<<

AN ABSTRACT OF THE THESIS OF

WOON-YOUNG YOON for the degree of Master of Science in

Chemical Engineering presented on September 17, 1985.

Title : Quality Effect on of Heat Transfer

Surface under Circulation Boiling,Condition.

Abstract approved : Redacted for Privacy , Dr. James G. Knudsen

The effect of water quality having a total hardness in the

range of 70 to 240 ppm as CaCO3 on the fouling of a heat transfer 5

surface has been studied at a constant heat flux of ( 2.9 * 10 ) 2 2 W/m ( 93300 Btu/hr ft) and constant water velocity of 0.44 m/s

( 1.4 ft/sec) under forced circulation boiling conditions. Other water quality parameters also varied over the duration of invest-

igation; PH changed from 7.6 to 8.8; Methyl Orange alkalinity

varied from 20 to 100 ppm as CaCO3 ; Magnesium hardness changed

from 10 to 35 ppm as CaCO3 .

The test section consisted of an annular duct 0.025 m ( 1.0 in.) O.D. and 0.012 m ( 0.5 in.) I.D. A 0.15 m ( 5.5 in.) sec- tion of the concentric core of the annulus was electrically heated. Artificially hardness water was circulated through the annulus at inlet temperature of 200 °F and fouling occurred on the heated section. The range of surface temperature was from 386.7 to 398.9 K.

The fouling resistance vs. time curves were fitted to the HTRI model derived from Taborek (1,2) and the fouling resist- tance ultimately reached an asymtotic value. Values of the para- meters in the HTRI model were determined by using the computer package program of regression analysis. The fouling resistance equation showing the effect of water quality has been obtained 37 as Rf = (6.84) (10 ) exp (-0.014 H - 60000/Ts) [1 - exp [-

14.L77 * 10 exp ( 0.051 H)1 e ]] where Rf = fouling resistance

(hr ft F/Btu)*10000 H = Calcium hardness, ppm CaCO ( 70 to

220 ) Ts = temperature of heated surface, ( R ) e= time , hr.

Results of five runs are reported in this experiment. The parameters k1 and k2 are a function of waterquality and are strongly influenced by the nature of deposit on the heat transfer surface. The main constituent of the deposit was calcium carbo- nate. WATER QUALITY EFFECT ON FOULING OF THE HEATTRANSFER SURFACE UNDER FORCED CIRCULATION BOILING CONDITION

by

Woon-Young Yoon

A THESIS

submitted to

Oregon State University

in partial fulfilment of the requirement for the degree of

Master of Science

Completed September 17, 1985

Commencement June 1986 APPROVED: Redacted for Privacy

es/or of Chemical Engineering Department in charge of major Redacted for Privacy

Head of Chemical Engineering Department

Redacted for Privacy

Dean of Gradua School

Date thesis is presented September 17, 1985

Typed by researcher for Woon-Young Yoon ACKNOWLEDGEMENTS

I wish to extend my appreciation to Dr. James G. Knudsen for his guidance and patience throughout the duration ofthis study.

Department of Chemical Engineering and Dr. C. E. Wicks, head, for the use of Department facilities.

Drew Chemical Corporation for the analysis of material deposited.

Mr. K. H. Lee for helping the analysis of PH of water sample. TABLE OF CONTENTS

I. Introduction 1

II. Background and Literature Survey 3

Basic Equation 3 Fouling Mechanism 4 Important Variable 5 Water quality 6 Surface and Bulk Temperature 7 Surface Conditions 8 Literature Survey 9 Deposition Model 11 Kern-Seaton Model 11 Heat Transfer Research Inc. Model 12 Watkinson-Epstein Model 14 Watkinson-Martinez Model 15 Other Models 16

III. Experimental Equipment 19

IV. Experimental Procedure 26

experimental Condition 26 Run Initiation 27 Data Processing 27 Process Monitoring 27 Run Termination 29

V. Calculation Methods 30

For Clean Condition 30 For Fouled Condition 32 Computer Programming 33

VI. Results and Discussions 34

Operating Conditions 34 Results 34 Effects of Water Qualty 42 Effects of Surface Temperature 48

VII.Conclusion 49

Bibliography 51 TABLE OF CONTENTS (Continued)

Appendix Page A 55 B Computer Programs in Fortran V 59 C Raw data and Fouling Resistance plus Reciprocal Film Heat Transfer Coefficient 63 D Plots of Fouling Resistance plus Reciprocal Film Heat Transfer Coefficient Plots of Fouling Resistance 'observed and predicted Data 98 E Statistical Analysis and Normal Probability Plots 125 LIST OF FIGURES

