.4 - 17.8 12.1 - 17.8 12.1 - 18.6 13.1 - 16.1 10.0 - 19.0 13.1 - 17.8 15.1 - 17.6 12.3 - 18.3 15.6 - 19.5 15.0 - 18.1 15.9 - 26.3 12.1 - 18.6 10.7 - 14.1 12.2 - 14.8 11.4 - 18.2 11.4 190 - 2100 845 - 2180 780 - 2180 920 - 3690 750 - 1960 510 - 1670 670 - 4080 995 - 1710 1110 - 3250 1110 3110 - 3355 3110 2411 - 4030 2411 1030 - 2070 2270 - 4375 1030 - 2780 2490 - 3410 1240 - 2860 1810 - 3195 3360 - 4380 2600 - 2980 2540 - 3620 3355 - 3930 2990 - 3165 3340 - 4090 2710 - 3760 3020 - 3930 2500 - 3190 3070 - 3290 2410 - 3165 3830 - 4100 1370 - 3670 3050 - 3140 2870 - 3190 3355 - 3620 2410 - 3880 3640 - 3840 2700 - 4470 3460 - 3705 3355 - 3810 3180 - 4070 1860 - 4070 2910 - 3690 2160 - 4060 2540 - 3600 2500 - 3500 3680 - 3750 2540 - 3975

0.72 0.70 0.80 0.50 0.58 0.70 0.58 0.67 0.61 0.90 0.62 0.64 0.77 0.69 0.71 0.54 0.79 0.47 0.89 0.76 0.77 0.73 0.76 0.54 0.77 0.58 0.81 0.68 0.69 0.63 0.80 0.78 0.85 0.78 0.84 0.83 0.78 0.85 0.81 0.80 0.64 0.58 0.73 0.73 0.74 0.87 0.58 0.39 0.75 0.79 0.76 0.64 0.71 0.62 0.77 0.63 0.79 0.67 0.82

0.80 0.69 0.78 0.86 0.59

(5) (7) (7) (7) (5) (2) (8) Backeb. ex H. Till Backeb. ex H. (15) (Speg.) Speg. (6) (8) Wedd. Mez (5) (Griseb.) Cabrera (3) (Gilg) T.N. Ho & S.W. Liu (5) Ho & S.W. T.N. (Gilg) G. Navarro (6) Griseb. (8) Cárdenas (3) (Vaupel) Backeb. & F.M. Knuth (3) Backeb. & F.M. (Vaupel) Burkart (2) Cabrera (6) (6) (Malme) Goyder (2) M.O. Dillon (4) (Wedd.) Cabrera (Wedd.) Griseb. (6) R. Knuth (3) Griseb. (20) S.F. Blake (15) S.F. Ulbr. (8) Ulbr. C.P. Sm. (3) C.P. (Gilg) Fabris (5) Cabrera (7) L. Hrom. & W. Till L. Hrom. & W. (Kupper) Backeb. (9) Lindau Hack. (9) (F.A.C. Weber) Hosseus (10) Weber) andalgalensis (F.A.C. Trichocereus R. Kiesling (4) cabrerae Trichocereus Britton & Rose Weber) huascha (F.A.C. Trichocereus Gymnocalycium pugionacanthum Gymnocalycium baldianum Senecio toroanus Cabrera (3) Senecio toroanus Tillandsia tenebra Tillandsia Chiliotrichiopsis ledifolia Flourensia blakeana Flourensia tortuosa Griseb. (12) Flourensia Hysterionica pulchella Habranthus andalgalensis Ravenna Tillandsia camargoensis L. Hrom . (2) camargoensis Tillandsia Cleistocactus tupizensis (Backeb.) G.D. Rowley (3) Opuntia ferocior celsianus (Lem. ex Salm-Dyck) Riccob. trollii Oreocereus maassii (Heese) A. (13) Parodia Berger chichensis Tephrocactus Cárdenas ex Backeb. (Vaupel) tacaquirensis Trichocereus Backeb. (7) werdermannianus Trichocereus Acacia feddeana Harms (14) R.C. Foster (3) Mastigostyla cabrerae Balbisia integrifolia Abutilon fuscicalyx Hunz. (8) cardenasianum Iochroma Bulnesia rivas-martinezii Justicia riojana S.F. Blake S.F. Gochnatia cardenasii Senecio jujuyensis Poa plicata Ranunculus lancipetalus Chuquiraga acanthophylla Dasyphyllum hystrix Lupinus alivillosus C.P. Sm. (4) Lupinus tucumanensis C.P. Gentianella claytonioides Gentianella kurtzii Cercidium andicola Cercidium Prosopis ferox Griseb . (30) ferox Prosopis Oxalis cotagaitensis Ravenna (2) (R.E. Fr.) Chlidanthus marginatus Philibertia micrantha Adesmia pseudoincana Flourensia fiebrigii Flourensia Deuterocohnia strobilifera Deuterocohnia Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Asteraceae Bromeliaceae Asteraceae Asteraceae Asteraceae Asteraceae Amaryllidaceae Bromeliaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Fabaceae Iridaceae Ledocarpaceae Malvaceae Solanaceae Zygophyllaceae Acanthaceae Asteraceae Asteraceae Poaceae Ranunculaceae Asteraceae Asteraceae Fabaceae Fabaceae Gentianaceae Gentianaceae Fabaceae Fabaceae Oxalidaceae Amaryllidaceae Apocynaceae Fabaceae Asteraceae Bromeliaceae Table 2a. Continued.

222 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 6 7 7 7 7 5 5 5 6 7 5 6 6 6 6 6 7 7 6 6 6 6 6 6 6 6 6 7 7 6 6 6 7 7 7 6 6 7 7 7 6* 6* 6* 6* 6* 6* 8.5 8.8 9.6 9.6 16.7 16.7 14.8 12.0 14.8 14.8 14.8 14.8 17.0 13.8 5.6 - 8.9 7.9 - 8.4 8.1 - 8.4 7.0 - 8.8 5.3 - 7.6 7.4 - 11.4 7.2 - 11.0 9.8 - 11.2 9.3 - 11.8 6.7 - 10.7 6.1 - 15.2 8.7 - 18.1 9.6 - 13.3 4.5 - 10.2 5.1 - 10.9 9.8 - 12.9 8.7 - 10.8 9.4 - 12.5 11.9 - 15.0 11.9 11.2 - 27.7 11.2 16.4 - 18.3 10.1 - 10.4 28.0 - 28.6 13.8 - 17.0 14.2 - 18.3 12.6 - 18.3 12.6 - 15.0 10.1 - 10.2 13.3 - 18.3 18.3 - 23.9 12.6 - 15.0 10.8 - 14.5 2720 2720 2330 2490 4070 3780 4070 4070 2560 4070 4070 2270 3970 3770 850 - 880 930 - 2330 760 - 2100 740 - 1010 740 - 1270 1110 - 1550 1110 1155 - 1670 1155 3480 - 4110 2815 - 3030 1860 - 2190 3605 - 4100 2330 - 4375 1220 - 1495 2560 - 2700 1550 - 2100 1630 - 1860 2250 - 4090 1440 - 3100 1425 - 2240 2255 - 2270 1770 - 3195 3165 - 3690 1405 - 1860 1380 - 2100 1260 - 1360 2190 - 2670 2190 - 2970 3950 - 4090 2190 - 3450 1920 - 2190 3950 - 4090 3950 - 4270

0.57 0.54 0.68 0.73 0.57 0.79 0.38 0.71 0.73 0.83 0.81 0.50 0.50 0.50 0.84 0.88 0.26 1.00 1.00 0.62 0.89 0.81 0.86 0.47 0.78 0.88 0.88 0.74 0.60 0.75 0.88 0.88 0.88 0.88 0.92 1.00 0.81 0.77 0.89 0.76 0.73 0.88 0.80 0.88 0.88 0.91 1.00 1.00 1.00 0.75 0.88 0.76 0.46 0.70 0.88 1.00 0.88 0.76 0.93

0.81 0.81 0.63 0.05 0.76 0.69 0.86 0.79 0.83 0.74 0.86 0.86 0.85 0.86 0.86 0.84 0.64 0.91 0.44 0.86 0.86 0.62 0.89 0.86 0.87 0.90 0.64 0.79 0.87 0.76 0.83 (3) (5) (1) (3) (2) (2) Rausch (2) (2) (3) Rausch (2) (9) Cabrera (1) (3) (Griseb.) Griseb. (10) O. Ferrari (3) Hieron. (1) (Boelcke) Rollins (Rothm.) Rothm. (2) Ariza (1) A.W. Hill (1) A.W. S.F. Blake (5) S.F. A.W. Hill (4) A.W. Cabrera (1) Hieron. ex Moldenke (Cabrera) G.L. Nesom (2) (Lillo ex T. Mey.) Goyder (2) Mey.) T. (Lillo ex Cabrera (1) Cabrera (2) Cabrera (1) Cabrera & Vittet Cabrera (1) R. Kiesling (2) Cabrera (2) Cabrera (1) Cabrera (1) A.W. Hill (2) A.W. (Gilg) Fabris ex J.S. Pringle (2) (1) Krapov. (1) Krapov. W. Becker W. Cabrera (2) Cabrera (2) Cabrera (2) Aphyllocladus decussatus Hieracium kieslingii Hieracium luteomontanum Laennecia altoandina Aloysia catamarcensis Moldenke (11) Aloysia catamarcensis triflabellata Viola Habranthus riojanus Ravenna Baccharis famatinensis Eupatorium hickenii Sclerophylax cynocrambe Sclerophylax Flourensia niederleinii Flourensia Senecio cremnicola Senecio famatinensis C.P. Sm. (1) C.P. Lupinus hieronymi Nototriche famatinensis Eupatorium arachnoideum Legname Gymnocalycium mucidum Oehme (3) Gymnocalycium uebelmannianum vulcanensis Añon (3) Anacampseros Philibertia castillonii Lachemilla asplenifolia Senecio krapovickasii Senecio lanosissimus Cabrera Senecio niederleinii Menonvillea famatinensis Gymnocalycium ritterianum pseudocandicans Backeb. ex R. Kiesling Trichocereus Trichocereus vatteri Trichocereus Gentianella riojae Nototriche glabra Gymnocalycium mazanense (Backeb.) Backeb. Perezia volcanensis Perezia Puya assurgens L.B. Sm. (2) Puya assurgens Nototriche kurtzii Acantholippia riojana (2) Isostigma molfinianum Sherff Gymnocalycium albiareolatum Rausch (6) Gymnocalycium albiareolatum Gymnocalycium kieslingii Senecio altoandinus Stevia crassicephala Stevia yalae Nototriche niederleinii Nototriche pulvilla Senecio keshua Cabrera Senecio tilcarensis Senecio yalae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Verbenaceae Violaceae Amaryllidaceae Asteraceae Asteraceae Solanaceae Asteraceae Asteraceae Asteraceae Fabaceae Malvaceae Asteraceae Cactaceae Cactaceae Anacampserotaceae Apocynaceae Rosaceae Asteraceae Asteraceae Asteraceae Brassicaceae Cactaceae Cactaceae Cactaceae Gentianaceae Malvaceae Cactaceae Bromeliaceae Malvaceae Verbenaceae Asteraceae Cactaceae Cactaceae Asteraceae Asteraceae Asteraceae Malvaceae Malvaceae Asteraceae Asteraceae Asteraceae Table 2a. Continued.

223 DARWINIANA 50(2): 218-251. 2012 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 6.8 5.2 7.0 8.4 7.8 11.2 11.4 25.5 10.5 10.1 10.2 13.2 21.5 26.6 10.4 25.5 12.6 26.3 33.7 30.9 12.0 9.9 - 10.7 8.1 - 10.5 5.4 - 12.7 11.8 - 20.7 11.8 11.2 - 14.6 11.2 - 14.2 11.2 13.8 - 14.6 13.2 - 16.6 17.0 - 17.9 10.0 - 10.9 17.0 - 23.9 14.6 - 18.3 16.4 - 29.0 20.3 - 27.9 10.0 - 10.1 25.4 - 26.8 25.1 - 28.0 10.8 - 12.2 25.7 - 27.5 25.5 - 28.0 23.5 - 31.8 20.6 - 27.0 25.8 - 27.3 17.0 - 25.3 570 970 360 1110 3337 4070 4100 2930 3100 3395 4400 3510 1880 3750 4520 1710 4750 1420 2620 3450 480 - 1860 950 - 1640 380 - 1260 1155 - 1620 1155 1170 - 1675 1170 4140 - 4940 2560 - 2640 3360 - 3810 2720 - 3280 2750 - 3510 2010 - 3055 1890 - 2270 2190 - 2640 3430 - 3750 1800 - 2270 1380 - 2210 3520 - 4100 1495 - 1660 4000 - 4150 1495 - 1630 1750 - 2000 1740 - 2270 3500 - 4810 2640 - 3980 2670 - 3900

0.50 0.65 0.75 0.74 0.50 0.50 0.50 0.80 0.68 0.50 0.51 0.50 0.80 0.65 0.50 0.68 0.65 0.50 0.88 0.50 0.81 0.50 0.75 0.92 0.79 0.68 0.66 0.92 0.69 1.00 1.00 0.88 0.66 1.00 0.78 1.00 0.55 0.71 0.69 0.70 0.66 0.90 0.66 0.79 0.97 0.77 0.79 0.80 0.81 0.76 0.88 0.81 1.00 0.96 0.92

0.77 0.85 0.80 0.84 0.69 0.92 0.86 0.86 0.79 0.83 0.75 0.87 0.65 0.48 0.54 0.09 0.27 0.70 0.92 0.88 0.80 0.81 0.46 0.83 0.80 0.83 0.84 0.86 0.71 0.91 (4) (7) (1) Cabrera (2) (1) (2) (4) (1) (1) (Romanczuk & Boelcke) Al-Shehbaz & (Romanczuk & Boelcke) (Werderm.) Backeb. (3) (Werderm.) (3) Hauman ex Castillón (3) (K. Schum.) Backeb. (3) (1) Ahumada (2) (Griseb.) Fabris (2) Al-Shehbaz (1) Griseb. (9) Al-Shehbaz (1) Hauman (3) C. Ezcurra Rahn (3) Cabrera (5) (Werderm.) Buining (2) (Werderm.) L.B. Sm. (1) (R.E. Fr.) Burkart (1) (R.E. Fr.) (T. Mey.) Pontiroli Mey.) (T. Legname (Griseb.) Goyder (1) (R. Kiesling) R. Kiesling (2) Cabrera (1) Cabrera (2) Zardini Backeb. Mez (4) Pax & K. Hoffm. (1) Pax & K. Hoffm. Sorarú (2) (2) Yunck. (Moldenke) N. O’Leary & P. Peralta (3) (Moldenke) N. O’Leary & P. (2) Astragalus fabrisii Gómez-Sosa (2) Astragalus punae I.M. Johnst. (1) Lobivia densispina Acalypha friesii Lobivia gonjianii Lobivia jajoiana Backeb. (1) Lobivia marsoneri (Werderm.) Gentianella multiflora Pyrrhocactus umadeave Pyrrhocactus Parodia chrysacanthion Parodia Rebutia marsoneri Werderm. (1) (Backeb.) D.R. Hunt & J. Iliff tilcarensis Tunilla Trichocereus fabrisii R. Kiesling (1) Trichocereus Pycnophyllum mucronulatum Mattf. (1) Pycnophyllum mucronulatum Cuscuta friesii Sedum jujuyense castilloniana Dioscorea Adesmia arenicola Philibertia affinis Aristolochia oranensis Gamochaeta longipedicellata Mutisia saltensis Cabrera Senecio tocomarensis Stevia centinelae Mart. Crov. (1) Sicyos ignarus Mart. Crov. Krapov. (1) Krapov. Nototriche macrotuba Aphelandra lilacina Matelea schreiteri Matelea schreiteri Vernonia lipeoensis Vernonia novarae Cabrera Vernonia Lepidium jujuyanum Petroravenia eseptata Petroravenia Pitcairnia saltensis Parodia nivosa Backeb. Parodia Maytenus cuezzoi Krapov. (1) latearistata Krapov. Tarasa Barbaceniopsis humahuaquensis Noher (4) Junellia ballsii Mulinum axilliflorum Macropharynx meyeri (C. Ezcurra) Xifreda Macropharynx Exhalimolobos burkartii C.D. Bailey Puya micrantha Chloraea cogniauxii Plantago jujuyensis Pilea jujuyensis Fabaceae Fabaceae Cactaceae Euphorbiaceae Cactaceae Cactaceae Cactaceae Gentianaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Caryophyllaceae Convolvulaceae Crassulaceae Dioscoreaceae Fabaceae Apocynaceae Aristolochiaceae Asteraceae Asteraceae Asteraceae Asteraceae Cucurbitaceae Malvaceae Acanthaceae Apocynaceae Asteraceae Asteraceae Brassicaceae Brassicaceae Bromeliaceae Cactaceae Celastraceae Malvaceae Velloziaceae Verbenaceae Apiaceae Apocynaceae Brassicaceae Bromeliaceae Orchidaceae Plantaginaceae Urticaceae Table 2a. Continued.

