Software and Hardware Requirements for Android Studio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Received Citations As a Main SEO Factor of Google Scholar Results Ranking
RECEIVED CITATIONS AS A MAIN SEO FACTOR OF GOOGLE SCHOLAR RESULTS RANKING Las citas recibidas como principal factor de posicionamiento SEO en la ordenación de resultados de Google Scholar Cristòfol Rovira, Frederic Guerrero-Solé and Lluís Codina Nota: Este artículo se puede leer en español en: http://www.elprofesionaldelainformacion.com/contenidos/2018/may/09_esp.pdf Cristòfol Rovira, associate professor at Pompeu Fabra University (UPF), teaches in the Depart- ments of Journalism and Advertising. He is director of the master’s degree in Digital Documenta- tion (UPF) and the master’s degree in Search Engines (UPF). He has a degree in Educational Scien- ces, as well as in Library and Information Science. He is an engineer in Computer Science and has a master’s degree in Free Software. He is conducting research in web positioning (SEO), usability, search engine marketing and conceptual maps with eyetracking techniques. https://orcid.org/0000-0002-6463-3216 [email protected] Frederic Guerrero-Solé has a bachelor’s in Physics from the University of Barcelona (UB) and a PhD in Public Communication obtained at Universitat Pompeu Fabra (UPF). He has been teaching at the Faculty of Communication at the UPF since 2008, where he is a lecturer in Sociology of Communi- cation. He is a member of the research group Audiovisual Communication Research Unit (Unica). https://orcid.org/0000-0001-8145-8707 [email protected] Lluís Codina is an associate professor in the Department of Communication at the School of Com- munication, Universitat Pompeu Fabra (UPF), Barcelona, Spain, where he has taught information science courses in the areas of Journalism and Media Studies for more than 25 years. -
Zencam: Context-Driven Control of Continuous Vision Body Cameras
UI*OUFSOBUJPOBM$POGFSFODFPO%JTUSJCVUFE$PNQVUJOHJO4FOTPS4ZTUFNT %$044 ZenCam: Context-Driven Control of Continuous Vision Body Cameras Shiwei Fang Ketan Mayer-Patel Shahriar Nirjon UNC Chapel Hill UNC Chapel Hill UNC Chapel Hill [email protected] [email protected] [email protected] Abstract—In this paper, we present — ZenCam, which is an this design suits the purpose in an ideal scenario, in many always-on body camera that exploits readily available information situations, the wearer (e.g., a law-enforcement officer) may in the encoded video stream from the on-chip firmware to not be able to predict the right moment to turn the camera on classify the dynamics of the scene. This scene-context is further combined with simple inertial measurement unit (IMU)-based or may completely forget to do so in the midst of an action. activity level-context of the wearer to optimally control the camera There are some cameras which automatically turns on at an configuration at run-time to keep the device under the desired event (e.g., when a gun is pulled), but they miss the “back- energy budget. We describe the design and implementation of story,” i.e., how the situation had developed. ZenCam and thoroughly evaluate its performance in real-world We advocate that body cameras should be always on so that scenarios. Our evaluation shows a 29.8-35% reduction in energy consumption and 48.1-49.5% reduction in storage usage when they are able to continuously capture the scene for an extended compared to a standard baseline setting of 1920x1080 at 30fps period. -
Machine Learning for Marketers
Machine Learning for Marketers A COMPREHENSIVE GUIDE TO MACHINE LEARNING CONTENTS pg 3 Introduction pg 4 CH 1 The Basics of Machine Learning pg 9 CH. 2 Supervised vs Unsupervised Learning and Other Essential Jargon pg 13 CH. 3 What Marketers can Accomplish with Machine Learning pg 18 CH. 4 Successful Machine Learning Use Cases pg 26 CH. 5 How Machine Learning Guides SEO pg 30 CH. 6 Chatbots: The Machine Learning you are Already Interacting with pg 36 CH. 7 How to Set Up a Chatbot pg 45 CH. 8 How Marketers Can Get Started with Machine Learning pg 58 CH. 9 Most Effective Machine Learning Models pg 65 CH. 10 How to Deploy Models Online pg 72 CH. 11 How Data Scientists Take Modeling to the Next Level pg 79 CH. 12 Common Problems with Machine Learning pg 84 CH. 13 Machine Learning Quick Start INTRODUCTION Machine learning is a term thrown around in technol- ogy circles with an ever-increasing intensity. Major technology companies have attached themselves to this buzzword to receive capital investments, and every major technology company is pushing its even shinier parentartificial intelligence (AI). The reality is that Machine Learning as a concept is as days that only lives and breathes data science? We cre- old as computing itself. As early as 1950, Alan Turing was ated this guide for the marketers among us whom we asking the question, “Can computers think?” In 1969, know and love by giving them simpler tools that don’t Arthur Samuel helped define machine learning specifi- require coding for machine learning. -