Figure Page

3-1 Schematic Flow Sheet of Experimental System 20

3-2A Heater Rod-Heated Section and Thermocouple Location 22

3-2B Cross Section of Annular Test Section 23

5-1 Cross Section of Test Section-Clean and Fouling Condition 31

6-1 Relationship between Model Parameters and Water Quality 43

6-2 Ln Rf vs. 1/Ts 47 LIST OF TABLES

Table Page

3-1 Heater Specification 25

4-1 Mass of Chemicals added to each 16-Gallon Batch of Diatilled Water 28

6-1 Average Water Quality 35

6-2 Operating Condition 36

6-3 Summary of Chemical Compostion 37

6-4 Summary of Model Parameters 38

6-5 Summary of Asymtotic Fouling Resistance 39

6-6 Summary of K1/K2 and Eg/Rg 40

6-7 Summary of Asymtotic Fouling Resistance and Surface Temperature 41 WATER QUALITY EFFECT ON FOULING OF THE HEAT TRANSFER SURFACE UNDER FORCED CIRCULATION BOILING CONDITION

I. INTRODUCTION

The fouling of heat transfer surface is the process of

deposition of undesirable material on the surfaces. This

increases the resistance to the transfer of heat. The growth of these deposits affects the thermohydraulic performance of heat exchangers and increases capital expenditures for heat exchangers, because of the need to provide extra heat transfer area to compensate for the effects of fouling. In addition, where the heat flux is high, as in steam , , and nuclear reactor system, fouling may result in mechanical failure of the heat transfer surface, and hence an unscheduled shutdown of the equipment. The typical manifestion of such deposits are the increase of wall temperature, pressure drops and contamination with radioactive products in nuclear primary systems. The designer, therefore, must be able to predict the variation of performance as the fouling proceeds.

Fouling may be classified by the cause or mechanism of the process involved. The six categories which have been identified are precipitation fouling (), par- ticulate foulng ( ), chemical reaction fouling

( polymer production ), fouling, biological fouling

( growth of micro organisms ), and solidification fouling. 2

Almost any pair of the fouling models may be mutually reinforc-

ing (3 ).

Fouling is particulary serious if the being boil- ed contains inverse salts such as .

Various mathematical models for fouling have been proposed to predict the deposition behavior. However, very little work to date has been performed on the effect of water quality on the fouling process under. boiling conditions. In 1972,

Tabork et,al. ( 1,2) recognized the importance of the effect of water chemistry and introduced a water characterization factor to their model for deposition by .

In his recent work on the effects of water quality on fouling, Watkinson (4) postulated that the deposition rate under the operating conditions can be predicted from the ionic model of Hasson and co-workers ( 5 ). Freeborn

and Lewis (6 ) investigated the common type of scale forma- tion and the mechanism of deposit adhesion.

The focus of this study was to find the effect of water quality and surface temperature on the parameters of HTRI model

( 1, 2) and on the deposition rate under forced condition.

The data are correlated with the HTRI model described below. 3

II. BACKGROUND AND LITERATURE SURVEY

Basic Equation

The overall heat transfer coefficient based on the out- side surface area of the fouled heat exchanger is calculated

by the following equation:

1 1 Ao Ao Ao 1 Uo = hi Ai + Rfi Ai + Rw Aw + Rfo + ho

where

U = overall heat transfer coefficient

h = convective heat transfer coefficient

R = heat transfer resistance

A = surface area

and subscripts

o = outside of clean unit

i = inside of clean unit

f = fouled

w = wall

Assuming fouling takes place only on the heated stream side and the surface areas are equal, equation (2-1) becomes:

1 1 1 Uo = hi + Rw + Rfo + ho

Values of the heat transfer coefficient and wall resist- ance can be evaluated by using correlations based on the operating conditions. However, the fouling resistance are estimated "experience values" or are based on recommenda- tions of the Tubular Exchangers Manufacturers Association

( TEMA )( 33 ) which has been frequently inadequate for the

actual design. As a result, the heat exchanger equipment

will be overdesigned with respect to required area, which

increases the cost of equipment. Van Nostrand, Legch and

Haluska (7) estimated the annual cost of fouling of petrol-

eum refinery units in the non-Communist countries to be 4.41 billiondollars. This estimate justifies the economic and technicalimportance of fouling.