224 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 8 8 8 8 8 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7.8 33.7 20.5 26.5 28.0 5.4 - 9.0 7.0 - 11.8 8.4 - 17.0 6.6 - 13.7 8.4 - 17.0 9.0 - 10.5 7.1 - 12.9 8.3 - 13.5 9.0 - 20.1 8.1 - 18.9 6.8 - 17.0 8.4 - 16.6 6.2 - 15.2 8.0 - 15.4 9.2 - 10.9 7.9 - 13.7 9.2 - 21.6 11.2 - 15.6 11.2 11.8 - 16.6 11.8 11.8 - 16.9 11.8 - 26.8 11.4 11.9 - 18.9 11.9 11.8 - 34.7 11.8 11.2 - 17.3 11.2 16.5 - 30.3 14.6 - 16.5 10.7 - 27.7 17.0 - 26.7 10.1 - 16.5 10.5 - 13.7 15.2 - 28.0 17.9 - 40.4 17.7 - 23.6 26.7 - 30.3 12.0 - 17.3 24.1 - 29.1 24.2 - 27.9 22.7 - 31.6 21.2 - 27.0 10.1 - 13. 7 18.3 - 28. 0 360 570 4520 1640 1480 350 - 460 470 - 2450 785 - 1390 3770 - 4110 2270 - 4110 1150 - 1500 1150 1155 - 1470 1155 2270 - 4000 1390 - 2680 3260 - 3830 4010 - 5080 1605 - 4160 3100 - 3680 1590 - 2460 3500 - 4070 4000 - 4410 2670 - 4150 2940 - 4160 2610 - 2930 2640 - 3890 2255 - 3030 1540 - 2270 2385 - 4150 1330 - 3100 2600 - 4330 2600 - 3280 2530 - 4100 2270 - 4140 4080 - 4810 1200 - 2860 3460 - 4350 2670 - 4250 4505 - 4810 2650 - 3750 2750 - 3900 1495 - 2190 3230 - 3430 2530 - 4010 1290 - 1770 2075 - 3230 1355 - 1750

0.83 0.80 0.63 0.74 0.85 0.93 0.79 0.76 0.80 0.76 0.79 0.85 0.80 0.68 0.78 0.51 0.78 0.87 0.88 0.80 0.73 0.88 0.87 0.83 0.82 0.77 0.85 0.66 0.70 0.77 0.77 0.94 0.75 0.74 0.83 0.80 0.79 0.75 0.86 0.60 0.83 0.74 0.81 0.79 0.88 0.85 0.73 0.66 0.80 0.88 0.88 0.88 0.78 0.73 0.73 0.80 0.78 0.88 0.70 0.69 0.90 0.57 0.70 0.72 0.67 0.66 0.68 0.77 0.77 0.85

0.57 0.80 0.16 0.81 0.92 0.80 0.82 0.88 0.90 0.33 (2) (8) (4) (5) . (8) Pontiroli (T. Mey.) Goyder & Rapini (3) Mey.) (T. Poelln. (8) Bacigalupo (5) (R.E. Fr.) S.F. Blake S.F. (R.E. Fr.) (4) (3) (Backeb.) R. Kiesling (4) B.L. Burtt & A.W. Hill (3) A.W. B.L. Burtt & Cabrera (5) Sparre (2) (Cabrera) Cabrera (3) (21) R.E. Fr. Cabrera (5) (Malme) Goyder (14) Parodi (1) Villa (1) Villa Caro & E.A. Sánchez (5) Cabrera (3) Cabrera & Botta (9) (5) Wessner (Fric) Rausch (10) A.W. Hill (3) A.W. L.B. Sm. & B.G. Schub. (3) Cabrera (4) (Caro & E.A. Sánchez) Peñailillo (2) Al-Shehbaz (5) Bocquet Speg. (2) Cabrera (6) Burkart ex Ulibarri (7) Bocquet Cabrera (12) Solanum calileguae Valeriana altoandina Valeriana Eragrostis andicola Eragrostis Bartsia jujuyensis Peñailillo (Torres) brevis Anatherostipa Aristida pubescens Ipomoea volcanensis O’Donell (9) Adesmia friesii Sm. (2) Lupinus jujuyensis C.P. Nototriche castillonii Nototriche friesii Silene haumanii Lobivia nigricans Maihueniopsis minuta (Werderm.) Backeb stuemeri (Werderm.) Parodia Silene bersieri (3) H. Wolff Bowlesia hieronymusii Oxypetalum tucumanense Philibertia barbata Cypella elegans Krapov. (2) Krapov. Nototriche cabrerae Trichocline macrorhiza Cabrera (6) macrorhiza Trichocline Begonia sleumeri Al-Shehbaz Dictyophragmus punensis (Romanczuk) (5) Mancoa venturii Lobivia einsteinii Hippeastrum aglaiae (A. Cast.) Hunz. & Cocucci (13) Anthericum hickenianum Peperomia aldrinii Peperomia Senecio punae Stevia jujuyensis Anatherostipa henrardiana (Parodi) Peñailillo henrardiana Anatherostipa Henrard (1) Aristida pedroensis Microliabum humile Microliabum Mikania jujuyensis Senecio infimus Chusquea deficiens Jarava breviseta (11) Nassella novari Torres Psychotria argentinensis Solanum fabrisii Cabrera (1) (R.E. Fr.) Traub (4) Traub Zephyranthes andina (R.E. Fr.) Metastelma microgynostegia Metastelma microgynostegia suffrutescens Flourensia Solanum zuloagae Cabrera (2) willinkii Tropaeolum Solanaceae Valerianaceae Poaceae Orobanchaceae Poaceae Poaceae Convolvulaceae Fabaceae Fabaceae Malvaceae Malvaceae Caryophyllaceae Cactaceae Cactaceae Cactaceae Caryophyllaceae Apiaceae Apocynaceae Apocynaceae Iridaceae Malvaceae Asteraceae Begoniaceae Brassicaceae Brassicaceae Cactaceae Amaryllidaceae Anthericaceae Piperaceae Asteraceae Asteraceae Poaceae Poaceae Asteraceae Asteraceae Asteraceae Poaceae Poaceae Poaceae Rubiaceae Solanaceae Amaryllidaceae Apocynaceae Asteraceae Solanaceae Tropaeolaceae Table 2a. Continued.

225 DARWINIANA 50(2): 218-251. 2012 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 19.0 5.3 - 8.1 12.6 - 17 6.9 - 11.2 9.1 - 17.1 9.2 - 30.4 9.7 - 18.1 9.1 - 22.7 8.0 - 22.0 7.2 - 18.0 5.2 - 12.9 6.8 - 15.2 8.5 - 20.1 9.7 - 18.3 9.5 - 14.8 7.5 - 19.1 8.9 - 13.4 9.6 - 18.6 9.1 - 30.7 6.9 - 17.0 5.2 - 28. 0 11.2 - 33.3 11.2 11.8 - 16.6 11.8 11.4 - 17.0 11.4 15.6 - 23.8 16.7 - 27.7 10.7 - 18.2 12.2 - 34.5 8.75 - 28.2 12.2 - 40.3 17.1 - 27.4 13.6 - 16.2 12.2 - 13.3 12.6 - 22.0 24.5 - 32.5 23.4 - 33.6 22.8 - 36.6 10.7 - 20.3 10.8 - 29.0 13.8 - 34.4 12.2 - 24.8 10.3 - 28.0 21.3 - 40.3 12.8 - 34.4 10.4 - 32.5 2190 980 - 4110 770 - 3285 830 - 3395 690 - 3460 820 - 2070 460 - 1590 390 - 1495 710 - 1920 790 - 2270 830 - 2730 710 - 3180 460 - 1465 650 - 2600 1110 - 2640 1110 1160 - 4035 1160 1150 - 3040 1150 2110 - 2170 2110 2110 - 3290 2110 3950 - 4110 1150 - 1920 1150 2110 - 2640 2110 1880 - 3100 1605 - 2140 2400 - 3040 1420 - 3070 2880 - 4540 1580 - 3250 2640 - 3100 2650 - 3660 1705 - 4670 1760 - 2190 3100 - 4250 2700 - 3040 2830 - 4610 2850 - 3890 1820 - 2970 2140 - 3040 3460 - 5000 1070 - 2710 2325 - 4470 1400 - 2570 3350 - 4400 2270 - 3980 1980 - 3270

0.73 0.91 0.66 0.50 0.88 0.43 0.53 0.60 0.86 0.80 0.91 0.88 0.45 0.93 0.68 0.86 0.66 0.74 0.71 0.46 0.61 0.77 0.73 0.87 0.84 0.83 0.79 0.72 0.88 0.62 0.75 0.79 0.82 0.88 0.75 0.72 0.80 0.78 0.78 0.79 0.78 0.76 0. 80 0.85 0.77 0.77 0.76 1.00 0.73 0.70 0.49 0.75 0.78 0.72 0.84 0.83 0.68 0.77 0.66 0.97 0.80 0.82 0.83 0.73 0.79 0.87 0.89 0.81 0.75 0.83 0.90 0.79 0.69 0.83 0.93 0.76 0.64 0.76 0.77 0.79 0.72 0.65 0.80 0.79 0.85 0.76 0.89 0.73

0.82 0.77 0.46 0.83 0.82 (3) (3) (4) (8) (6) (3) (Speg.) Speg. (4) Seeligm. (Speg.) O.E. Schulz (8) (Hauman) Guagl. (9) (F.A.C. Weber) Britton & Rose Weber) (F.A.C. (R.E. Fr.) Hunz. (11) (R.E. Fr.) Pax (13) (Griseb.) Goyder (6) (Zahn) Sleumer C.V. Morton (10) C.V. (Griseb.) J.S. Pringle (4) Cabrera (1) (Ravenna) Roitman & A. Castillo (Ravenna) Roitman & R.C. Foster (2) (Gilg) Fabris (7) Cabrera (4) (Lillo & Hauman) Garay (4) C.V. Morton (18) C.V. Borsini (6) Griseb. (17) Cabrera (4) Lillo ex Lourteig & O´Donell (4) K. Schum. (15) I.M. Johnst. (11) Lillo (9) Hawkes & Hjert. (7) Job (11) (Griseb.) Goyder (7) Mez (4) A. Cast. (5) A. Cast. (13) Senecio cremeiflorus Mattf. (11) Senecio cremeiflorus Holocheilus fabrisii Hysterionica aberrans (Cabrera) Cabrera Hieracium tucumanicum (Zahn) Sleumer Flourensia riparia Griseb. (17) Flourensia Gnaphalium yalaense Griseb. (6) repens Gutierrezia Hieracium niederleinii Austropeucedanum oreopansil (Griseb.) Mathias & Constance (6) oreopansil Austropeucedanum Philibertia nivea Schickendantziella trichosepala radiata Pedersen (8) Gomphrena speciosa Hieronymiella Schinus gracilipes Anthericum argentinense C. Ezcurra (8) Dicliptera cabrerae macrocephala Bomarea Astragalus burkartii I.M. Johnst. (7) Gentianella cosmantha Gentianella tubulosa venturi Cardenanthus Ennealophus simplex Caiophora nivalis (8) meyeri Krapov. Tarasa Chloraea subpandurata Hauman (7) Sacoila secundiflora Solanum collectaneum Solanum delitescens Solanum venturii Buchenau (9) argentinum Tropaeolum tucumana Valeriana Puya smithii friesii Tillandsia Rebutia minuscula thelegonus Trichocereus Acalypha schreiteri Berberis lilloana Draba burkartiana O.E. Schulz (4) chionophila Parodiodoxa Flourensia macroligulata macroligulata Flourensia Cabrera (4) Senecio catamarcensis Puya lilloi Senecio flagellifolius Trichocline exscapa Trichocline Philibertia cionophora Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Apiaceae Apocynaceae Alliaceae Amaranthaceae Amaryllidaceae Anacardiaceae Anthericaceae Acanthaceae Alstroemeriaceae Fabaceae Gentianaceae Gentianaceae Iridaceae Iridaceae Loasaceae Malvaceae Orchidaceae Orchidaceae Solanaceae Solanaceae Solanaceae Tropaeolaceae Valerianaceae Bromeliaceae Bromeliaceae Cactaceae Cactaceae Euphorbiaceae Berberidaceae Brassicaceae Brassicaceae Asteraceae Asteraceae Bromeliaceae Asteraceae Asteraceae Apocynaceae Table 2a. Continued.

226 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 9 9 9 9 9 9 9 9 9 9 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 16.6 6.1 - 6.2 4.8 - 11.0 6.2 - 11.9 5.1 - 12.9 6.4 - 10.2 6.2 - 12.9 5.8 - 27.1 9.7 - 17.0 7.3 - 19.2 6.8 - 27.9 9.9 - 26.6 7.5 - 18.7 9.2 - 24.7 9.1 - 29.0 6.3 - 28.0 7.0 - 14.1 8.9 - 13.3 5.3 - 19.6 6.7 - 15.5 5.9 - 16.6 6.6 - 16.6 8.5 - 17.0 4.6 - 10.5 8.8 - 12.0 4.1 - 16.7 7.5 - 17.2 11.0 - 17.0 11.0 11.0 - 18.1 11.0 11.0 - 18.1 11.0 11.5 - 28.1 11.5 11.0 - 14.8 11.0 15.2 - 28.4 12.8 - 19.6 10.1 - 15.9 10.4 - 17.8 12.2 - 26.4 12.2 - 25.9 10.7 - 18.1 15.2 - 25.5 13.6 - 17.4 10.3 - 31.7 12.2 - 14.1 8.81 - 18.58 11.48 - 20.72 11.48 3280 840 - 2665 770 - 4810 730 - 3410 295 - 3100 330 - 2270 470 - 3460 820 - 3240 400 - 2130 350 - 2610 750 - 2320 1110 - 2930 1110 1110 - 2100 1110 1130 - 1840 1130 3110 - 4000 3110 1410 - 2230 2240 - 3830 1660 - 3680 1815 - 3195 2270 - 3100 2490 - 3510 1490 - 2430 2460 - 3400 2300 - 3460 3395 - 4580 1660 - 3180 3260 - 3860 1800 - 3940 3400 - 4160 2270 - 4140 2270 - 3460 1710 - 1840 1900 - 3690 2600 - 3940 2030 - 4090 1860 - 4350 1670 - 3220 1230 - 2770 1030 - 2780 2100 - 3000 3040 - 3615 2670 - 3720 1985 - 2740 1290 - 3160 2000 - 3000

0.73 0.68 0.51 0.70 0.89 0.70 0.85 0.64 0.52 0.90 0.79 0.76 0.90 0.79 0.51 0.89 0.82 0.85 0.79 0.72 0.73 0.83 0.76 0.75 0.88 0.89 0.81 0.71 0.78 0.73 0.90 0.88 0.80 0.74 0.84 0.71 0.71 0.71 0.77 0.69 0.75 0.55 0.46 0.72 0.79 0.81 0.68 0.86 0.85 0.81 0.78 0.76 0.66 0.76 0.83 0.70 0.76 0.59 0.78 0.83 0.81 0.73 0.73 0.73 0.77 0.59 0.75 0.84 0.78 0.74 0.57 0.72

0.78 0.76 0.86 0.79 0.44 (4) (28) (1) (O.E. Al-Shehbaz (2) Schulz) (4) Britton & Rose (I.M. Johnst.) Rothm. (8) R. Kiesling (2) (6) (9) (3) G.A. Wheeler (7) Mart. Crov. Tronc.(13) (2) I.M. Johnst. (9) (Griseb.) T.N. Ho & S.W. Liu (6) Ho & S.W. T.N. (Griseb.) C.P. Sm. (5) C.P. Heering (4) Speg. (7) Griseb. (22) (Speg.) Britton & Rose (Griseb.) Höck (10) Standl.(9) Ariza (6) (Moldenke) Botta (17) Ravenna Cabrera (3) W. Till W. Castillón Hack. (3) O’Donell (6) (F.A.C. Weber) A. Berger (3) A. Berger Weber) (F.A.C. Cabrera (8) (W. Becker) Xifreda & Sanso(9) (W. Bitter & Wittm. (6) Wittm. Bitter & (Hauman) Geltman (4) Cabreraea andina (Cabrera) Bonifacino (5) Cabreraea Blake hirta S.F. Flourensia Senecio diaguita Baccharis niederleinii Baccharis kurtziana Urtica lilloi polybotrya Valeriana Glandularia lilloana Lantana magnibracteata (11) Tronc. Lantana tilcarensis castillonii Viola Zephyranthes diluta (C.V. Morton) Cabrera (6) Solanum montigenum (C.V. Solanum vernei Tetraglochin paucijugatum Tetraglochin Manettia jorgensenii Gentianella hieronymi (Gilg) Fabris (16) Gentianella hieronymi Geranium leucanthum Griseb. (11) Ennealophus fimbriatus Ravenna (12) Craniolaria argentina (7) Eggli & Nyffeler Phemeranthus punae (R.E. Fr.) Festuca superba Parodi ex Türpe (14) Festuca uninodis (12) (Speg.) Torres Nassella arcaënsis (8) Nassella parva Torres Poa ragonesei Nicora (2) andicola Zapater & Sulekic (17) Tragus Lindau Rumex lorentzianus Carex pseudomacloviana Carex C.P. Sm. (3) Lupinus ultramontanus C.P. Gentianella bromifolia Gentianella bromifolia Ipomoea lilloana Pteropepon argentinense argentinense Pteropepon Astragalus joergensenii Lupinus austrorientalis Tagetes riojana M. Ferraro (4) Tagetes Lobivia famatimensis kattermannii Pyrrhocactus Polypsecadium tucumanense Senecio sanagastae Puya volcanensis zecheri Tillandsia Gymnocalycium spegazzinii Rebutia deminuta Stellaria cryptopetala Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Urticaceae Valerianaceae Verbenaceae Verbenaceae Verbenaceae Violaceae Amaryllidaceae Solanaceae Solanaceae Rosaceae Rubiaceae Gentianaceae Geraniaceae Iridaceae Martyniaceae Montiaceae Poaceae Poaceae Poaceae Poaceae Poaceae Poaceae Polygonaceae Cyperaceae Fabaceae Gentianaceae Convolvulaceae Cucurbitaceae Fabaceae Fabaceae Asteraceae Cactaceae Cactaceae Brassicaceae Asteraceae Bromeliaceae Bromeliaceae Cactaceae Cactaceae Caryophyllaceae Table 2a. Continued.