The Machine Learning Journey with Google
The Machine Learning Journey with Google Google Cloud Professional Services The information, scoping, and pricing data in this presentation is for evaluation/discussion purposes only and is non-binding. For reference purposes, Google's standard terms and conditions for professional services are located at: https://enterprise.google.com/terms/professional-services.html. 1 What is machine learning? 2 Why all the attention now? Topics How Google can support you inyour 3 journey to ML 4 Where to from here? © 2019 Google LLC. All rights reserved. What is machine0 learning? 1 Machine learning is... a branch of artificial intelligence a way to solve problems without explicitly codifying the solution a way to build systems that improve themselves over time © 2019 Google LLC. All rights reserved. Key trends in artificial intelligence and machine learning #1 #2 #3 #4 Democratization AI and ML will be core Specialized hardware Automation of ML of AI and ML competencies of for deep learning (e.g., MIT’s Data enterprises (CPUs → GPUs → TPUs) Science Machine & Google’s AutoML) #5 #6 #7 Commoditization of Cloud as the platform ML set to transform deep learning for AI and ML banking and (e.g., TensorFlow) financial services © 2019 Google LLC. All rights reserved. Use of machine learning is rapidly accelerating Used across products © 2019 Google LLC. All rights reserved. Google Translate © 2019 Google LLC. All rights reserved. Why all the attention0 now? 2 Machine learning allows us to solve problems without codifying the solution. © 2019 Google LLC. All rights reserved. San Francisco New York © 2019 Google LLC. All rights reserved. -
Devices, the Weak Link in Achieving an Open Internet
Smartphones, tablets, voice assistants... DEVICES, THE WEAK LINK IN ACHIEVING AN OPEN INTERNET Report on their limitations and proposals for corrective measures French République February 2018 Devices, the weak link in achieving an open internet Content 1 Introduction ..................................................................................................................................... 5 2 End-user devices’ possible or probable evolution .......................................................................... 7 2.1 Different development models for the main internet access devices .................................... 7 2.1.1 Increasingly mobile internet access in France, and in Europe, controlled by two main players 7 2.1.2 In China, mobile internet access from the onset, with a larger selection of smartphones .................................................................................................................................. 12 2.2 Features that could prove decisive in users’ choice of an internet access device ................ 14 2.2.1 Artificial intelligence, an additional level of intelligence in devices .............................. 14 2.2.2 Voice assistance, a feature designed to simplify commands ........................................ 15 2.2.3 Mobile payment: an indispensable feature for smartphones? ..................................... 15 2.2.4 Virtual reality and augmented reality, mere goodies or future must-haves for devices? 17 2.2.5 Advent of thin client devices: giving the cloud a bigger role? -
Electronic 3D Models Catalogue (On July 26, 2019)
Electronic 3D models Catalogue (on July 26, 2019) Acer 001 Acer Iconia Tab A510 002 Acer Liquid Z5 003 Acer Liquid S2 Red 004 Acer Liquid S2 Black 005 Acer Iconia Tab A3 White 006 Acer Iconia Tab A1-810 White 007 Acer Iconia W4 008 Acer Liquid E3 Black 009 Acer Liquid E3 Silver 010 Acer Iconia B1-720 Iron Gray 011 Acer Iconia B1-720 Red 012 Acer Iconia B1-720 White 013 Acer Liquid Z3 Rock Black 014 Acer Liquid Z3 Classic White 015 Acer Iconia One 7 B1-730 Black 016 Acer Iconia One 7 B1-730 Red 017 Acer Iconia One 7 B1-730 Yellow 018 Acer Iconia One 7 B1-730 Green 019 Acer Iconia One 7 B1-730 Pink 020 Acer Iconia One 7 B1-730 Orange 021 Acer Iconia One 7 B1-730 Purple 022 Acer Iconia One 7 B1-730 White 023 Acer Iconia One 7 B1-730 Blue 024 Acer Iconia One 7 B1-730 Cyan 025 Acer Aspire Switch 10 026 Acer Iconia Tab A1-810 Red 027 Acer Iconia Tab A1-810 Black 028 Acer Iconia A1-830 White 029 Acer Liquid Z4 White 030 Acer Liquid Z4 Black 031 Acer Liquid Z200 Essential White 032 Acer Liquid Z200 Titanium Black 033 Acer Liquid Z200 Fragrant Pink 034 Acer Liquid Z200 Sky Blue 035 Acer Liquid Z200 Sunshine Yellow 036 Acer Liquid Jade Black 037 Acer Liquid Jade Green 038 Acer Liquid Jade White 039 Acer Liquid Z500 Sandy Silver 040 Acer Liquid Z500 Aquamarine Green 041 Acer Liquid Z500 Titanium Black 042 Acer Iconia Tab 7 (A1-713) 043 Acer Iconia Tab 7 (A1-713HD) 044 Acer Liquid E700 Burgundy Red 045 Acer Liquid E700 Titan Black 046 Acer Iconia Tab 8 047 Acer Liquid X1 Graphite Black 048 Acer Liquid X1 Wine Red 049 Acer Iconia Tab 8 W 050 Acer -