It is, therefore, a fact that better understanding of the fouling mechanism and pertinent variables is necessary in spite of the increasing on fouling over the past twenty years.

Fouling Mechanism

Due to the complexity of the fouling phenomenon no single mechanism can be generalized to describe the deposi- tion process. Progress in classifying the fouling categor- ies has been made during the past ten years. Six categories have thus been identified:

( 1 ) precipitation fouling - the crystallization of dissolved substances onto the heat transfer surface. This is the common mechanism of deposition during boiling. Inverse solubility salts like calcium carbonate, , magnesium 5

and some silica salts precipitate onto heated sur-

face because the solubility of these salts decreases with an

increase of temperature.

( 2) particulate fouling- the deposition of suspended solid

onto the heat transfer surface.

( 3) chemical reaction fouling- deposit formation at the heat transfer surface by chemical reactions in which the sur- face material is not involved. This primarily occurs in petroleum and food processing industries.

( 4 ) corrosion fouling - deposition that occurs by chemical reaction with the material of the heat transfer sur- face. Corrosion increases rapidly as the PH of the fluid decreases below 7.

( 5) biological fouling - the attachment of both macro- organisms ( , etc.) and micro-organisms ( ,

, etc. ) to a heat transfer surface.

( 6) freezing fouling - the solidification of a liquid or higher melting constituents onto a subcooled heat transfer surface.

Important Variables

The variables having a significant effects on the foul- ing of the heat transfer surfaces under forced circulation boiling condition are water quality, fluid velocity, surface and fluid temperature, and surface condition. 6

Water quality

In spite of recognizing the importance of water qualty

in the fouling process, few articles have been published in

this area. Water contains a significant amount of calcium, magnesium, which can form inverse solubility salts with ions such as and carbonates. In general, hardness, PH, the concentrations of salts and the water alkalinity are the

most important quality parameters. Knudsen and Morse ( 8 ) pointed out that the scale strength can be indicated by the composition of the scale which is also related to water quality.

For water with only'calcium salts and containing carbonic , Langelier (9) proposed a fouling index known as

Langelier Saturation Index( LSI ).

LSI = PH - ( 2-3 )

where

PH = true PH of fluid

PHs = PH of water when it is saturated with calcium

carbonates.

The PHs can be calculated from various water parameters as follows-,

PHs = E + F + 9.3 - log( 0.4 CaH )- log( m-alk )( 2-4 )

where 0.5 0.5 E = 2.5(TS/40000) /[1+5.3(TS/40000) +5.5(TS/40000)1 2 (-1.37864+1040.92/Tb-75500/Tb ) F = 10 7

TS = total solid in ppm

Tb = water bulk temperature in R

CaH = calcium hardness in ppm as calcium carbonate

m-alk = methyl orange alkalinity in ppm as

calcium carbonate

If the quantity LSI is greater than 1.0 the deposition of calcium carbonate will occur.

Taborek et, al. ( 1,2) introduced the " water character- ization factor" in their model based on the Ryzner Stability

Index ( 10 ) , which is defined as

RSI = 2 PHs - PH ( 2-5 )

If the quantity RSI is greater than 6.0 the water is consider- ed to have a tendency to deposit calcium carbonate.

Fluid Velocity

The fluid velocity has two conflicting effects. Deposits will be removed by increased flow velocity because the surface shear stress is proportional to the velocity. In contrast, for diffusion controlled deposition, the rate of deposition will increase with fluid velocity by increasing the convective mass transfer coefficient.

Surface and Fluid Bulk Temperature

Knudsen and Lahm ( 11 ), Imdakm and (12) and Frederick 8

and Grace ( 13 ) found that the rate of deposition

is strongly surface temperature dependent. The temperature at the heat transfer surface increases as fouling proceeds, whereas Fisher et, al. ( 14) postulated that surface temper- ature remains constant at constant heat flux. It is found

in this investigation , however, that the surface temperature is affected by change of water quality at constant heat flux.

The fluid bulk temperature has an effect on the satura- tionconcentration of the salts in the solutionand also may change the characteristic of the deposition.Frederick

and Grace (13 ) in 1979, analysed the scaling of calcium carbonate in black liquor evaporators. They indicated that the deposition rate is a strong function of fluid temperature.