227 DARWINIANA 50(2): 218-251. 2012 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 5,3 - 8,6 4.1 - 9.2 5.5 - 9.1 5.8 - 8.5 4.2 - 8.1 3.1 - 9.3 5.2 - 11.3 5,5 - 23,4 3.1 - 29.2 8.3 - 28.6 6.7 - 16.9 4.8 - 21.2 6.3 - 16.5 6.9 - 22.1 7.0 - 20.6 7.5 - 18.1 5.1 - 19.1 5.9 - 28.0 7.3 - 18.6 7.1 - 16.1 5.0 - 22.0 9.8 - 18.1 7.4 - 19.0 8.4 - 13.0 5.1 - 14.8 7.9 - 12.2 5.0 - 18.1 7.3 - 18.1 6.5 - 15.6 9.1 - 26.1 4.2 - 14.6 6.9 - 18.5 3.8 - 14.8 4.6 - 10.5 8.5 - 25.2 6.2 - 14.8 9.1 - 24.2 5.6 - 10.1 5,1 - 15,4 5,6 - 15,9 4.4 - 10.9 6.7 - 22-6 11.9 - 28.1 11.9 8.25 - 13.13 6.66 - 13.55 910 - 3180 600 - 3500 600 - 2720 560 - 2050 810 - 2550 567 - 2530 510 - 2765 620 - 1960 1140 - 3510 1140 - 2010 1170 1190 - 3510 1190 2750 - 4110 1410 - 3195 1220 - 2190 3500 - 4600 1780 - 2950 1530 - 4375 2245 - 3960 1580 - 4390 1850 - 4350 1070 - 3680 2270 - 4640 1065 - 3500 3105 - 4610 3000 - 4470 2250 - 3460 2505 - 3830 2770 - 4150 1250 - 3265 2830 - 4680 2340 - 4320 2420 - 3450 1500 - 4150 1030 - 2780 1740 - 3620 3200 - 3800 3180 - 4810 1310 - 3940 1470 - 3200 2180 - 3510 1070 - 2230 3590 - 4360 1460 - 2650 1920 - 4240 1730 - 4310

0,68 0.63 0.77 0,76 0.89 0.59 0.59 0.62 0.65 0.65 0.82 0.68 0.57 0.54 0.58 0.70 0.71 0.72 0.68 0.85 0.75 0.72 0.43 0.68 0.70 0.58 0.78 0.69 0.71 0.74 0.77 0.66 0.65 0.71 0.80 0.45 0.64 0,81 0,78 0.62 0,65 0.80 0,72 0.72 0.68 0.74 0.80 0.61 0.68 0.74 0.44 0.69 0.61 0.51 0,79

(8) (11) Zahn (8) Cabrera (6) Griseb. (14) (Britton & Rose) Backeb. (Parm. ex Pfeiff.) Britton & Rose (23) (Parm. ex Pfeiff.) Chodat (10) Griseb. (12) Cabrera (24) (6) H. Wolff (Speg.) Backeb. (11) Burkart (8) Di Fulvio (19) Griseb. (29) Griseb. (8) Grondona (10) (Griseb.) Heimerl (17) (Torres) Peñailillo (8) (Torres) Burkart (5) Hack. (19) Cabrera (8) (Radlk.) Hunz. (7) (Griseb.) Hunz. & Ariza (30) (Griseb.) Hunz. & Griseb. (21) Dammer (9) R.E. Fr . (29) Cabrera (9) (L. Bravo) H.S. Irwin & Barneby (7) Polygala jujuyensis Hack. (9) Poa hieronymi Poa nubensis Giussani, Fernández Pepi & Morrone (11) maximus Hauman (7) Sporobolus Polygala argentiniensis Caiophora mollis (Griseb.) Urb. & Gilg (6) Mirabilis bracteosa flexuosus Planchuelo (12) Bromus Jarava scabrifolia Nassella caespitosa Griseb. (27) Panicum chloroleucum Poa dolichophylla Euphorbia marayensis Subils (3) Balbisia calycina Pycnophyllum convexum Trichocereus terscheckii Trichocereus Draba tucumanensis O.E. Schulz (6) Thell. (8) Lepidium argentinum haumanii A. Cast. (7) Deuterocohnia weberi Tephrocactus Senecio schreiteri Senecio schreiteri Senecio pseudotites Senecio octolepis Senecio cylindrocephalus Cabrera (5) Senecio cylindrocephalus Senecio friesii Chersodoma glabriuscula (Cabrera) M.O. Dillon & Sagást. Chuquiraga calchaquina Hieracium streptochaetum Hieracium streptochaetum Hyaloseris rubicunda Griseb. (21) Mutisia kurtzii Senecio argophylloides Bitter & Wittm. (3) Wittm. Solanum kurtzianum Bitter & Hieronymiella marginata (Pax) Hunz. (15) marginata Hieronymiella kurtzii Bacigalupo Anacampseros Mulinum famatinense Baccharis rupestris Heering (17) Kuntze (9) Conyza cordata Chersodoma argentina Adesmia nanolignea Senna fabrisii Guindilia cristata kurtzii Sclerophylax Fabiana friesii Tephrocactus alexanderi Tephrocactus Adesmia hunzikeri Polygalaceae Poaceae Poaceae Poaceae Polygalaceae Loasaceae Nyctaginaceae Poaceae Poaceae Poaceae Poaceae Poaceae Euphorbiaceae Ledocarpaceae Caryophyllaceae Cactaceae Brassicaceae Brassicaceae Bromeliaceae Cactaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Solanaceae Amaryllidaceae Anacampserotaceae Apiaceae Asteraceae Asteraceae Asteraceae Fabaceae Fabaceae Sapindaceae Solanaceae Solanaceae Cactaceae Fabaceae Table 2a. Continued.

228 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 11* 11* 11* 11* 11* 11* 11* 11* 11* 10* 10* 10* 10* 10* 9,1 9,5 7,0 9,6 8,4 6,4 11,8 11,5 10,6 22,1 14,1 6,3 - 29 4,0 - 9,6 5,9 - 9,2 8,2 - 9,0 4,3 - 6,8 6,3 - 9,9 6,2 - 8,4 5,4 - 9,0 5,8 - 9,2 6,7 - 9,3 7,8 - 8,3 6,8 - 8,4 8,1 - 8,7 9,2 - 9,5 3,3 -23,7 4,9 - 11.9 6,5 - 11,8 6,1 - 11,3 4,1 - 19,9 4,7 - 17,0 9,2 - 17,4 4,2 - 19,1 5,1 - 17,0 4,0 - 10,6 5,3 - 12,9 4,3 - 16,7 4,3 - 15,3 5,9 - 10,5 9,7 - 12,9 6,9 - 10,2 10,9 - 15,1 12,5 - 21,7 19,0 - 19,9 18,7 - 36,6 800 1160 1880 1720 3540 1650 4150 1705 2480 2240 970 - 2710 610 - 2600 670 - 2460 740 - 1290 940 - 3520 910 - 3290 810 - 1650 1140 - 3200 1140 - 2900 1150 2110 - 2930 2110 1060 - 3265 1530 - 4100 1750 - 3500 2580 - 4070 1670 - 4610 2102 - 4170 2260 - 3230 3040 - 3195 2900 - 3015 1620 - 2300 1840 - 4390 1540 - 1965 1640 - 3440 1650 - 3510 2610 - 3230 1480 - 2190 1640 - 1740 3000 - 4200 2220 - 2480 2730 - 2820 1590 - 2820 3260 - 3950 3260 - 3565 3230 - 3540 1000 - 1820

0,74 0,81 0,54 0,73 0,74 0,64 0,47 0,76 0,81 0,77 0,84 0,82 0,86 0,88 0,85 0,79 0, 75 0,61 0,77 0,84 0,72 0,61 0,71 0,93 0,88 0,90 0,83 0,74 0,62 0,88 0,75 0,85 0,87 0,93 0,89 1,00 0,82 0,80 1,00 0,80 0,82 0,79 0,88 0,80 0,90 0,88 0,80 0,90 0,89 0,74

0,91 0,44 0,75 0,60 1,00 0,85 0,92 0,75 0,50 0,90 0,81 0,86 0,53 1,00 1,00 (2) (3) (10) (1) (Speg.) Backeb. (11) (3) (2) (1) Di Fulvio (7) (8) (Cels) Britton & Rose (35) (Griseb.) B.B. Simpson (19) Hieron. ex Griseb. (40) Di Fulvio (23) Di Fulvio (10) (Speg.) Backeb. (3) L. Hrom. (1) (Backeb.) Backeb. R. Kiesling (2) Hauman (6) Bitter Subils Verv. (1) Verv. Moldenke (15) (Malme) Goyder (1) Backeb. A.W. Hill (1) A.W. Fechser & Steeg (1) (Werderm.) Backeb. (2) (Werderm.) Fenzl (10) Griseb. (14) L.B. Sm. (6) Sulekic & Rúgolo M.N. Correa (1) F.A. Barkley (8) F.A. R. Knuth (24) E. Morren ex Mez (5) R. Kiesling (1) Plectrocarpa rougesii Descole, O´Donell & Lourteig (18) rougesii Plectrocarpa Gymnocalycium saglionis Adesmia cytisoides Hoffmannseggia pumilio Oenothera lasiocarpa Griseb . (8) Oxalis famatinae Jarava media (Speg.) Peñailillo (24) Ravenna (5) aurea Hieronymiella W. Becker (2) W. hieronymi Viola Bulnesia schickendantzii Philibertia subnivea Porophyllum cabrerae D.J.N. Hind (2) cabrerae Porophyllum Jaborosa sativa (Miers) Hunz. & Barboza Jaborosa Lycium schreiteri schreiteri Lycium adnatifolia Sclerophylax caducifructus Sclerophylax Sclerophylax tenuicaulis Sclerophylax Solanum spegazzinii Bitter Aloysia castellanosii Verbesina saltensis Cabrera (1) Verbesina Pelexia ovatifolia Ixorhea tschudiana Ixorhea Glyceria saltensis Puya castellanosii Puya weberiana Acanthocalycium thionanthum Fric ex Y. Ito (2) Y. Gymnocalycium marsoneri Fric ex Tillandsia albertiana Tillandsia (Werderm.) Werderm. (2) Werderm. (Werderm.) Lobivia korethroides Parodia aureicentra aureicentra Parodia Parodia penicillata Parodia Tephrocactus molinensis Tephrocactus Trichocereus angelesii Trichocereus Senna rigidicaulis (Burkart ex L. Bravo) H.S. Irwin & Barneby Geranium tafiense Aedo & Muñoz Garm. (2) Nototriche lorentzii Nototriche lorentzii Solanum incurvipilum Solanum salamancae Hunz. & Barboza (3) R.E. Fr. (2) R.E. Fr. Baccharis petrophila brealitoensis Tillandsia Lobivia chrysantha Lobivia walteri Trichocereus smrzianus Trichocereus Dioscorea stenopetala Dioscorea Euphorbia vervoorstii Zygophyllaceae Cactaceae Fabaceae Fabaceae Onagraceae Oxalidaceae Poaceae Amaryllidaceae Violaceae Zygophyllaceae Apocynaceae Asteraceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Verbenaceae Asteraceae Orchidaceae Boraginaceae Poaceae Bromeliaceae Bromeliaceae Cactaceae Cactaceae Bromeliaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Fabaceae Geraniaceae Malvaceae Solanaceae Solanaceae Asteraceae Bromeliaceae Cactaceae Cactaceae Cactaceae Dioscoreaceae Euphorbiaceae Table 2a. Continued.

229 DARWINIANA 50(2): 218-251. 2012 14 14 15 13 14 14 14 14 14 14 14 14 14 15 15 15 15 13 13 13 13 13 13 13 14 15 15 12 12 12 12 12 13 13 13 12 12 12 15 15 15 15 15 15 15 5,5 3,1 4,3 7,3 5,5 7,2 4,5 7,3 9,6 7,6 8,3 8.3 12,2 15,1 15,6 10,7 4,1 - 5,3 4,3 - 4,7 5,5 - 5,7 3,3 - 5,5 3,1 - 3,3 5,6 - 7,0 7,9 - 9,0 3,7 - 4,4 3,8 - 9,0 8,4 - 8,5 5,1 - 6,6 3,6 - 5,6 4,3 - 8,4 5,7 - 9,0 5,8 - 9,7 4,3 - 11,4 6,3 - 18,6 9,2 - 15,6 5,5 - 10,8 5,5 - 18,1 9,7 - 15,6 11,7 - 12,2 11,7 11,4 - 19,1 11,4 11.4 - 13.2 11.4 11.4 - 14.7 11.4 12,2 - 14,1 22,1 - 28,8 15,7 - 22,0 12.2 - 15.0 600 1810 2600 2150 3410 4240 3740 3040 2940 2960 3410 1955 2860 2885 3250 3250 660 - 975 660 - 920 820 - 1070 600 - 1330 580 - 1590 1645 - 3070 3040 - 3615 4090 - 4240 3140 - 3690 2600 - 2900 2730 - 3420 1790 - 1800 1610 - 2130 2890 - 3430 2180 - 2590 1420 - 1820 2580 - 3230 1640 - 2900 4370 - 5150 1810 - 4645 1510 - 2900 2160 - 2330 2510 - 3250 2300 - 3370 1900 - 3540 1720 - 3130 1740 - 3040 2570 - 3040 2930 - 3800

1,00 0,83 0,72 0,75 1,00 0,86 0,75 0,62 0,71 0,91 0,85 0,73 0,53 0,74 0,82 0,73 0,68 1.00 0,90 0,88 0,80 0,80 0,88 0,75 0,84 0,88 0,90 0,69 1,00 0,69 0,80 0,48 0,88 0,75 0,85 1,00 0,54 0,70 0,88 0,64 0,69 0,82 0,73 0,81 0,61 0,66 0,73 0,46 0,86 0,74 0,76 0,70 0,74 0,61 0,88 0.80 0.84 0.88 0.80 0,51

0,92 0,68 0,77 0,75 0,79 0,75 0,93 0,77 0,68 0,65 0,76 0,92 0,92 0,92 0.88 0.93 0.92 0.78 (2) (2) (3) (2) (2) Suess. (8) Speg. (4) (Cabrera) A. Teles A. (Cabrera) (2) Teles (A. Cast.) Backeb. (4) (Speg.) Backeb. (1) (3) (1) Krapov. J.M. Porter (2) I.M. Johnst. (3) Hieron. (4) Suess. ( 3) Boelcke ex Mart.-Laborde (1) (2) Tombesi Di Fulvio (5) R. Kiesling (2) (Speg.) Britton & Rose (4) (Lillo ex T. Mey.) Liede & Meve Mey.) T. (Lillo ex Kraenzl. (1) Ariza (2) Zahn (4) Suess. (2) Cabrera & Zardini (1) Krapov. Cabrera (2) Griseb. (1) H. Wolff (2) H. Wolff Mathias & Constance (Griseb.) T.N. Ho & S.W. Liu (5) Ho & S.W. T.N. (Griseb.) Cabrera (2) D.J. Ferguson & R. Kiesling (1) D.J. Ferguson Cabrera (1) Rossow (1) Calceolaria lepidota Silene margaritae Bocquet (1) Silene margaritae Eryngium lorentzii Eryngium lorentzii Descurainia brevifructa Senecio lilloi Puna bonniae geometricus Tephrocactus (4) Lecanophora jarae (Phil.) Krapov. Nototriche chuculaensis Nototriche viridula Giliastrum castellanosii Barboza (3) cabrerae Jaborosa Alternanthera cinerella Bowlesia venturii samuelssonii Malme (1) Aristolochia melanoglossa Baccharis cabrerae Ariza (1) Baccharis cabrerae Heliotropium ruiz-lealii Heliotropium Pterocactus megliolii Pterocactus sanjuanensis (Speg.) Backeb. (3) Pyrrhocactus halophilus Tephrocactus calingastana Burkart (2) Prosopis roigii Viola Senecio belenensis Senecio delicatulus Jobinia glossostelma (Lillo) Liede & Meve Petalostelma sarcostemma (7) trisecta (Griseb.) Krapov. Tarasa Oxalis sleumeri Lourteig Anton Poa cabreriana & Ariza (5) cocuccii Sclerophylax Alternanthera cana cladotrichoides Gomphrena Chuquiraga echegarayi Senecio calingastensis Lobivia haematantha Gentianella pulla Senecio fabrisii Senecio vervoorstii Baccharis polygama Ariza (2) Baccharis rodriguezii Leptostelma tucumanense Hieracium cienegae Lomanthus calchaquinus (Cabrera) B. Nord. & Pelser (Cabrera) H. Rob. (1) eremophilum Microliabum Calceolariaceae Caryophyllaceae Apiaceae Brassicaceae Asteraceae Cactaceae Cactaceae Malvaceae Malvaceae Malvaceae Polemoniaceae Solanaceae Amaranthaceae Apiaceae Apocynaceae Aristolochiaceae Asteraceae Boraginaceae Cactaceae Cactaceae Cactaceae Fabaceae Violaceae Asteraceae Asteraceae Apocynaceae Apocynaceae Malvaceae Oxalidaceae Poaceae Solanaceae Amaranthaceae Amaranthaceae Asteraceae Asteraceae Cactaceae Gentianaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Table 2a. Continued.