Profiles in Innovation: Artificial Intelligence
EQUITY RESEARCH | November 14, 2016 Artificial intelligence is the apex technology of the information era. In the latest in our Profiles in Innovation Heath P. Terry, CFA series, we examine how (212) 357-1849 advances in machine [email protected] learning and deep learning Goldman, Sachs & Co. have combined with more Jesse Hulsing powerful computing and an (415) 249-7464 ever-expanding pool of data [email protected] to bring AI within reach for Goldman, Sachs & Co. companies across Mark Grant industries. The development (212) 357-4475 [email protected] of AI-as-a-service has the Goldman, Sachs & Co. potential to open new markets and disrupt the Daniel Powell (917) 343-4120 playing field in cloud [email protected] computing. We believe the Goldman, Sachs & Co. ability to leverage AI will Piyush Mubayi become a defining attribute (852) 2978-1677 of competitive advantage [email protected] for companies in coming Goldman Sachs (Asia) L.L.C. years and will usher in a Waqar Syed resurgence in productivity. (212) 357-1804 [email protected] Goldman, Sachs & Co. PROFILESIN INNOVATION Artificial Intelligence AI, Machine Learning and Data Fuel the Future of Productivity Goldman Sachs does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. Investors should consider this report as only a single factor in making their investment decision. For Reg AC certification and other important disclosures, see the Disclosure Appendix, or go to www.gs.com/research/hedge.html. -
Prof. Feng Liu
Prof. Feng Liu Spring 2021 http://www.cs.pdx.edu/~fliu/courses/cs510/ 03/30/2021 Today Course overview ◼ Admin. Info ◼ Computational Photography 2 People Lecturer: Prof. Feng Liu ◼ Room: email for a Zoom appointment ◼ Office Hours: TR 3:30-4:30pm ◼ [email protected] Grader: Zhan Li ◼ [email protected] 3 Web and Computer Account Course website ◼ http://www.cs.pdx.edu/~fliu/courses/cs510/ ◼ Class mailing list [email protected] [email protected] Everyone needs a Computer Science department computer account ◼ Get account at CAT ◼ http://cat.pdx.edu 4 Recommended Textbooks & Readings Computer Vision: Algorithms and Applications ◼ By R. Szeliski ◼ Available online, free Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library ◼ By Adrian Kaehler and Gary Bradski Or its early version Learning OpenCV: Computer Vision with the OpenCV Library ◼ By Gary Bradski and Adrian Kaehler Papers recommended by the lecturers 5 Grading 30%: Readings 20%: In-class paper presentation 50%: Project ◼ 10%: final project presentation ◼ 40%: project quality 6 Readings About 2 papers every week ◼ Write a brief summary for one of the papers Totally less than 500 words 1. What problem is addressed? 2. How is it solved? 3. The advantages of the presented method? 4. The limitations of the presented method? 5. How to improve this method? Submit to [email protected] by 4:00 pm every Thursday ◼ Write in the plain text format in your email directly ◼ No attached document 7 Paper Presentation One paper one student ◼ -
Manovich.Ai Aestheti
AI Aesthetics Lev Manovich Publication data: Strelka Press, December 21, 2018. ASIN: B07M8ZJMYG Abstract: AI plays a crucial role in the global cultural ecosystem. It recommends what we should see, listen to, read, and buy. It determines how many people will see our shared content. It helps us make aesthetic decisions when we create media. In professional cultural production, AI has already been adapted to produce movie trailers, music albums, fashion items, product and web designs, architecture, etc. In this short book, Lev Manovich offers a systematic framework to help us think about cultural uses of AI today and in the future. He challenges existing ideas and gives us new concepts for understanding media, design, and aesthetics in the AI era. “[The Analytical Engine] might act upon other things besides number...supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.” - Ada Lovelace, 1842 Итак, кто же я такой? С известными оговорками, я и есть то, что люди прошлого называли «искусственным интеллектом». (Виктор Пелевин, iPhuck 10, 2017.) “So who am I exactly? With known caveats, I am what people of the past have called "artificial intelligence."” (Victor Pelevin, iPhuck 10, 2017.) Writing in 1842, Ada Lovelace imagines that in the future, Babbage’s Analytical Engine ( general purpose programmable computer) will be able to create complex music. In the 2017 novel by famous Russian writer Victor Pelevin, set in the late 21th century, the narrator is an algorithm solving crimes and writing novels about them. -
Large-Scale Deep Learning with Tensorflow