Surface Conditions

A rough surface provides numerous nucleation sites for deposits to initiate. According to Rankin and Adamson (15 ), surface conditions affected the sticking tendency and initial formation of deposits and a rough surface provides for strong- er adhesion of the deposit than a smooth surface. In general, smooth surfaces have lower fouling rates than rough surfaces.

The geometry and the material of the heat transfer surface also affect fouling and the material effect is particulary serious if the fouling process is due also to corrosion. On the contrary, Ranchero, Gordon and Chandler (16) in 1964 9

reported that the roughness or material of the heat transfer

surface is not a major factor.

Literature Survey

Over the past fifty years, various types of fouling and

several mathematical models have been proposed for fouling

under cooling or boiling conditions. Recent progress in the

understandingof the comprehensive fouling processhas

been summarized by Taborek, et, al. ( 1,2 ). Particulary, many studies have been focused on the effect of variables on the fouling. However, the effect of some process para- meters such as water quality, fluid temperature is not yet completely understood.

Many laboratory studies have been carried out on the fouling of containing inverse solubility salts.

Hasson, et,al.( 5 ) investigated the mechanism of calcium carbonate deposition under constant heat flux. They found

the rate of deposition to be diffusion controlled but the water quality effects were not clarified.

Watkinson ( 4) studied the effect of water quality on fouling at constant heat flux using the artificial hard waters of PH 6.9 - 8.1 and total akalinity between 90 and 770 ppm as calcium carbonate. He correlated the data with Hasson's

ionic diffusion model.

Palen and Westwater ( 17) studied the effect of fouling 10

during pool boiling of calcium sulfate solution and found the

rate of deposition to be proportional to the square of the con-

centration driving force.

Withrespect to the effect of the geometry of the

heat exchanger, Watkinson, et, al. ( 18) compared enhanced heat exchanger tubes with plain tubes under severe fouling

conditions and reported that the enhanced tubes had advantages over plain tubes of 10 to 100 % in heat transfer coefficient.

Kern and Seaton ( 26,27 ) developed a general fouling equation consisting of the deposition term and removal term which was become a basic concept of HTRI model, and Taborek,

et, al. ( 1,2 ) indicated that fouling resistance-time curve reaches an asymptotic value in their model when the deposition rate and the removal rate become equal.

A series of studies on the fouling effects of cooling tower has been carried out Oregon State University. Knudsen and Story (19) correlated the asymptotic fouling resistance with surface temperature according to equation Rf = K1/K2 exp

( -Eg/RgTs ) at constant water quality and fluid velocity.

Morse and Knudsen ( 20 ) used the same equipment and investigated the effect of alkalinity on scailing. They have reported that the strength of the scale as well as wall shear stress strongly affects the asymptotic fouling resistance.

Lee and Knudsen (21 ) , Coats and Knudsen ( 22) also examined the fouling characteristic of cooling tower waters 11 of different quality. They observed flow velocity to affect fouling but the tube material was found to have no significant effect on the fouling rate.

Prevention of scale is difficult but can be reduced by

use of proper additives. Cross ( 23 ) in 1979 and Haluska

( 24 ) in 1976 introduced some methods to prevent fouling by controlling the operation and using the antifoulant.

The effect of velocity and temperature on biological

fouling has been studied by Bott and Pinheiro (25 ) in 1977.

Deposition Models

Kern and Seaton Model (26, 27 )

The general equation model introduced by Kern and Seaton

( 26, 27 ) expresses the rate of fouling ,dRf/de as the differ- ence between a deposition rate, 00, and a removal rate, 0a .

dRf

e= Oo R. ( 2-6 )

The fouling resistance, Rf, can be assumed equal Xf/Kf ( 2-7 )

where Kf = of the deposited material

Xf = deposit thickness

The deposition rate is assumed to be constant with time and expressed by the product K3C'W where K3 is a constant, C' a concentration of foulants, and W the mass flow rate, whereas the removal rate is assumed to be proportional to the 12

surface shear stress,r, and the instantaneous thickness of

the deposit, Xf,. Therefore, equation (2-6 ) can be given

as dRf

= K3 C' W - K4 (r) Xf ( 2-8 ) d9

Assuming that C' and W are constant and the scale thickness

is much less than the tube diameter, equation (2-8) leads

to a fouling equation of the form

Rf = Rf [ 1- exp( -pt)] ( 2-9 )

where * K3C'W

Rf = KfK4 ( 2-10 )

p = Kur ( 2-11 )

Equation ( 2-9) indicates that the fouling resistance-time curves usually reach an asymptotic value. However, Kern and

Seaton gave no experimental evidence to substantiate any of the above physical relations and recent fouling studies have * emphasized finding experimental relationships for Rf and (2.