230 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 18.2 10.1 17.8 12.2 15.0 13.3 34.4 13.1 12.2 17.8 10.4 8.3 - 8.6 9.1 - 11.3 9.1 - 11.2 8.6 - 15.8 9.3 - 19.3 8.4 - 14.9 9.3 - 14.6 6.9 - 12.2 9.6 - 34.0 9.1 - 12.5 9.7 - 34.5 11.8 - 12.7 11.8 11.0 - 15.8 11.0 15.2 - 28.4 12.2 - 24.5 12.2 - 19.7 12.2 - 32.4 15.0 - 26.4 10.1 - 14.7 15.7 - 19.9 12.3 - 17.8 24.4 - 31.8 10.5 - 19.6 18.6 - 21.3 17.8 - 21.3 15.7 - 29.2 14.2 - 34.4 15.4 - 25.3 12.9 - 18.6 12.4 - 17.8 12.4 - 34.4 12.2 - 15.7 12.4 - 18.1 10.7 - 12.9 1970 3210 4375 3040 1740 2700 1300 4560 3040 4375 2445 830 -2500 890 - 1490 990 - 3180 810 - 1070 530 - 1740 930 - 2030 940 - 1960 690 - 1960 560 - 2560 2320 - 3110 2110 - 3045 2110 4115 - 4460 4115 2100 - 3180 1860 - 2170 4190 - 4515 1820 - 3810 2100 - 3540 1260 - 3040 1660 - 1840 1880 - 2940 1280 - 1940 3210 - 3720 3720 - 4375 3360 - 3710 3510 - 4000 4470 - 4760 4420 - 4760 3230 - 3640 1510 - 1600 2840 - 3220 4460 - 4470 1650 - 4375 1710 - 3040 3460 - 4440

0.79 0.82 0.88 0.72 0.86 0.86 0.92 0.69 0.74 0.72 0.78 0.77 0.88 0.85 0.88 0.71 0.77 0.72 0.81 0.79 0.77 0.75 0.87 0.83 0.88 0.80 0.69 0.92 0.66 0.94 0.88 0.84 0.80 0.92 0.88 0.76 0.86 0.84 0.83 0.81 0.82 0.78 0.86 0.72 0.89

0.77 0.80 0.74 0.39 0.85 0.81 0.69 0.76 0.68 0.75 0.81 0.48 0.66 0.52 0.83 0.42 0.85 0.32 0.77 0.78 0.85 0.81 0.81 0.75 0.75 0.91 0.86 0.77 0.68 0.77 0.77 0.80 0.85 0.69 0.88 0.85 0.86 (3) (2) (3) (1) (1) (F.A.C. Weber) Britton & Rose Weber) (F.A.C. (L.M. Perry) Rothm. (1) W. Dietr. (4) Dietr. W. (2) Krapov. Rausch (2) (4) (4) (2) Hauman (2) R.C. Foster (1) Sleumer (6) (8) Cabrera (2) (2) Krapov. Griseb. (1) Krapov. (1) Krapov. Griseb. (3) Griseb. (2) W. Becker W. Speg. (2) Hauman (3) Cabrera (3) (3) (Speg.) Torres Speg. (3) Cabrera (2) (Dammer) Hunz. (8) Cabrera (1) Cabrera (2) A. Cast. (1) A. W. Hill (3) W. A. Pilg. (3) Lillo Torres (6) Torres Lourteig (Baker) B.L. Rob. Francey (8) Britton & Rose (4) W. Becker W. H. Till (4) Gymnocalycium bayrianum H. Till Lobivia bruchii Lobivia schreiteri Stellaria aphanantha Begonia tafiensis Acanthocalycium ferrarii Trichocereus schickendantzii Trichocereus Carex tucumanensis G.A. Wheeler (1) Carex Nassella fabrisii Nassella leptothera Ranunculus hilii Lachemilla grisebachiana Viola calchaquiensis Viola Viola lilloana Viola Mikania siambonensis Hieron. (1) Senecio cajonensis Senecio tucumanensis Tagetes rupestris Cabrera Tagetes Dioscorea entomophila Dioscorea Griseb. (3) Sophora rhynchocarpa Brackett Hypoxis catamarcensis Mastigostyla johnstoni (2) Krapov. Nototriche rohmederi Nototriche tucumana Chloraea phoenicea Plantago venturii Cestrum kunthii (Hunz.) Hunz. (3) Eriolarynx iochromoides Eriolarynx lorentzii Jaborosa oxipetala Jaborosa Hawkes (5) Solanum sanctae-rosae lasiocarpa Valeriana Senecio asplenifolius Senecio kunturinus Senecio maculatus Senecio roripifolius Mikania minima Sisyrinchium tucumanum Ravenna Caiophora aconquijae Nototriche caesia Nototriche cajonensis Nototriche calchaquensis Schreiteria macrocarpa (Speg.) Carolin (1) macrocarpa Schreiteria Chloraea castillonii Oenothera pedunculifolia Cactaceae Cactaceae Cactaceae Caryophyllaceae Begoniaceae Cactaceae Cactaceae Cyperaceae Poaceae Poaceae Ranunculaceae Rosaceae Violaceae Violaceae Asteraceae Asteraceae Asteraceae Asteraceae Dioscoreaceae Fabaceae Hypoxidaceae Iridaceae Malvaceae Malvaceae Orchidaceae Plantaginaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Valerianaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Iridaceae Loasaceae Malvaceae Malvaceae Malvaceae Montiaceae Orchidaceae Onagraceae Table 2a. Continued.

231 DARWINIANA 50(2): 218-251. 2012 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 16 16 16 17 15 16 17 17 15 17 17 17 15 17 17 17 17 17 17 17 17 17 17 17 4.3 15.7 24.3 16.5 17.3 17.4 15.8 16.8 18.1 16.6 15.5 15.6 15.5 15.3 17.0 14.5 2.8 - 8.9 8.9 - 15.9 6.4 - 13.7 5.7 - 10.4 7.7 - 16.5 3.9 - 14.8 9.0 - 16.0 6.2 - 12.8 6.1 - 36.6 5.1 - 12.9 6.9 - 19.0 5.2 - 18.6 7.6 - 15.9 7.8 - 17.8 6.5 - 15.0 4.4 - 10.6 3.4 - 21.3 6.8 - 17.4 12.6 - 15.7 12.2 - 13.3 16.8 - 17.9 10.5 - 17.8 23.4 - 25.1 16.6 - 16.8 15.9 - 16.5 12.2 - 34.5 22.4 - 31.7 17.1 - 18.4 16.0 - 35.0 180 280 3460 1800 3685 4300 3480 3610 3940 2990 3280 3540 3680 3540 4250 3520 310 - 750 410 -2420 400 - 1100 800 - 1275 560 - 1080 830 - 4090 560 - 1720 3510 - 4680 2310 - 3685 4070 - 4170 3400 - 3480 3220 - 3940 2470 - 4480 3000 - 4560 1660 - 1850 3280 - 3940 2410 - 3705 4150 - 4410 1000 - 2870 2815 - 4210 1050 - 4100 2940 - 4250 3480 - 4820 2960 - 4375 3705 - 4030 3040 - 4375 2610 - 3030 1310 - 2590 2490 - 4620

0.83

0.79 0.85 0.73 0.88 0.82 0.75 0.73 0.73 0.73 0.73 0.73 0.73 0.79 0.73 0.73 0.73

0.74 0.57 0.81 0.62 0.92 0.81 0.67 0.75 0.92 0.71 0.81 0.86 0.92 0.86 0.74 0.82 0.71 0.74 0.78 0.60 (4) (15) (11) (9) (1) (15) (10) (1) (2) M.G. López & Biurrun (6) (2) Backeb. (1) (1) (4) A. Cast. (1) Lillo & B.L. Rob. Ravenna Cabrera (39) Ravenna (1) (Ravenna) Ravenna S.F. Blake (4) S.F. Rausch (1) I.M. Johnst. (8) Hieron. (31) (Fabris) Fabris (1) Cabrera (1) (1) Wessner (Werderm.) Krapov. (2) Krapov. W. Becker W. Türpe (14) (1) Torres Ariza (5) (Speg.) Peñailillo Torres (9) Torres A. Cast. (3) Cabrera (1) Griseb. (21) Hieron. ex W. Becker W. Hieron. ex Chlidanthus yaviensis Ramorinoa girolae Speg. (6) Ramorinoa girolae Neobouteloua paucirracemosa Antennaria sleumeri C.V. Morton (10) Solanum annuum C.V. Viola evae Viola Justicia hunzikeri Gymnocalycium castellanosii Sleumer (2) Hieracium neofurcatum Stevia okadae Pappostipa hieronymusii (Pilg.) (4) Pappostipa hieronymusii lanigera (Phil.) Hunz. & Barboza Jaborosa W. Becker munozensis W. Viola Viola tucumanensis Viola Vernonia centauropsidea Hieron. (3) centauropsidea Vernonia Puya yakespala Lobivia chrysochete W. Becker W. rodriguezii Viola Lobivia sanguiniflora Backeb. (1) Rebutia margarethae Rebutia margarethae Gentianella cabrerae (Fabris) Fabris (1) Gentianella cabrerae Mastigostyla brachiandra Mastigostyla implicata Nototriche sleumeri Danthonia rugoloana Sulekic Jarava hystricina (11) Nassella glabripoda Torres Nassella meyeri Nassella yaviensis Descurainia adpressa Boelcke Descurainia adpressa Gymnocalycium ragonesei Gentianella punensis (St.-Yves ex Parodi) Nicora (St.-Yves Festuca parodiana Solanum neorossii Hawkes & Hjert. (2) Solanum neorossii Flourensia leptopoda Flourensia Stevia minor Carex humahuacaensis G.A. Wheeler (2) Carex Adesmia crassicaulis Phil. (4) Astragalus crypticus Festuca nemoralis Tropaeolum atrocapillare Sparre (2) atrocapillare Tropaeolum Habranthus ruizlealii Ravenna (1) Eupatorium tucumanense Chiliotrichiopsis keidelii Eupatorium saltense Amaryllidaceae Fabaceae Poaceae Asteraceae Solanaceae Violaceae Acanthaceae Cactaceae Asteraceae Asteraceae Poaceae Solanaceae Violaceae Violaceae Asteraceae Bromeliaceae Cactaceae Violaceae Cactaceae Cactaceae Gentianaceae Iridaceae Iridaceae Malvaceae Poaceae Poaceae Poaceae Poaceae Poaceae Brassicaceae Cactaceae Gentianaceae Poaceae Solanaceae Asteraceae Asteraceae Cyperaceae Fabaceae Fabaceae Poaceae Tropaeolaceae Amaryllidaceae Asteraceae Asteraceae Asteraceae Table 2a. Continued.

232 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes

Table 2b. Code of area names used in Table 2a. ic scheme of Cabrera (1951, 1953, 1976), and that ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 16 16 16 17 15 16 17 17 15 17 17 17 15 17 17 17 17 17 17 17 17 17 17 17 of Ibisch et al. (2003) for the Yungas forests. Ibisch Area Area Fig. et al. (2003) recognized the north-south oriented number Yungas forests that are found within our study re- 1 Ambato 4M gion as the Tucumano-Bolivian Yungas. Due to dif-

4.3 ferences in temperature, precipitation seasonality, 15.7 24.3 16.5 17.3 17.4 15.8 16.8 18.1 16.6 15.5 15.6 15.5 15.3 17.0 14.5 2 Andes La Rioja-San Juan 4F 2.8 - 8.9 8.9 - 15.9 6.4 - 13.7 5.7 - 10.4 7.7 - 16.5 3.9 - 14.8 9.0 - 16.0 6.2 - 12.8 6.1 - 36.6 5.1 - 12.9 6.9 - 19.0 5.2 - 18.6 7.6 - 15.9 7.8 - 17.8 6.5 - 15.0 4.4 - 10.6 3.4 - 21.3 6.8 - 17.4 12.6 - 15.7 12.2 - 13.3 16.8 - 17.9 10.5 - 17.8 23.4 - 25.1 16.6 - 16.8 15.9 - 16.5 12.2 - 34.5 22.4 - 31.7 17.1 - 18.4 16.0 - 35.0 3 South Bolivia-north NOA 4I and taxonomic composition the Tucumano-Bolivi- 4 Bolivian Prepuna 4J an Yungas were considered a phytogeographic unit Catamarca and La Rioja, distinct from the more tropical northwest-southeast 5 4P summits and dry inner valleys oriented Bolivian-Peruvian Yungas forests found 6 Famatina 4H north of the Andes bend (~18ºS). 180 280 3460 1800 3685 4300 3480 3610 3940 2990 3280 3540 3680 3540 4250 3520 6* Famatina, border 4H Data set 310 - 750 410 -2420 400 - 1100 800 - 1275 560 - 1080 830 - 4090 560 - 1720 3510 - 4680 2310 - 3685 4070 - 4170 3400 - 3480 3220 - 3940 2470 - 4480 3000 - 4560 1660 - 1850 3280 - 3940 2410 - 3705 4150 - 4410 1000 - 2870 2815 - 4210 1050 - 4100 2940 - 4250 3480 - 4820 2960 - 4375 3705 - 4030 3040 - 4375 2610 - 3030 1310 - 2590 2490 - 4620 7 Jujuy, core 4C 7* Jujuy, border 4C According to the catalogue of the Southern Cone flora (Zuloaga et al., 2008) 589 species of vascu- 7** Jujuy, core and border 4C lar plants are strictly endemic to the Argentinean

8 Jujuy-Tucumán, core 4E

0.83 portion of the study region which is approx. 1/3 of 8* Jujuy-Tucumán 4E the species endemic to Argentina in general (Zu- La Rioja and San Juan, summits 9 4Q loaga et al., 1999). We compiled the distribution and dry inner valleys of 513 endemic species excluding 40 species that 10 NOA 4B 0.79 0.85 0.73 0.88 0.82 0.75 0.73 0.73 0.73 0.73 0.73 0.73 0.79 0.73 0.73 0.73 were only known from localities that could not 10* NOA (San Juan) 4B be georeferenced with precision, while 36 species 11 Salta, core 4L were excluded as they were found outside the study 11* Salta 4L

region while we were compiling their distribution. 0.74 0.57 0.81 0.62 0.92 0.81 0.67 0.75 0.92 0.71 0.81 0.86 0.92 0.86 0.74 0.82 0.71 0.74 0.78 0.60 Salta-Catamarca, summits and 12 4O In addition to species endemic to north-western Ar- dry inner valleys gentina we added 27 species endemic to the Bolivi- 13 San Juan 4G an Prepuna or shared between the Bolivian Prepuna 14 Tinogasta - Belén 4N and north-western Argentina. These species were 15 Tucumán 4D (4) selected with assistance from Dr. Beck (the Na- 16 Valle Fértil 4R tional Herbarium, La Paz, Bolivia) as a checklist of

(15) 17 Yavi-Santa Victoria 4K vascular plants of Bolivia has not been completed (11) (9)

(1) yet. All endemic species as well as author names are found in Table 2. (15) (10) (1) ed in a phytogeographic scheme developed by Species distribution were compiled from collec- (2)

M.G. López & Biurrun Cabrera (1951, 1953, 1976) and Cabrera & Willink tions deposited in the herbaria BA, BAA, LIL, LP, (6) (2) Backeb. (1) (1) (4)

A. Cast. (1) (1973 - see Fig. 1) that is widely used by South LPB, and SI. We considered a species sufficient- Lillo & B.L. Rob. Ravenna Cabrera (39)

Ravenna (1) American biologists, as well as by governmental ly sampled when the distribution data reflected (Ravenna) Ravenna S.F. Blake (4) S.F. Rausch (1) I.M. Johnst. (8) Hieron. (31) (Fabris) Fabris (1) Cabrera (1) (1) Wessner (Werderm.) Krapov. (2) Krapov. W. Becker W. and non-governmental organizations (Ribichich, the distribution published in the Catalogue of the Türpe (14) (1) Torres Ariza (5) (Speg.) Peñailillo Torres (9) Torres A. Cast. (3) 2002). The study region includes xerophytic Cha- Plants of the Southern Cone (Zuloaga et al., 2008). Cabrera (1)

Griseb. (21) co vegetation in north-eastern lowlands, and arid Redundant locations were only georeferenced if Hieron. ex W. Becker W. Hieron. ex Monte vegetation in the south-eastern lowlands. the collections differed sufficiently in altitude to Subtropical moist broadleaf forests, locally known suggest that the species appears in several phyto- as Yungas, are found at the eastern slopes north of geographic strata. To facilitate the task of georef- Chlidanthus yaviensis Ramorinoa girolae Speg. (6) Ramorinoa girolae Neobouteloua paucirracemosa Antennaria sleumeri C.V. Morton (10) Solanum annuum C.V. Viola evae Viola Justicia hunzikeri Gymnocalycium castellanosii Sleumer (2) Hieracium neofurcatum Stevia okadae Pappostipa hieronymusii (Pilg.) (4) Pappostipa hieronymusii lanigera (Phil.) Hunz. & Barboza Jaborosa W. Becker munozensis W. Viola Viola tucumanensis Viola Vernonia centauropsidea Hieron. (3) centauropsidea Vernonia Puya yakespala Lobivia chrysochete W. Becker W. rodriguezii Viola Lobivia sanguiniflora Backeb. (1) Rebutia margarethae Rebutia margarethae Gentianella cabrerae (Fabris) Fabris (1) Gentianella cabrerae Mastigostyla brachiandra Mastigostyla implicata Nototriche sleumeri Danthonia rugoloana Sulekic Jarava hystricina (11) Nassella glabripoda Torres Nassella meyeri Nassella yaviensis Descurainia adpressa Boelcke Descurainia adpressa Gymnocalycium ragonesei Gentianella punensis (St.-Yves ex Parodi) Nicora (St.-Yves Festuca parodiana Solanum neorossii Hawkes & Hjert. (2) Solanum neorossii Flourensia leptopoda Flourensia Stevia minor Carex humahuacaensis G.A. Wheeler (2) Carex Adesmia crassicaulis Phil. (4) Astragalus crypticus Festuca nemoralis Tropaeolum atrocapillare Sparre (2) atrocapillare Tropaeolum Habranthus ruizlealii Ravenna (1) Eupatorium tucumanense Chiliotrichiopsis keidelii Eupatorium saltense 28º S. The Andes vegetation is furthermore divided erencing, specimens with altitude noted in the field in Puna vegetation between approx. 3500m-4500m by the collector were preferred. If the herbarium above which extends the high Andean grasslands vouchers were not sufficient to cover the published that reaches the line of perpetual snow. The Prepu- distributions we added published exsiccatae from na province - which is the only phytogeographic the original descriptions or monographies. Finally unit confined to the study region – extends north- we used the Missouri Botanical Garden data base south through the region on the dry mountain slopes TROPICOS® (http://www.tropicos.org) to com- approx. between 2400 m and 3500 m asl (Fig.1 and plete distribution data or to exclude species collect- Amaryllidaceae Fabaceae Poaceae Asteraceae Solanaceae Violaceae Acanthaceae Cactaceae Asteraceae Asteraceae Poaceae Solanaceae Violaceae Violaceae Asteraceae Bromeliaceae Cactaceae Violaceae Cactaceae Cactaceae Gentianaceae Iridaceae Iridaceae Malvaceae Poaceae Poaceae Poaceae Poaceae Poaceae Brassicaceae Cactaceae Gentianaceae Poaceae Solanaceae Asteraceae Asteraceae Cyperaceae Fabaceae Fabaceae Poaceae Tropaeolaceae Amaryllidaceae Asteraceae Asteraceae Asteraceae 2B). The present study follows the phytogeograph- ed outside the study region.