Large-Scale Deep Learning With TensorFlow Jeff Dean Google Brain team g.co/brain In collaboration with many other people at Google What is the Google Brain Team? ● Research team focused on long term artificial intelligence research ○ Mix of computer systems and machine learning research expertise ○ Pure ML research, and research in context of emerging ML application areas: ■ robotics, language understanding, healthcare, ... g.co/brain We Disseminate Our Work in Many Ways ● By publishing our work ○ See papers at research.google.com/pubs/BrainTeam.html ● By releasing TensorFlow, our core machine learning research system, as an open-source project ● By releasing implementations of our research models in TensorFlow ● By collaborating with product teams at Google to get our research into real products What Do We Really Want? ● Build artificial intelligence algorithms and systems that learn from experience ● Use those to solve difficult problems that benefit humanity What do I mean by understanding? What do I mean by understanding? What do I mean by understanding? What do I mean by understanding? Query [ car parts for sale ] What do I mean by understanding? Query [ car parts for sale ] Document 1 … car parking available for a small fee. … parts of our floor model inventory for sale. Document 2 Selling all kinds of automobile and pickup truck parts, engines, and transmissions. Example Needs of the Future ● Which of these eye images shows symptoms of diabetic retinopathy? ● Find me all rooftops in North America ● Describe this video in Spanish -
Big Data Systems Big Data Parallelism
Big Data Systems Big Data Parallelism • Huge data set • crawled documents, web request logs, etc. • Natural parallelism: • can work on different parts of data independently • image processing, grep, indexing, many more Challenges • Parallelize applicaFon • Where to place input and output data? • Where to place computaFon? • How to communicate data? How to manage threads? How to avoid network boJlenecks? • Balance computaFons • Handle failures of nodes during computaFon • Scheduling several applicaFons who want to share infrastructure Goal of MapReduce • To solve these distribuFon/fault-tolerance issues once in a reusable library • To shield the programmer from having to re-solve them for each program • To obtain adequate throughput and scalability • To provide the programmer with a conceptual framework for designing their parallel program Map Reduce • Overview: • ParFFon large data set into M splits • Run map on each parFFon, which produces R local parFFons; using a parFFon funcFon R • Hidden intermediate shuffle phase • Run reduce on each intermediate parFFon, which produces R output files Details • Input values: set of key-value pairs • Job will read chunks of key-value pairs • “key-value” pairs a good enough abstracFon • Map(key, value): • System will execute this funcFon on each key-value pair • Generate a set of intermediate key-value pairs • Reduce(key, values): • Intermediate key-value pairs are sorted • Reduce funcFon is executed on these intermediate key- values Count words in web-pages Map(key, value) { // key is url // value is -
Bringing Data Into Focus
Bringing Data into Focus Brian F. Tankersley, CPA.CITP, CGMA K2 Enterprises Bringing Data into Focus It has been said that data is the new oil, and our smartphones, computer systems, and internet of things devices add hundreds of millions of gigabytes more every day. The data can create new opportunities for your cooperative, but your team must take care to harvest and store it properly. Just as oil must be refined and separated into gasoline, diesel fuel, and lubricants, organizations must create digital processing platforms to the realize value from this new resource. This session will cover fundamental concepts including extract/transform/load, big data, analytics, and the analysis of structured and unstructured data. The materials include an extensive set of definitions, tools and resources which you can use to help you create your data, big data, and analytics strategy so you can create systems which measure what really matters in near real time. Stop drowning in data! Attend this session to learn techniques for navigating your ship on ocean of opportunity provided by digital exhaust, and set your course for a more efficient and effective future. Copyright © 2018, K2 Enterprises, LLC. Reproduction or reuse for purposes other than a K2 Enterprises' training event is prohibited. About Brian Tankersley @BFTCPA CPA, CITP, CGMA with over 25 years of Accounting and Technology business experience, including public accounting, industry, consulting, media, and education. • Director, Strategic Relationships, K2 Enterprises, LLC (k2e.com) (2005-present) – Delivered presentations in 48 US states, Canada, and Bermuda. • Author, 2014-2019 CPA Firm Operations and Technology Survey • Director, Strategic Relationships / Instructor, Yaeger CPA Review (2017-present) • Freelance Writer for accounting industry media outlets such as AccountingWeb and CPA Practice Advisor (2015-present) • Technology Editor, The CPA Practice Advisor (CPAPracAdvisor.com) (2010-2014) • Selected seven times as a “Top 25 Thought Leader” by The CPA Practice Advisor.