233 DARWINIANA 50(2): 218-251. 2012

Distribution data without corresponding vouch- species. Each area receives an endemism-score ac- ers deposited in public herbaria were only used for cording to the optimality criterion developed for some Bolivian endemics, where we added field ob- the method. The optimality criterion measures the servations from R. P. López, and also when compil- ‘fit’ of each species to the area, e.g. how well each ing species distribution within the Cactaceae. The species found within the area adjust to this. The op- Cactaceae are particularly species rich in the study timality criterion penalizes both absence in part of region (Mourelle & Ezcurra, 1996) but also one of the area as well as presence in adjacent cells outside the most underrepresented families in herbaria; as the area (if a species is present outside the area in a result, specimens deposited in public herbaria are a non-adjacent cell it is not considered among the far from covering the distribution of an individual species supporting the area). The endemism score species. Since the Cactaceae is one of the main tar- for each area is the sum of the ‘fit’ of the support- gets for commercial collectors the information on ing species. The endemism score is therefore influ- collection sites, found at -enthusiastic home- enced both by the number of species supporting an pages, is overwhelming and in sharp contrast with area as well as the distribution of the supporting the sparse information available from traditional species within and around the area (Szumik et al., academical sources. We choose to include infor- 2002; Szumik and Goloboff, 2004). mation from a private collector homepage (http:// The algorithms in NDM have lately been found ralph.cs.cf.ac.uk/Cacti/finder.html). This procedure to outperform other and more widespread methods was done after consulting a specialist on the family, for delimiting areas of endemism such as hierarchi- Dr. Roberto Kiesling, in order to avoid species that cal clustering (Carine et al., 2008; Escalante et al., are not easily recognized in the field. Data from this 2009). One of the advantages of NDM is its abili- source were also considered only when the loca- ty to recognize overlapping distribution patterns if tion, and altitude, agrees with the distribution range these are defined by different species groups. Over- defined in the Catalogue of the Plants of the South- lapping patterns may be independent if defined ern Cone (Zuloaga et al., 2008). by different sets of species (Szumik & Goloboff, A total of 3262 records were compiled and 2004), and are to be expected when distribution georeferenced. This gives an unimpressive av- analysis are based on grids if more than one envi- erage of six registers/species, which both re- ronments are found in the same cell. flect that species were not georeferenced, in the study, for redundant or proximate locations, and Grid and cell size that endemic species of north-western Argentina As discussed by Linder (2001) the choice of grid and southern Bolivia are usually rare and poorly size is important. The use of small cells would re- collected, many of them being only known from sult in a finer and more detailed resolution but at the the type material. same time increase the number of artificially empty All specimens without GPS recorded coor- cells where species occur but have not been record- dinates were georeferenced according to the ed. We used three different cell sizes to explore both point-radius method of Wieczorek et al. (2004). distribution patterns at different scale as well as the We carefully respected the altitudes of the col- robustness of the resulting areas to changes in grid lection sites in order to extract climate data with size (Aagesen et al., 2009; Navarro et al., 2009). as much accuracy as possible. All data have been Grids with cell sizes 0.2ºx0.2º, 0.5ºx0.5º, and 0.5ºx- submitted to the online version of Flora Argenti- 1.0º were used where 1º is approximately equal to na (http://www.floraargentina.edu.ar). 100 km. In the last grid we used rectangular cells rather than square cells because the north-south Analyses running Andes Mountains form a steep east-west We searched for areas of endemism using the altitude gradient that causes various habitat changes program NDM/VNDM ver. 2.7c (Goloboff, 2005). within 100 km. The rectangular cells were used to VNDM is a grid based method that identifies an explore north-south running patterns of widely dis- area of endemism as the congruent distributions of tributed but poorly collected species without lump- two or more species (Szumik et al., 2002; Szumik ing too many habitats into the same cell. and Goloboff, 2004, 2007). The general outputs in VNDM are area sets (groups of cells in the grid) Fill option that are supported by the presence of two or more The problem of artificial empty cells is some-

234 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes

Fig. 2. A, annual precipitaton in mm. B, altitude (m asl) in the study region. C, map of de Martonne aridity index. Scale bars = 400 km. Color version at http://www.ojs.darwin.edu.ar/index.php/darwiniana/article/view/435/462

what alleviated in NDM by a user defined fill op- several area sets that were supported by 5-20 spe- tion (radius size) that assumes the presence of a cies but differing only by one or two species. Area given species if it has been collected close to the sets can be merged into consensus areas if they share limit within a neighbouring cell (Szumik & Golo- at least some of their defining species (Szumik & boff, 2004; Aagesen et al., 2009; Escalante et al., Goloboff, 2007). Two consensus rules are avail- 2009). We used two radius sizes (see Table 1). The able in VNDM. The strictest consensus rule merges smallest radius size reflects approximately the error area sets if they all share a user defined percentag- of the hand georeferenced records as determined by es of their defining species – (in the program called the point-radius method (Wieczorek et al., 2004; ‘against every included area’ hereafter abbreviated see Aagesen et al., 2009) while the second and wid- as consensus rule ae). The second more relaxed cri- er radius size was used to explore dependence on terion includes an area set in a consensus if it shares the fill options in the final areas of endemism. a user defined percentage of its defining species with at least one other area set in the consensus – (called Search procedure ‘against any included area’ hereafter abbreviated as The searches were done using default settings consensus rule aa; see Aagesen et al., 2009). with the following changes: swap two cells at a Ideally, the strict consensus rule ae should be time; discard superfluous sets as they are found; used for identifying areas of endemism as at least replace a set if improved during swapping; pre- some species are shared among all the individual check duplicates; keep overlapping subsets if 20% area sets, thus ensuring a certain coherency within of species unique. Searches were done by changing the area. Consensus areas derived from the laxer the seed for each search, without replacing existing consensus rule aa, are efficient to outline gradual sets and deleting duplicate sets after each replicate. species overlap between area set, but the distribu- This search sequence was repeated until numbers tion of the species defining the consensus are likely of sets were stable. to be found in just a small part of this. However, due to the high number of ae consensus produced Consensus rules by our data (Table 1) it was unfeasible to base the As we kept all overlapping subsets if they dif- discussion on the ae consensus areas only. Conse- fered by 20% in species composition, we found quently, we explored areas of endemism through

235 DARWINIANA 50(2): 218-251. 2012 area 40% aa 45% aa 50% aa 25% aa 25% aa 25% aa 50% aa 45% aa 25% aa 45% aa 30% aa 45% aa not part of main area not part of main area not part of main area not part of main area not part of main area Separates from main Separates from 4I 4J 4P 4F 4L 4E 4C 4B 4D 4H 4K 4N 4G 4O 4M Fig. 3.1-7.3 7.2-11.8 6.2-33.7 6.3-34.5 5.4-36.6 4.5-15.0 15.5-25.1 5.2-40.4 6.6-18.1 6.7-26.3 3.6-15.6 3.1-29.2 4.7-19.1 4.8-18.6 6.6-19.6 3.8-24.1 4.3-19.1 Aridity range 1150-4100 350-5100 530-4800 740-4200 750-2200 1700-4400 350-5000 1000-3700 1400-4400 1600-4300 850-3400 560-4800 150-4600 500-4500 2000-4000 1000-4500 1500-5100 Altitude range 2/2/6 4/4/4 4/4/2 7/7/8 Nr. of Nr. 7/8/11 8/10/11 8/10/19 8/12/13 7/10/10 Species Genera/ 11/14/22 11/16/21 31/66/87 22/38/55 14/23/27 38/59/85 10/19/20 12/14/19 Families/ 3.9-4.2 2.2-6.5 2.6-4.5 2.0-3.8 2.0-3.5 2.1-2.4 2.0-3.8 3.0-3.2 2.1-2.8 2.1-2.8 2.1-26.3 7.3-23.3 2.7-13.3 10.9-13.1 10.6-10.8 2.0-10.4 2.4-10.3 Area score Area 2 1 2 9 8 2 1 6 4 17 36 24 19 14 19 101 370 Nr. of Nr. consensus sub-sets in no no no no no no yes yes yes yes yes yes yes yes yes under Obtained 0.2º x Area Jujuy -core and border Tucumán Salta Famatina Famatina border Victoira Yavi-Santa Jujuy-Tucumán Ambato Bolivian Prepuna Tinogasta-Belén San Juan NOA NOA-San Juan Catamarca-La Rioja summits and dry inner valleys South Bolivia-north NOA Andes La Rioja-San Juan Salta-Catamarca summits and dry inner valleys 5º). The areas were obtained by gradually increasing consensus increasing by gradually The areas were obtained to max. area score (grid size 0.5º x 0. 5º). consensus in Fig. 4, ordered according from main Table 3. Areas separating consensus rules). criterion from 5% to 50% (ae and aa refer different

236 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes the laxer aa rule that produced less, and more inclu- sive consensus areas.

Environmental data and aridity Environmental data for the study region that in- cludes both Argentina and Bolivia is limited to the data available in WorldClim (Hijmans et al., 2005). We used the program Diva-Gis 7.4.0.1 (Hijmans et al., 2005-2010) to extract altitude, temperature, and precipitation of the collection sites. As the collec- tion sites span from 500 m asl to 5000 m asl and an annual mean temperature from -3ºC to 23ºC we used humidity rather than rainfall when comparing different sites. We adopted the aridity index of De Martonne (1927) that can be calculated through the limited environmental variables available for the study region, and furthermore provides a quantita- tive measure for the useful but somewhat imprecise Fig. 3. Areas of endemism and sample density of ende- terms arid, semi-arid, humid, etc. mic species. Empty cells: presence of one or more ende- mic species in the cell. Colour filled cells: cell assigned to Aridity Index of de Martonne. Accumulated one or more areas of endemism. The colour scale repre- sents areas of endemism of higher (darker) versus lower annual precipitation / (annual mean temperature + (lighter) endemism score. A, grid size 0.5ºx0.5º. B, grid 10). We use the following categories (De Martonne, size 0.2ºx0.2º. Color version at http://www.ojs.darwin. 1927; Almorox, 2003): 0-5: desert; 5-10: semi des- edu.ar/index.php/darwiniana/article/view/435/462 ert; 10-20: semi arid; 20-30: subhumid; 30-60: hu- mid; >60: wet. Distribution of aridity within the study region is shown in Fig. 2C. the cores of the main areas are recovered even if presence of one or more endemic species is record- RESULTS ed in most cells (Fig. 3B). Consequently, we base our discussion on the results from analysing cells of The results are summarized in Table 1-3. In 0.5ºx0.5º. The two alternative cell sizes with either general, the number of area sets increased with smaller or longer cells were only used to explore cell size, but the bigger cells also produced more the distributions of species that did not support dis- overlapping distribution patterns that grouped into tribution patterns under the 0.5ºx0.5º grid. fewer consensus areas under the laxer aa rule (Ta- When using a grid size of 0.5ºx0.5º, the lax aa ble 1). The two different fill radius produced nearly consensus rule produced seven distribution pat- identical results in number of area sets and consen- terns, under both the 5% and 10% consensus cri- sus areas, hence support for the resulting areas did terion (Table 1). About 2/3 of the endemic species not depend on a specific fill ratio. The discussion were gathered in a single main consensus area (Fig. is based on the analyses using the widest fill ratios. 4A), while five distinct distributions, with a total Five hundred-nineteen (519) species supported of 49 species, did not form part of the main pattern some area under at least one grid size, while 21 spe- (see discussion below). A single area consisting cies did not support any area (Table 2). Of these, of four species was considered an artefact and not eight species are only known from a single or two discussed any further (the species from this pattern localities, while the remaining species are widely are considered part of the complex Jujuy-Tucumán distributed within the region. area, see Discussion and Appendix). The remaining The study region has been sufficiently sampled 120 endemic species did not support any area under to analyse species distribution under cell sizes this grid size. 0.5ºx0.5º where most cells of the study region are In order to explore sub-areas of the main consen- assigned to one or more areas of endemism (Fig. sus area in Fig. 4. A this was decomposed by grad- 3A). When the cell size is reduced to 0.2ºx0.2º only ually increasing the consensus criterion. By this

237 DARWINIANA 50(2): 218-251. 2012 procedure sub-areas separate successively from the Table 4. Main radiations within the study region. Only main area with those defined by less overlapping families with 10 or more endemic species, and genera species separating first. We decomposed the main with five or more species have been included. For the area both to extract the individual high endemic families, the percentage of the total number of endemic species within the region is shown. areas as well as to assign all endemic species to sub-areas with a closer association between area extension and distributions of the defining species (see, Consensus rules). All final sub-areas (Table 3, Main families: nr. of Main genera: nr. of endemic species endemic species Fig. 4) are also found under the strictest ae consen- sus rule. Senecio: 39 A total of 17 areas of endemism are discussed Hieracium: 10 below. The 120 species that did not support areas in Asteraceae: 126 (23%) Flourensia: 9 the 0.5ºx0.5º grid were assigned to one of these 17 Baccharis: 8 Stevia: 6 areas according to results found under the 0.2ºx0.2º or 0.5ºx1.0º grids (Table 2). Two areas are based Lobivia: 16 exclusively on results obtained by analysing cells Gymnocalycium: 15 sizes of 0.5ºx1.0º; these areas were not found under Cactaceae: 75 (14%) Trichocereus: 13 the smaller cell sizes. Only 21 species did not sup- Parodia: 7 port any of the final areas. Tephrocactus: 6 We have named areas of endemism according to Nassella: 12 Poaceae: 46 (8%) the political division in which the core of the area Poa: 6 occurs. The political names do not indicate that the Lupinus: 10 areas fit any political border or that the political Fabaceae: 34 (6%) Adesmia: 8 borders have influenced the analysis. The names Astragalus: 8 are simply useful for a quick spatial orientation. Solanum: 18 Solanaceae: 29 (5%) In some cases, such as Famatina and Ambato, the Sclerophylax: 6 political names coincide with the mountain range in which the endemic species from the core areas Malvaceae: 25 (5%) Nototriche:19 have been found. In other cases such as Jujuy and Bromeliaceae: 17 (3%) Puya: 9 Tucumán several mountain ranges and valleys are included in the core of the areas with some of these Apocynaceae: 15 (3%) Philibertia: 8 situated in the neighbouring province Salta. Violaceae: 12 (2%) Viola: 12 Even when subdividing the main area into sub- areas, most of the defining species will be distribut- Gentianaceae: 11 (2%) Gentianella: 11 ed only in part of the area. One example is Aphelan- dra lilacina that has only been collected in ‘El Rey’ National Park in the province of Salta. The cell including ‘El Rey’ National Park lies in the south DISCUSSION easternmost low endemic part of the Jujuy border area (Fig. 4C). Consigning Aphelandra lilacina The vast majority of the vascular flora endemic to to the Jujuy area is therefore slightly misleading, the southern part of the central Andes outlines small, but a necessity unless a prohibited high number successively overlapping sub-areas that combine of consensus areas are shown. However, as our into a single main consensus area only under the lax aim is to provide an overview of the distribution consensus rule and a very lax consensus criterion of the endemic species in north-western Argentina (Fig. 4A). Endemism is far from evenly distributed we concentrate the discussion on main distribution among the sub-areas but declines gradually towards patterns. Further details of the individual species the south and west of the study region. Peaks of en- distribution can be consulted in the online version demism are found near the humid Andes slopes in of the Flora Argentina (http://www.floraargentina. Jujuy, Tucumán/Ambato, and to a lesser extent in the edu.ar) that includes dot distribution maps and la- isolated Sierra de Famatina in La Rioja. bel information for all specimens included in the Although the main portion of the endemic spe- present study. cies conform to the patchy distribution patterns that

238 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes

Main families: nr. of Main genera: nr. of endemic species endemic species Senecio: 39 Hieracium: 10 Asteraceae: 126 (23%) Flourensia: 9 Baccharis: 8 Stevia: 6

Lobivia: 16 Gymnocalycium: 15 Cactaceae: 75 (14%) Trichocereus: 13 Parodia: 7 Tephrocactus: 6 Nassella: 12 Poaceae: 46 (8%) Poa: 6 Lupinus: 10 Fabaceae: 34 (6%) Adesmia: 8 Astragalus: 8 Solanum: 18 Solanaceae: 29 (5%) Sclerophylax: 6 Malvaceae: 25 (5%) Nototriche:19 Bromeliaceae: 17 (3%) Puya: 9

Apocynaceae: 15 (3%) Philibertia: 8

Violaceae: 12 (2%) Viola: 12 Gentianaceae: 11 (2%) Gentianella: 11

Fig. 4. A-L. Areas of endemism discussed in the text and in Appendix 1. The colour scale represents cells of higher (darker) versus lower (lighter) endemism score within each area. The colour scale is scaled to show max details of en- demism within each area. For max and min score within the individual areas see Table 3. A, main consensus. B, NOA. C, Jujuy, core and border. D, Tucumán. E, Jujuy-Tucumán. F, La Rioja-San Juan Andes. G, San Juan. H, Famatina. I, South Bolivia-north NOA. J, Bolivian Prepuna. K, Yavi-Santa Victoria. L, Salta core and border.

239 DARWINIANA 50(2): 218-251. 2012

form the consensus in Fig. 4A, the southern part of the central Andes can still be recognized as a single area of endemism, defined by at least 53 species that are widely distributed within the region (the NOA area in Fig. 4B). Here we discuss taxonomic composition and habitat of the endemic species from the study re- gion in general, as well as the individual main dis- tribution areas such as the general NOA pattern and sub-areas of the main consensus in Fig. 4A. Sub-ar- eas were separated from the main consensus by gradually raising the consensus criterions, which causes sub-areas to separate successively. A total of 18 different sub-areas were identified (Table 2-3) among which we discuss selected high-endemic ar- eas. A description of the remaining areas is found in Appendix 1.

Altitude and Aridity Our results indicate that 473 of the endemic spe- cies, nearly 90%, have been collected at middle alti- tudes between 1500-3500 m asl (Table 2), a pattern that is consistent with the notion that Prepuna slope vegetation harbours the main part of the endemic species. Only 40 species are restricted to altitudes below 1500 m asl while 33 species are restricted to high Andean environments above 4000 m asl (main- ly from the genera Senecio L., Nototriche Turcz., and Viola L.). The relative low number of endem- ic high Andean species is perhaps unexpected and may be underestimated as collection of high Ande- an localities above 4000 m asl are sparse. However, part of the high Andean flora were left out of the analyses as it is shared with the neighbouring Chile. In accordance with the general arid climate of the central Andes, the semi-arid environments (AI=10-20, Fig. 2C) appear as the principal habitat type for the endemic species. Semi-arid environ- ments harbour about 80% of the endemic flora with 30% (159 species) being restricted to this habitat type. Semi-arid environment are mostly extend- ed at lower altitudes (compare Fig. 1 and 2A), but only 14 endemic species are restricted to altitudes below 1000 m asl (Table 2). Consequently the rel- atively narrow band of semiarid habitats between Fig. 4. Continued. J-R. J, Bolivian Prepuna. K, Yavi- 1500-3500 m asl (compare Fig. 2 B and C) includes Santa Victoria. L, Salta core and border. M, Ambato. N, the main portion of the endemic species, making Tinogasta-Belén. O, Salta-Catamarca. P, Catamarca-La the topographic complex plateau, slope, and valley Rioja. Q, La Rioja-San Juan. R, Valle Fertil. Color ver- system of the southern central Andes the main loca- sion at http://www.ojs.darwin.edu.ar/index.php/darwi- tions for endemism. niana/article/view/435/462 As few as 36 species are restricted to subhumid

240 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes or humid environments (AI=20-60, Fig. 2C) indi- species restricted to humid habitat (e.g., Mikania cating that the diverse Tucumano-Bolivian Yun- siambonensis and Vernonia novarae), to desert en- gas forest is surprisingly poor in endemic species vironment (e.g., Senecio lilloi), and from strict high at a local scale. This is in accordance with Ibisch Andean (e.g., Senecio kunturinus and S. delicatu- et al. (2003) who considered the endemism of the lus) to lowland species (e.g. Eupatorium tucuman- Tucumano-Bolivian Yungas to be unimportant at a ense and Isostigma molfinianum). local Bolivian scale and moderate at the inclusive Nearly 1/3 of the endemic Asteraceae belong to scale considering the Tucumano-Bolivian Yungas the Senecio with 39 endemic species in the forests in their entire extension. The Bolivian-Pe- study region – twice as many species as the sec- ruvian Yungas forests were in contrast considered ond most common genera Lobivia Britton & Rose the main area of endemism for Bolivia. Endemism (Cactaceae), Nototriche (Malvaceae), and Solanum in the south-western Bolivia were, as in the present L. (Solanaceae) (see Table 4). Nonetheless, the re- study, mainly found in the Prepuna vegetation and maining 2/3 of the endemic Asteraceae are highly in the arid interandean forests (Ibisch et al., 2003). diverse belonging to 16 of approx. 48 Asteraceae In this study the mountain grasslands above the tribes (Funk et al., 2009), the most numerous being tree line are rich in local endemics [note that these the Astereae Cass., Eupatorieae Cass., and Helian- grasslands were considered the highest strata of the theae Cass. including 17, 13, and 10 species each. Yungas by Cabrera (1976), while we follow Ibisch Although both the origin and early diversifica- et al. (2003) who included these grasslands in the tion of the Asteraceae are likely to have occurred subhumid Puna restricting the term Tucumano-Bo- in southern South America (Funk et al., 2009) the livian Yungas to forest vegetation]. main radiations of Asteraceae within the study re- Local endemics are also nearly lacking from gion belong to clades that are principally found in desert environments with only seven species the northern hemisphere, e.g., Senecio, Hieracium found exclusively in habitats with an aridity L., Flourensia DC., Baccharis L., and Stevia Cav. index below 5 (Table 2). Although desert envi- (see Funk et al., 2009 for biogeography of the fam- ronments are found throughout the study region, ily). Still, all tribes from the basal Asteraceae grade they become part of the distribution pattern only (Mutisieae s. l. sensu Cabrera; Ortiz et. al. 2009) in the areas that include patches of desert cli- are represented, although in lower numbers, among mate separated from the Andes (i.e. in the Cata- the local endemic species, with Hyalideae Panero marca, La Rioja, and San Juan provinces – Table being the only exception. The Asteraceae endem- 3, Fig. 2C). Only a single species, Gentianella ics are consequently not only numerous within the punensis, is collected above 3500 m asl where region but also phylogenetically diverse, both re- it is endemic to vegas in the deserts of northern flecting the general family trend of being especial- Salta. Dry adapted endemic desert species are ly diverse in arid environments (Funk et al., 2009) consequently restricted to desert parches of mid- as well as the fact that the Asteraceae is the most dle or low altitudes, such as the inner basins of diverse family both in number of genera and spe- the Andes that are covered by Monte vegetation. cies within the southern cone (Zuloaga et al., 1999; High Andean desert environments are common Moreira-Muñoz & Muñoz-Schick, 2007). on both sites of the Andes in the northern part Cactaceae is the second most numerous fami- of the study region (compare Fig. 2 B and C), ly with 74 endemic species and 15 genera within hence desert endemics may be lacking from the the study region (Table 3). Unlike the Asteraceae northern areas because the endemic species are the main part of the endemic Cactaceae belong to shared between Argentina and Chile, hence ex- a single clade (55 species), the tribe Trichoceree- cluded from our analyses. ae Buxb. that principally consists of high Andean species from the eastern slopes of the central An- Taxonomic groups des (Ritz et al., 2007, Hernández-Hernández et al., The Asteraceae outnumbers all other families 2011). The remaining Cactaceae species are either in the region, with 121 endemic species from 35 close relatives to the Trichocereeae from the Core genera (Table 2 and 4); furthermore, it is the only II clade that also includes the Tricho- family with endemic species supporting all areas cereeae (Hernández-Hernández et al., 2011) or (except Valle Fértil - Fig. 4R). The endemic Aster- from early diverging lines of the subfamily Opunti- aceae are found in all environments ranging from oideae (Griffith & Portery, 2009).

241 DARWINIANA 50(2): 218-251. 2012

Like the Asteraceae, the Cactaceae are consid- m asl. Other well documented high Andean radia- ered to be of South American origin with the ear- tions such as Gentianella Moench, Lupinus L., and ly diversification of the tribes Trichocereeae and Valeriana L. (von Hagen & Kadereit, 2001; Bell & Opuntioideae situated in the Central Andes (Nyf- Donoghue, 2005; Hughes & Eastwood, 2006) are feler, 2002; Edwards et al., 2005; Griffith & Porter less important in the region with eleven, seven, and 2009). While the extreme succulence of most Cac- five endemic species, all found at lower altitudes taceae species makes the family well adapted to the than Nototriche. aridity of the southern central Andes, the Cactaceae endemics occupy nearly as wide an array of hab- itats as the Asteraceae including strict Altoandine Main areas of endemism species restricted to altitudes above 4000 m (Lobiv- The NOA (Nor-Oeste-Argentina) area. The NOA ia marsoneri), with endemic species only lacking area (Fig. 4B) is the general area of endemism for from the most humid part of the study region. the southern part of the central Andes. The area is Following Asteraceae, Poaceae is the second supported by species that are widely distributed most diverse family in the southern cone (Zulo- within the study region and overlaps with all be- aga et al., 1999) and reaches the study region as low mentioned sub-areas segregated from the main the third most numerous family with 45 endemic consensus in Fig. 4A. Four species reach the south species from 20 different genera (Table 3). The en- of San Juan (Table 2) and consequently define a demic species belong to both of the main Poaceae slightly wider pattern than the NOA area shown in clades, the BEP and the PACMAD clades (GPWG Fig. 4B. 2001; Sánchez-Ken et al., 2007; GPWG II, 2012). The northern limit of the NOA area coincides The BEP clade generally appears in colder climates with the political border between Argentina and than the PACMAD clade (Edwards & Smith, 2010), Bolivia hence the pattern probably extends into and it is more species rich in the study region, with southern Bolivia. However, the scarcity of inten- 34 endemic species versus 11 from the PACMAD. sive botanical explorations in this part of Bolivia Like Asteraceae, the endemic Poaceae species prevents us to speculate on the exact northern lim- are found in most of the available habitat types (see it of the NOA pattern. So far among the defining Table 2) with two species restricted to subhumid NOA species only Mirabilis bracteosa, Mutisia or humid environments (Aristida pedroensis and kurtzii, and Trichocereus terscheckii have been Chusquea deficiens), high Andean species restrict- collected in Bolivia, but endemic Argentinean taxa ed to altitudes above 4000 m asl (Anatherostipa widely distributed in Jujuy are most probably also henrardiana and Poa nubensis) and lowland spe- present in southern Bolivia. cies only found below 1000 m asl (e.g., Digitaria Since the distribution pattern spans approxi- catamarcensis and Neobouteloua paucirracemosa). mately 1000 km from north to south, the pattern is Only strict desert endemics are lacking although a unsurprisingly not recovered when using cell sizes single species from semi-desert environments enter of 0.2ºx0.2º, a feature that requires collection sites desert habitats (Pappostipa hieronymusii). every 20 to 40 km depending on the settings of the In addition to the main families discussed above, fill option (see Material and Methods). The NOA the Solanaceae and Malvaceae both include genera pattern emerges when using cell sizes of 0.5ºx0.5º with considerable radiations within the region. The in which case 24 species are sufficiently well col- genus Solanum with 18 endemic species occupies lected to define the area (Table 2). Other common, a wide array of habitats from semi-arid to humid but less frequently collected species such as the environments between 500 and 4000 m asl. Several columnar cactus Trichocereus terscheckii, support of the Solanum endemics reach sub-humid and hu- the north-south running pattern when the grid is mid sites, with four of the species restricted to these changed to a cell size of 0.5ºx1.0º, allowing for habitats, while desert environments are occupied even wider distances between the collecting sites. by another Solanaceae genus, Sclerophylax Miers A total of 54 species support the area when using a with six endemic species in the region (Table 2). cell size of 0.5ºx1.0º (Table 2). As opposed to the taxa mentioned above, the All NOA endemics are found in desert, semi-des- radiation of Nototriche (Malvaceae) is exclusively ert and semi-arid habitats with several species also high Andean, with all 19 endemic species found in reaching either desert or sub-humid sites. Humid semi-desert to semi-arid environments above 4000 environments are not part of the pattern, which

242 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes is consistent with the north-southern range of the that undoubtedly form the main area of endemism area, e.g. the distributions of the defining species in the southern cone east of the Andes. that reach out of the region where the humid hab- Common for the cores of both the Jujuy and itats are found. Consequently, the moist requiring Tucumán areas are that they include some of the species are restricted to the northern portion of the study regions most variable cells both in terms of study region and support sub-areas in Fig. 4A but altitude, temperature, and precipitation. The avail- not the general NOA pattern. The broader distribu- able habitats within these areas range through all tion pattern reaching San Juan is slightly dryer and phytogeographic unites described for north-west- does not include sub-humid habitats. ern Argentina (Cabrera, 1976). While variability in The NOA pattern includes all altitudinal layers temperature and altitude do not decline along the of the vegetation as the defining species are found north-south gradient of the study region, amount of from 500 m to above 4500 m asl. However, slopes rainfall does decline (Fig. 2A). Humid sites with an vegetation seem to be an important part of the dis- aridity index above 30 are mainly found at the east- tribution pattern as all species appear between 1500 ern Andean slopes in both the Jujuy and Tucumán m and 3500 m asl. Most species have broad ranges areas (Fig. 2C). Consequently, endemic species with some ranging nearly 3000 m asl (e.g. Oxal- from humid environments, such as the subtropical is famatinae see Table 2). The highest part of the Tucumano-Bolivian Yungas forests are only found NOA pattern is defined by species restricted to high in the three high endemic areas (Table 2). Neverthe- Andean vegetation above 3000 m asl (e.g., Muli- less, and although the Tucumano-Bolivian Yungas num famatinense and Pycnophyllum convexum). forest is one of the most diverse phytogeographic The lowest part of the distribution pattern includes units in Argentina (Cabrera, 1976; Zuloaga et al., several plants that are common to Monte vegetation 1999 ), it should be noted that only twelve species (Cabrera, 1976) and is delimited by Tephrocactus are restricted to humid sites in the present study weberi that is found between 500-2000 m asl in (Table 2), indicating that the Yungas vegetation in- desert and semi-desert habitats. cludes few endemic species at this local scale. The Several of the species that define the NOA pat- main part of the endemic species are distributed tern are common elements in the vegetation of the through the broad array of available habitats both in study region. These include the bushes Bulnesia terms of altitude and aridity (Table 3), with no spe- schickendantzii, Plectocarpa rougesii (Zygophyl- cies occupying the entire range (Table 2).Variabil- laceae), Mutisia kurtzii, and Cersodoma argenti- ity in precipitation rather than high rainfall might na (Asteraceae), as well as the grasses Panicum therefore be the main factor that causes high level chloroleucum and Sporobolus maximus. Common of endemism within the Jujuy and Tucumán areas. but less frequently collected species that support The decline in endemism in the center of the the north-south running pattern when the grid is Jujuy-Tucumán area is consistent with the patterns changed to cell size 0.5ºx1.0º, include the colum- found in general diversity studies (Szumik et al., nar cactus Trichocereus terscheckii, the opuntioid 2012), and distribution maps of the Yungas forest cactus Tephrocactus weberi, the cushion forming (Hawkes & Hjerting, 1969; Cabrera, 1976; Brown, Bromeliaceae Deuterocohnia haumanii and Hier- 1995). It is unclear whether the decline in diversity onymiella marginata (Amaryllidaceae) (Table 2). and endemism is caused by lack of collections or whether some habitats - e.g., humid high Andean High endemic areas: Jujuy, Tucumán, and Ju- grasslands - are lacking in this part of the area. juy-Tucumán. Within the study region, the cells of highest endemism score include the cores of the Jujuy area, the Tucumán area, and the combined Minor areas of endemism: San Juan, Famatina, Jujuy-Tucumán area (Fig. 4C-E). These three areas and south-western Bolivia. Several minor areas of are jointly supported by nearly 30% of the endemic endemism separate from the general area consensus species found in the region, and are furthermore by in Fig. 4A. Here we discuss two southern most areas far the most diverse both in number of genera and in San Juan, the central Famatina area, as well as families (Table 2). When also considering the spe- an area related to the vegetation in south-western cies that define the diffuse border of the core areas Bolivia. The full list of areas is found in Appendix 1. (Fig. 4C, Table 2), about 45% of the endemic spe- San Juan: Two areas of endemism are defined cies are confined to these three distribution patterns by species restricted to the southern most part of the

243 DARWINIANA 50(2): 218-251. 2012 study region, the Andes of La Rioja-San Juan (Fig. South-western Bolivia-northern Argentina. To- 4F) and the San Juan area (Fig. 4G, Table 2). These wards the northern part of the study region four two areas are well defined and do not combine species delimit a shared, well defined Bolivian-Ar- with the general consensus area even under very gentinean area that do not combine with any other lax consensus criteria, hence the areas do not share distribution pattern even under very lax consensus species with any of the other areas of endemism. criteria (Fig. 4I, Table 2-3). The area overlaps part- This distinct distribution pattern of the endemic ly with the NOA pattern (Fig. 4B) but stretches species from the southern part of the study region further north into Bolivia. The Bolivian portion of may reflect that the San Juan areas lie close to the this area corresponds to the Bolivian Prepuna as de- limit of the Patagonian phytogeographic unit sensu fined by López (2000) while the Argentinean part Cabrera (1976), hence close to a general change in only includes the northern most part of the Prepuna vegetation types that is widely recognized among province sensu Cabrera (1976). The area defined in biogeographers (e.g., Olson et al. 2001; Morrone, Fig. 4I includes semi-desert and semi-arid habitats 2006). The San Juan areas are among the most arid between 200-4000 m. When increasing the cell size areas within the study region. Although some of the to 0.5ºx1.0º two additional species (Deuterocohnia species that define the Andes area of La Rioja-San strobilifera and Oxalis cotagaitensis) are incorpo- Juan (Fig. 4F) reach sub-humid locations according rated into the area. to Table 2, these sub-humid locations fall at sites Although only six species support the Boliv- where the annual mean temperature is below 0º C ian-Argentinean area, our study did not sample rather than at sites with high rainfall (note that for exhaustively this region, therefore it is most likely the same annual precipitation the aridity index of that other species share a similar distribution pat- de Martonne will increase with falling mean annual tern. According to the Catalogue of the Plants of temperature). the Southern Cone (Zuloaga et al., 2008) at least 70 Famatina. The Famatina areas both separate species are distributed from Salta to Bolivia many from the main area when raising the consensus cri- of which may approximately fit the area in Fig. 4I. terion to 25% (Fig. 4H). The two partly overlap- This distribution pattern stresses the similarity be- ping areas include a highly endemic area of species tween the flora of southern Bolivia and north-west- found mainly above 1500 m asl as well as a low ern Argentina as mentioned by López (2000, 2003), endemic border area of species found at lower alti- but further sampling within the region is needed to tudes. The areas do not share species, hence, these establish the size and importance of the area. areas do not combine into a single consensus area. The Bolivian Prepuna, sensu López (2000), Combined both Famatina areas are supported by 28 is nested within the above south-western Boliv- endemic species found in desert/semi-desert and ia-northern Argentina distribution pattern but com- semi-arid environments between 700 m and 4000 bined with the main distribution pattern shown in m asl. Fig. 4A. The Bolivian Prepuna segregates from the The area with highest endemism score contains main area in Fig. 4A when the consensus criterion primarily the isolated Nevados de Famatina that is raised to 25% or higher (Fig. 4J). The Bolivian reaches above 6000 m asl. Mining activity at 4.600 Prepuna is formed by two overlapping distribution m asl has ensured long standing accessibility to the patterns one of which enters northern Jujuy (Argen- high peaks where botanical exploration has been tina). Both patterns are supported by species that relatively constant since the late 19th century. The are mainly found in semi-arid environments from Famatina is, consequently, one of the best sampled 2500 m up to 4000 m asl with the highest collec- high Andean locations south of the high-endemic tion sites lying in the Argentinean side of the pat- areas in Jujuy and Tucumán. Nonetheless, Fama- tern. Since we did not compile an exhaustive list of tina is defined by much less endemic species than species endemic to southern Bolivia, the Bolivian the areas Jujuy and Tucumán. Furthermore, diver- Prepuna may also be supported by more species sity within this area is low as more than half of the that those included in our study. endemic species belong to three of the most species rich radiations within the study region: Senecio, Phytogeographic divisions: the Prepuna Nototriche at altitudes above 3000 m asl, and Gym- province and areas of endemism nocalycium Pfeiff. ex Mittler in the border area Although Cabrera aimed to base his classic phy- (Fig. 4H) below 2000 m asl. togeographic scheme on the presence of endem-

244 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes

CONCLUSIONS ic taxa from family to species level (Cabrera 1951, 1953, 1976), the system was not based on quantitative studies and did not apply consistent criteria for defin- Located in the center of the South American ing the individual phytogeographic units (Ribichich, dry diagonal, the aridity of southern central An- 2002). It is therefore not surprising that quantitative des is reflected in the distribution of its endem- analyses, based on endemic species distribution, re- ic vascular flora. Of 540 endemic plant species, sult in areas of endemism that do not correspond to more than 2/3 are restricted to semi-desert and Cabrera’s phytogeographic divisions. In our analyses semi-arid habitats including some of these re- all areas were defined by species from a wide array of gions main radiations, such as the ultra high An- altitudes in most cases including lowland, slopes, and dean Nototriche (Malvaceae) and the radiation of high Andean species (Table 2). Moreover, as the areas Gymnocalycium (Cactaceae) found below 2000 with highest endemism were found in regions where m. Even the 39 endemic species from the cosmo- several climatic regimes meet (Jujuy and Tucumán), politan genus Senecio (Asteraceae) are almost they include several phytogeographic units within exclusively found in semi-desert or semi-arid shortest distances of each other. As a result, the spe- habitats with only two species entering subhu- cies that define the high endemic areas are just as mid or humid locations. variable as the areas themselves in their altitude and The distributional bias of the endemic spe- aridity ranges (Table 2). cies towards arid sites is in contrast with that of Cabrera (1976) defined the Prepuna province as vascular plant diversity in the region, since the xeric slope vegetation with emphasis on the dis- Tucumano-Bolivian Yungas forests, on the hu- tribution of emblematic species such as columnar mid eastern Andes slopes, undoubtedly include cacti and cushion forming Bromeliaceae species, the most diverse vegetation of the region (Brown, mentioning several species from different families 1995; Ibisch et al., 2003). The Tucumano-Boliv- as common on the slopes. López (2000, 2003) later ian Yungas forests in north-western Argentina extended the Prepuna to include a similar xeric veg- are, however, a patch of a more extensive area of etation in the south-western Bolivia. The Prepuna, endemism whose northern limit is found south which is here included in its entire extension, does of the Andes bend at approx. 18ºS (Ibisch et al., not appear among the resulting areas of endemism, 2003). Emblematic Yungas species, such as Jug- hence the Prepuna province sensu Cabrera (1976) is lans australis Griseb., Podocarpus parlatorei not definable simply by the presence of two or more Pilg, and Duranta serratifolia (Griseb.) Kuntze unique Prepuna species. appear to be endemic to the Tucomano-Bolivian The partly overlapping south-western Bolivia/ Yungas. Other species such as Alnus acuminata northern NOA and the NOA area (Figs. 7 and 12) Kunth and Fuchsia boliviana Carrière are widely cover geographically the Prepuna in its entire exten- distributed along the eastern slopes and further sion. Both areas are defined by several of Cabrera’s north to Mexico. These forests may consist of (1976) Prepuna species including columnar cacti several nested or partly overlapping distribution and cushion forming Deuterocohnia Mez species. patterns as is the case of the endemic vegetation Notably three of the species mentioned by Cabre- of the arid slopes of the southern central Andes. ra: Aphylloclados spartioides, Cercidium andicola, Any attempt to evaluate endemism of the Tuco- and Prosopis ferox define the joint Southern-Bo- mano-Bolivian Yungas should include these for- livia/northern NOA (Fig. 4I) supporting the north- ests in their entire extension. ern Prepuna as delimited by López (2000, 2003) in Although the Yungas forests are of little impor- which the Bolivian Prepuna separates as an indepen- tance for endemisms at the scale of our study, the dent area of endemism (Fig. 4J). Columnar Tricho- high endemic areas of the region lies in juxtaposi- cereus (A. Berger) Riccob. species define both the tion, west of the main rainfall zones (Fig 1a). The Bolivian Prepuna and the NOA area while most of endemic species of these areas are found in a broad Cabrera’s (1976) remaining Prepuna species support and variable range of aridity and altitude (Table 2), the NOA area. The NOA distribution pattern does, hence, rather than high rainfall itself, the gradual however, also include species from other altitude decreasing rain-veil west of the main rainfall zone strata, hence, although it appears to include the caused by the complex topography of the region, Prepuna it defines a broader area of endemism in the may be the main factor allowing for the elevated southern central Andes. number of endemic species to coexist in these areas.

245 DARWINIANA 50(2): 218-251. 2012

visited: Earth’s Biologically Richest and Most Endangered We did not find any relationship between the Terrestrial Ecoregions, pp. 99-103. México: CEMEX. main areas of endemism and phytogeographic units Bannister, J. R.; O. J. Vidal, E. Teneb & V. Sandoval. 2012. Lati- previously defined, as the main areas of endemism tudinal patterns and regionalization of plant diversity along a appeared in cells that included a widest array of 4270-km gradient in continental Chile. Austral Ecology 37: habitats. The Prepuna province sensu Cabrera 500-509. (1976) and López (2000, 2003) was not defined by Bell, C. D. & M. J. Donoghue. 2005. Phylogeny and biogeogra- the endemic species as a unit; instead, two partly phy of Valerianaceae (Dipsacales) with special reference to overlapping areas covered the entire extension of the South American valerians. Organism, Diversity & Evo- the Prepuna (Figs. 6 and 14). Both areas include lution 5: 147-159. several Prepuna characteristics sensu Cabrera Bianchi, A. R. & S. C. Cravero. 2010. Atlas climático digital de (1976). Nevertheless, of these two areas, the NOA la República Argentina. Salta: Instituto Nacional de Tecno- area should be considered a general area of ende- logía Agropecuaria. mism for the southern central Andes since it also Brown, A. D. 1995. Fitogeografía y conservación de las selvas included high Andean and lowland species. de montaña del noroeste de Argentina, en S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and ACKNOWLEDGEMENTS Conservation of Neotropical Montane Forests, pp. 663-672. New York: The New York Botanical Garden. Cabrera, A. L. 1951. Territorios fitogeográficos de la República We thank Claudia Szumik for helpful discussions Argentina. Boletín de la Sociedad Argentina de Botánica 4: and support. We also thank the staff at The Lillo Foun- 21–65. dation (Tucumán) as well as Dr. Beck and the staff at Cabrera, A. L. 1953. Esquema fitogeográfico de la República -Ar the National Herbaria of Bolivia for help and hosting us gentina. Revista del Museo Eva Perón, Botánica 8: 87–168. during our visits to these Institutes. We also thank the Cabrera, A. L. 1976. Regiones fitogeográficas argentinas. Enci- staff at IBODA for the identification of all newly collect- clopedia Argentina de Agricultura y Jardinería, vol. 2, parte ed material, and Fernando Biganzoli for accompanying 1. Buenos Aires: ACME. us on several collecting trips. We gratefully acknowledge Cabrera, A. L. & A. W. Willink. 1973. Biogeografía de América GBIF and John Wieczorek for the georeferencing work- Latina. Serie de Biología OEA. Monografía 13: 1–117. shop in Buenos Aires. CONICET (PIP-CONICET 0207) Carine, M. A.; C. J. Humphries, I. R. Guma, J. A. Reyes-Betan- and National Geographic (Grant Nº 8862-10) funded the cort & A. Santos Guerra. 2008. Areas and algorithms: eval- project and field collections respectively. uating numerical approaches for the delimitation of areas of endemism in the Canary Islands archipelago. Journal of Biogeography 36: 593-611. BIBLIOGRAPHY Crisp, M.; S. Laffan, H. P. Linder & A. Monro. 2001. Ende- mism in the Australian flora. Journal of Biogeography 28: Aagesen, L.; C. A. Szumik; F. O. Zuloaga & O. Morrone. 2009. 183–198. Quantitative biogeography in the South America highlands de Martonne, E. 1927. Regions of interior-basin drainage. Geo- – recognizing the Altoandina, Puna and Prepuna through the graphical Review 17: 397-414. study of Poaceae. Cladistics 25: 295-310. Edwards, E. J.; R. Nyffeler & M. J. Donoghue. 2005. Basal cac- Almorox, J. 2003. Climatología aplicada al medioambiente y tus phylogeny: implicactions of Pereskia (Cactaceae) par- Agricultura. Monografía del Depto. de Edafología. Madrid: aphyly for the transition to the cactus life form. American Universidad Politécnica de Madrid. Journal of Botany 92: 1177-1188. Arroyo, M. T. K.; R. Rozzi; J. A. Simonetti; P. Marquet & M. Sa- Edwards, E. J. & S. A. Smith. 2010. Phylogenetic analyses re-

laberry. 1999. Central Chile, en R. A. Mittermeier, N. Myers, veal the shady history of C4 grasses. Proceedings of the Na- P. Robles Gil & C. Goettsch Mittermeier (eds.), Hotspots: tional Academy of Sciences 107: 2535-2537. Earth’s Biologically Richest and Most Endangered Terrestri- Escalante, T.; C. A. Szumik & J. J. Morrone. 2009. Areas of en- al Ecorregions, pp. 161-171. México: CEMEX. demism of Mexican mammals: reanalysis applying the opti- Arroyo, M. T. K.; P. Marquet; C. Marticorena; J. Simonetti; L. mality criterion. Biological Journal of the Linnean Society A. Cavieres; F. A. Squeo & R. Rozzi. 2004. Chilean winter 98: 468-478. rainfall - Valdivian forests, en R. A. Mittermeier, P. Robles, Funk, V. A.; A. A. Anderberg, B. G. Baldwin, R. J. Bayer, M. M. Hoffmann, J. Pilgrim, T. Brooks, C. Goettsch-Mittermei- Bonifacino, I. Breitwieser, L. Brouillet, R. Carbajal, R. er, J. Lamoreux & G. A. B. da Fonseca (eds.), Hotspots Re- Chan, A. X. P. Coutinho, D. J. Crawford, J. V. Crisci, M.

246 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes

O. Dillon, S. E. Freire, M. Galbany-Casals, N. Garcia-Jacas, sity and floristic knowledge. Journal of Biogeography 32: B. Gemeinholzer, M. Gruenstaeudl, H. V. Hansen, S. Him- 1107–1116. melreich, J. W. Kadereit, M. Källersjö, V. Karaman-Castro, Linder, H. P. 2001. Plant diversity and endemism in sub-Saharan P. O. Karis, L. Katinas, S. Keeley, N. Kilian, R. T. Kimball, tropical Africa. Journal of Biogeography 28: 169-182. T. K. Lowrey, J. Lundberg, R. J. McKenzie, T. Mesfin, M. López, R. P. 2000. La prepuna boliviana. Ecología en Bolivia E. Mort, B. Nordenstam, C. Oberprieler, S. Ortiz, P. B. Pel- 34: 45-70. ser, C. P. Randle, H. Robinson, N. Roque, G. Sancho, J. C. López, R. P. 2003. Diversidad florística y endemismo de los va- Semple, M. Serrano, T. F. Stuessy, A. Susanna, M. Unwin, lles secos bolivianos. Ecología en Bolivia 38: 27-60. L. Urbatsch, E. Urtubey, J. Vallès, R. Vogt, S. Wagstaff, J. López, R. P. & S. Beck. 2002. Phytogeographical affinities and Ward & L. E. Watson 2009. Compositae metatrees: the next life form composition of the Bolivian Prepuna. Candollea generation, en V. A. Funk, A. Susanna, T. F. Stuessy & R. 57: 77-96. Bayer (eds.), Systematics, evolution and biogeography of the López, R. P.; D. L. Alcázar & M. J. Macía. 2006. The arid and Compositae, pp. 747-777. Vienna: International Association dry plant formations of South America and their floristic for Plant . connections: new data, new interpretation? Darwiniana 44: Goloboff, P. 2004. NDM⁄VMDM, programs for identification of 18-31. areas of endemism. Program and documentation. Available Montecinos, A. & P. Aceituno. 2003. Seasonality of the EN- at http://www.zmuc.dk/public/phylogeny/endemism. SO-related rainfall variability in central Chile and associated Grass Phylogeny Working Group. 2001. Phylogeny and subfa- circulation anomalies. Journal of Climate 16: 281-296. milial classification of the grasses (Poaceae). Annals of the Moreira-Muñoz, A. & M. Muñoz-Schick. 2007. Classification, Missouri Botanical Garden 88: 373–457. diversity, and distribution of Chilean Asteraceae: implica- Grass Phylogeny Working Group II. 2012. New grass phylogeny tions for biogeography and conservation. Diversity and Dis- resolves deep evolutionary relationships and discovers C4 tributions 13: 818-828. origins. New Phytologist 193: 304–312. Morrone, J. J. 2001. Biogeografía de América Latina y el Cari- Griffith, M. P. & J. M. Porter. 2009. Phylogeny of Opuntioideae be, vol. 3, 148 pp. Zaragoza: SEA. (Cactaceae). International Journal of Plant Sciences 170: Morrone, J. J. 2006. Biogeographic areas and transition zones of 107-116. Latin America and the Caribbean Islands based on panbioge- Hawkes, J. G. & J. P. Hjerting. 1969. The potatoes of Argenti- ographic and cladistic analyses of the entomofauna. Annual na, Brazil, Paraguay, and Uruguay – a biosystematic study. Review of Entomology 51: 467-494. Oxford: Clarendon Press. Mourelle, C. & E. Ezcurra. 1996. Species richness of Argentine Hernández-Hernández, T.; H. M. Hernández, J. A. De-Nova, R. cacti: a test of biogeographic hypotheses. Journal of Vegeta- Puente, L. E. Eguiarte & S. Magallón. 2011. Phylogenetic tion Science 7: 667-680. relationships and evolution of growth form in Cactaceae Navarro, F. R.; F. Cuezzo, P. A. Goloboff, C. Szumik, M. Liz- (, Eudicotyledoneae). American Journal of arralde de Grosso & G. Quintana. 2009. Can insect data be Botany 98: 44-61. used to infer areas of endemism? An example from the Yun- Hijmans, R. J.; S. E. Cameron, J. L. Parra, P. G. Jones & A. Jar- gas of Argentina. Revista Chilena de Historia Natural 82: vis. 2005. Very high resolution interpolated climate surfaces 507-522. for global land areas. International Journal of Climatology Nyffeler, R. 2002. Phylogenetic relationships in the Cactus fam- 25: 1965-1978. ily (Cactaceae) based on evidence from trnK/matK and trnL- Hijmans, R. J.; L. Guarino, A. Jarvis, R. O’Brien, P. Mathur, C. trnF sequences. American Journal of Botany 89: 312-326. Bussink, M. Cruz, I. Barrantes & E. Rojas. 2005-2010. DI- Olson, D. M.; E. Dinerstein, E. D. Wikramanayak, N. D. Bur- VA-GIS, manual and program http://www.diva-gis.org gess, G. V. N. Powell, E. C. Underwood, J. A. D’Amico, I. Hughes, C. & R. Eastwood. 2006. Island radiation on a conti- Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks, T. F. All- nental scale: exceptional rates of plant diversification after nutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W. W. Wetten- uplift of the Andes. Proceedings of the National Academy of gel, P. Hedao & K. R. Kassem. 2001. Terrestrial Ecoregions Sciences 103: 10334-10339. of the World: A New Map of Life on Earth. BioScience 51: Ibisch, P.L.; S.G. Beck, B. Gerkmann & A. Carretero. 2003. La 933-938. diversidad biológica: ecorregiones y ecosistemas, en P. L. Orme, C. D. L.; R. G. Davies, M. Burgess, F. Eigenbrod, N. Ibisch & G. Mérida (eds.), Biodiversidad: La Riqueza de Bo- Pickup, V. A. Olson, A. J. Webster, T.-S. Ding, P. C. Rasmus- livia, pp. 47-88. Santa Cruz de la Sierra: Editorial Fundación sen, R. S. Ridgely, A. J. Stattersfield, P. M. Bennett, T. M. Amigos de la Naturaleza (FAN). Blackburn, K. J. Gaston & I. P. F. Owens. 2005. Global hot- Kier, G.; J. Mutke, E. Dinerstein, T. H. Ricketts, W. Küper, H. spots of species richness are not congruent with endemism or Kreft & W. Barthlott. 2005. Global patterns of plant diver- threat. Nature 436: 1016-1019.

247 DARWINIANA 50(2): 218-251. 2012

Ortiz, S.; M. Bonifacino, J. V. Crisci, V. A. Funk, H. V. Hansen, Zhou, J. & K. M. Lau. 1998. Does a monsoon climate exist over D. J. N. Hind, L. Katinas, N. Roque, G. Sancho, A. Susanna South America? Journal of Climate 11: 1020-1040. & C. Tellería. 2009. The basal grade of Compositae: Mut- Zuloaga, F. O.; O. Morrone & D. Rodríguez. 1999. Análisis de isieae (sensu Cabera) and Carduoideae, en V. A. Funk, A. la biodiversidad en plantas vasculares de la Argentina. Kurt- Susanna, T. F. Stuessy & R. Bayer (eds.), Systematics, evo- ziana 27: 17-167. lution and biogeography of the Compositae, pp. 193-213. Zuloaga, F.O.; O. Morrone and M. J. Belgrano. 2008. Catálo- Vienna: International Association for Plant Taxonomy. go de las Plantas Vasculares del Cono Sur. Monographs in Ribichich, A. M. 2002. El modelo clásico de la fitogeografía de Systematic Botany from the Missouri Botanical Garden 107: Argentina: un análisis crítico. Interciencia 27: 669-675 609–967. Ritz, C. M.; L. Martins, R. Mecklenburg, V. Goremykin & F. H. Hellwig. 2007. The molecular phylogeny of Rebutia (Cacta- APPENDIX 1 ceae) and its allies demonstrates the influence of paleogeog- raphy on the evolution of South American mountain cacti. American Journal of Botany 94: 1321–1332. NOA (Fig. 4B) The NOA pattern is described in detail in the Rodriguez-Cabral, M. A.; M. A. Nuñez & A. S. Martínez. 2008. discussion. Here we only add that the area is com- Quantity versus quality: endemism and protected areas in posed by three different main patterns. In its widest the temperate forest of South America. Austral Ecology 33: version the pattern runs from the limit between Ar- 730-736. gentina and Bolivia to San Juan supported by four Sánchez-Ken, J. G.; L. G. Clark, E. A. Kellogg & E. E. Kay. species (see Table 2) the most notably being Ade- 2007. Reinstatement and emendation of Subfamily Micrai- smia cytisoides and Jarava media. Several species roideae (Poaceae). Systematic Botany 32: 71-80. are distributed as shown in the consensus area in Simpson, B. B. & C. A. Todzia. 1990. Pattern and processes in Fig. 4B e.g., Panicum chloroleucum and Polygala the development of the high Andean flora.American Journal argentiniensis, while the third group of species are of Botany 77: 1419-1432. lacking in the northernmost part of the area, e.g., Skelnář, P.; E. Dušková & H. Balslev. 2011. Tropical and Tem- Bulnesia schickendantzii, Plectrocarpa rougesii perate: Evolutionary history of Páramo flora. Botanical Re- and Sporobolus maximus. view 77: 71-108. Szumik, C.; L. Aagesen, D. Casagranda, V. Arzamendia, D. Bal- do, L. E. Claps, F. Cuezzo, J. M. Díaz Gómez, A. Di Gia- Yavi-Santa Victoria (Fig. 4K) como, A. Giraudo, P. Goloboff, C. Gramajo, C. Kopuchian, The Santa Victoria-Yavi area separates as an indi- S. Kretzschmar, M. Lizarralde, A. Molina, M. Mollerach, F. vidual area of endemism in the north-eastern corner Navarro, S. Nomdedeu, A. Panizza, V. V. Pereyra, M. Sand- of the Jujuy border. The Santa Victoria-Yavi area is oval, G. Scrocchi & F. O. Zuloaga. 2012. Detecting areas supported by 17 endemic species with distributions of endemism with a taxonomically diverse data set: plants, tightly adjusted to the area, that separates from the mammals, reptiles, amphibians, birds, and insects from Ar- general area of endemism at 15% aa, hence the high gentina. Cladistics. 28: 317–329. endemism scores is due to little species overlap be- Szumik, C.; F. Cuezzo, P. A. Goloboff & A. Chalup. 2002. An tween this area and other distribution patterns rather optimality criterion to determine areas of endemism. System- than a high number of endemic species. atic Biology 51: 806–816. Nearly all defining species have been collected Szumik, C. & P. A. Goloboff. 2004. Areas of endemism: an im- in the surroundings of Yavi in semi-arid Puna or proved optimality criterion. Systematic Biology 53: 973–980. along the high Andean road between Yavi and San- Szumik, C. & P. A. Goloboff. 2007. NDM/VNDM: Computer ta Victoria in sub-humid high Andean, or montane programs to indentify areas of endemism. Biogeografía 2: grassland. We suspect that the Santa Victoria-Yavi 32-37. area is artificially delimited both towards the north von Hagen, K. B. & J. W. Kadereit. 2001. The phylogeny of Gen- and south. Botanical collections are incomplete in tianella (Gentianaceae) and its colonization of the southern southern Bolivia but the eastern slopes of the East- hemisphere as revealed by nuclear and chloroplast DNA se- ern Andes range in Salta area almost unexplored quence variation. Organism, Diversity & Evolution 1: 61-79. botanically except for the road leading to Santa Vic- Wieczorek, J.; Q. Guo & R. J. Hijmans. 2004. The point-radius toria. method for georeferencing locality descriptions and calcu- lation associated uncertainty. International Journal of Geo- Jujuy (Fig. 4C) graphical Information Science 18: 745–767. The core of the area that lies within the Eastern

248 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes

Andes range is supported by 67 endemic species (5226 m) and Nevados de Palermo (6200m) have from 48 genera and 23 families (Table 2). The en- not been explored botanically to our knowledge demic species are found in a wide range of available and could add new endemics to this area. habitats in semi-desert to humid environments be- tween 500 - >4500 m asl that includes the tropical Tucumán (Fig. 4D) moist Yungas forest (Sierra Calilegua), mountain Like the Jujuy area the Tucumán area lies in the grasslands (Sierra de Calilegua, Sierra de Zenta), as eastern Andes range and contains mainly the same well as the slopes of the inner dry valleys (Quebra- habitat types as in the core-Jujuy area. In terms da de Humahuaca). The few species that are found of altitude, temperature, and precipitation, the exclusively above 3500 m, in this area, are from Tucumán area is just as variable as the core area of well to sparsely collected high peaks such as Mina Jujuy. A total of 62 species are endemic to the area Aguilar and Nevado de Chañi, as well as Nevado from a total of 41 genera and 25 families (Table 2). del Castillo and Cerro de Fundición in Salta. The area includes tropical moist Yungas forest The Jujuy area is not easily delimited as the core (eastern slopes of Sierra del Aconquija and Cum- is surrounded by a diffuse border with a gradual- bres de Tafi), mountain grasslands (Cumbres del ly decreasing endemism score (Fig. 4C). The high Tafí, Cumbres Calchaquíes and Sierra del Aconqui- number of sub-sets included in the consensus also ja), as well as the slopes of the inner dry Valleys indicates that the distribution patterns supporting (Valles Calchaquíes). Species found exclusively this area are far from uniform (Table 3). A total above 3500 m asl are mainly from peaks of the two of 35 species are endemic to the border (Table 2) main ranges (Sierra Aconquija and Cumbres Cal- that includes same habitats as the core as well as chaquíes) or from Cerro del Cajón in the northern Puna environment between the Eastern and West- extreme of Sierra de los Quilmes. ern Andes range. The main part of the species de- Unlike the Jujuy area, the Tucumán area has fining the border area are either species found in well defined limits without diffuse border mainly the Puna (e.g., Lobivia einsteinii, Mancoa venturii, because species distribution towards the west can and Senecio punae) or species present along the be defined as an independent area of endemism, see the mountain grasslands reaching the Santa Victo- the Ambato area below. ria area (e.g., Macropharynx meyeri, Microliabum humile, and Silene bersieri). Part of the area enters Jujuy-Tucumán (Fig. 4E) Bolivia as four of the defining species have been The combined Jujuy-Tucumán area is defined found in the Tarija department (Parodia stuemeri, by species that are found in the cores and/or bor- Psychotria argentinensis, Puya micrantha, and So- ders of both the Jujuy and Tucumán areas. The Ju- lanum calileguae). More of the border species are juy-Tucumán area contains the most complex dis- likely to appear in the southern Bolivia as botanical tribution patterns of the study region, being the left inventories become more complete. over of the main consensus area when all sub-ar- eas are extracted at a consensus criterion of 50%. Salta (Fig. 4L) Like the Jujuy area, the high amount of individual Between the high-endemic Jujuy and Tucumán sub-sets that are included in this area indicates that areas lies the Salta area that separates from the distribution patterns supporting this area are not main consensus under the 50% consensus criterion. uniform and variations among these are the main A total of 29 species are endemic to the core area source of the high number of subsets found in the mainly found in montane grasslands, and slopes of analysis in general. the inner dry Valleys. Like the Jujuy area, the Salta area has diffuse Ambato (Fig. 4M) borders that overlap and shares species with the West of the Tucumán area and partly overlap- border of the Jujuy area and the northern part of ping with this lies the Ambato area (Fig. 4M) that the Tucumán area. The high Andean endemics are is defined by species that reach further south and/ restricted to this part of the area where endemic or east than the species defining the Tucumán area. species from Nevado del Castillo and Cerro del The high endemic core of the area incudes 16 Cajón also supports the southern Jujuy or northern endemic species (35% aa) found in semi-desert to Tucumán area respectively. The high mountains semi-arid environments from 500-3500 m. These peaks of the core area such as Cerro Malcante species are mainly found in the montane grasslands

249 DARWINIANA 50(2): 218-251. 2012 along the eastern slopes of Sierra Ambato and in species found below 3000 m. Highest altitudes of high Andean habitats of Cerro Manchado. the defining species are found in Sierra Pie de Palo The border of the Ambato area extends from the and Sierra del Tontal. The southern San Juan area is core towards the north and west partly overlapping one of the driest areas with 50% of the specimens with the Belén-Tinogasta area (Fig. 4N). collected in desert environments. Belén-Tinogasta (Fig. 4N) Inner valleys and Pampeanas Range The Belén-Tinogasta area (Fig. 4N) is the west- ern most and least species rich of the three part- The four partly overlapping areas below are ly overlapping areas of Tucumán, Ambato, and defined by species mainly found in the inner val- Belén-Tinogasta. The area is supported by 12 leys, slopes and summits of the Sierras Pampeanas. species from rare collections in arid or hyper-arid Three of the four areas include species that reach regions of Sierras de Belén or northern Tinogasta. above 4000 m asl with the lower part of the area set Only a single species [Tephrocactus geometricus by the altitude of the valley button in the respec- (A. Cast.) Backeb.] have been collected repeatedly tive areas. Species from the areas are restricted to within the area in Sierras de Belén and Sierra de semi-desert and semi-arid habitats while few enter Zapata. The area furthermore includes rare collec- desert environments. Sub-humid locations are only tion of endemic species from the valleys southeast reached in these areas at high altitudes with low an- of Cerro Chucula (Tinogasta) and from the eastern nual mean temperature rather than higher rainfall. slopes of Sierra de Fiambalá northwest of Belén. Salta-Catamarca summits and dry inner val- Famatina (Fig. 4H) leys (Fig. 4O). The northernmost of the Pampea- nas Range areas are defined by species distributed Endemism in the Famatina area are mainly from along valleys and high Andean locations from San- the isolated Nevados de Famatina but some species ta Rosa de Tastil (Quebrada del Toro, Salta) to Sie- are also found in the surrounding valleys of Chilci- rra Ambato and Quebrada de Belén (Catamarca). to and Vinchina as well as Cuesta de Miranda. The core of the area is supported by 20 endemic species mainly found in semi-desert to semi-arid environ- Catamarca-La Rioja summits and dry inner ments from 1000-4000 m. Twelve of the defining valleys (Fig. 4P). This area includes mainly the species are endemic to Nevados de Famatina with locations Hualfin, Andalgalá, Londres, Cuesta de nine species restricted to altitudes at approx. 4000 Zapata, and Mina Capillitas in Catamarca as well m asl including five species of the ultra high Ande- as Los Corrales in Famatina, La Rioja. an Nototriche genera. The border of the Famatina Several species are found in the semi-desert of areas is composed of a single area mainly defined the inner valleys, e.g., the five Cactaceae species by four Gymnocalycium species from low altitudes that defines the area as well as Sclerophylax cyno- in valleys north-east of the Nevados de Famatina. crambe from the arid radiation of Solanaceae. The high Andean part of the area is defined by species Andes La Rioja-San Juan (Fig. 4F) distributed along the summits of the Calchaquíes, Includes high Andes in La Rioja and San Juan Ambato and Famatina e.g., Poa plicata and Viola and is mainly defined by species found above 3000 triflabellata. m in the regions of Laguna Brava (La Rioja) and Parque Nacional San Guillermo (San Juan) or col- lected along the few high Andean roads south of La Rioja-San Juan summits and dry inner San Guillermo. Few species from the Andean foot- valleys (Fig. 4Q – obtained under cell size hill, e.g., Aphyllocladus ephedroides and Solanum 0.5ºx1.0º). The area is mainly defined by species glaberrimum also support the area. distributed in valleys from southern Catamarca to San Juan. Several of the endemic species from a San Juan (Fig. 4G) wide array of families reach desert environments in this area, e.g., Flourensia hirta and Senecio sa- The southern San Juan area is found outside the nagastae (Asteraceae), Lobivia famatimensis and Andes range. The area includes valleys and minor Tephrocactus alexanderi (Cactaceae), Senna fabri- peaks of the Pampeanas Ranges with all defining sii (Fabaceae), Guindilia cristata (Sapindaceae),

250 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes and Sclerophylax kurtzii (Solanaceae). Only few pears when using longitudinal cells of 0.5ºx1.0º species in this area reach high Andean environ- in which case four species from different families ments, e.g., Zephyranthes diluta (Amaryllidaceae) define the area (Table 2). The main part of the area and Adesmia nanolignea (Fabaceae) that are found consists of the valley between Sierra de Valle Fér- along the high Andes of La Rioja and San Juan. til/Sierra de La Huerta in San Juan and Sierra de Los Llanos/Sierra de las Minas in La Rioja. This area also reaches the northern part of San Luis, Valle Fértil (Fig. 4R – obtained under cell size where nearly all defining species have been con- 0.5ºx1.0º). This minor area of endemism only ap- firmed.

251