Various mathematical models based on the Kern-Seaton model have been proposed. The difference between these models is the forms of the deposition and removal terms with respect to various parameters.

HTRI Model (1, 2 )

Taborek, et, al. ( 1, 2 ) in a very comprehensive study of cooling tower water fouling formulated a model using the 13

form of the Kern-Seaton model but included several new basic mechanistic concepts. The deposition rate was expressed as a function of the scale surface temperature in an Arrhrenius

type of equation chemical reaction term, a water quality and and a velocity, n

= (C1)(Pd)(52 ) exp(-Eg/RgTs) ( 2-12 )

where

C1, n = empirically determined constants

Pd = empirically determined probability function

of velocity

S? = water quality factor

Eg = activation energy

Rg = unversal gas constant

Ts = temperature of fouling deposit surface

The removal rate was expressed as a function of the wall shear stress, the deposit thickness and a bonding strength of the deposit,

,'r= C2-:11 (Xf)m ( 2-13 )

where

C2, m = empirically determined constants

Z= fluid shear stress

empirically determined proportional constant

for the bonding strength of the deposit

Xf = deposit thickness

Letting Xf = (Rf)(Kf) and m=1 in eq.( 2-13 ) and combining 114

eq. ( 2-6, 2-12, 2-13 ) and integrating gives

K1

Rf = K2 exp (Eg/RgTs) [1-exp (-K2)} ( 2-14 )

where n K1= (C1)(Pd)(g )

(C2)(1r)(Kf) K2

If time becomes very large

Rf = lim Rf = (K3/K4)exp(-Eg/RgTs) ( 2-17 ) 9-41arge Rf is the asymptotic fouling resistance attainedwhen the deposition and removal rates become equal. K3 and K4 are determined experimentally, and are vary with water qualty, deposit material and fluid velocity.

Watkinson - Epstein Model ( 28 )

Watkinson and Epstein (28) proposed the asymptotic foul- ing resistance to be inversely proportional to the mass flow rate. They postulated that the deposition rate is proportion- al to the product of the mass flux, J, normal to the surface and the sticking probability, S, which is proportional to the adhesive force and inversely proportional to thehydro- dynamic forces at the surface. The mass flux is expressed as

J = Km ( Cb-Cs ) ( 2-18 )

where 15

Km = convective mass transfer coefficient

Cb = concentration of foulant at bulk conditions

Cs = concentration of foulant at the surface

The sticking probability is given as

(C)exp[-(Eg/RgTs)]

S = ( 2-19 ) fV

where

f = surface friction factor

Assuming the removal rate is similar to that proposed by Kern and Seaton, the change of deposit thickness with time is

dXf = (K5)(J)(S)- (K6)((Xf) de

where

K5,K6 = proportionaity constant

Watkinson - Martinez Model (29 )

Watkinson and Martinez (29 )studied the effect of flow velocity, tube diameter, and bulk temperature on the scaling of calcium carbonate under constant wall temperature. They assumed a Kern-Seaton model for deposition but modified that

model by introducing Reitzer model (30 ). Thus , the deposi- tion rate is

dXf = K7 exp (- Eg /RgTs) {(Tw- Tb) /(1 +hXf /Kf)} - K8 Z7 Xf

de ( 2-21 )

where 16

Tw = tube wall temperature

Tb = bulk temperature

K7,K8 = proportionality constant

Kf = thermal conductivity of deposits

m = dimensionless empirical constant

The deposition term in eq.( 2-21) differs from other models in that it varies with time through the scale thickness Xf.

They obtained the asymptotic fouling resistance by setting 2 dXf/de = 0, putting Rf = Xf/Kf and replacing Z =fV fw /2, * m resulting in Rf (1+h Rf ) = K9 exp (-Eg/fRgTb+ (Tw-Tb)/

(Tw-Tb) (1+h Rf)]] fV2

where

f = friction factor

v = flow velocity and subscript*refers to the asymptotic condition.

Other Models (30, 31, 32 )

In 1964, Reitzer developed the rate of scale for crystalline deposition from unsaturated solutions assuming removal forces are negligible

dm

= Km A( Cb-Cs ) ( 2-23 ) d6

where 17

A = heat transfer area of test section

Km = mass transfer coefficient

Cb = solubility at bulk temperature

Cs = solubility at interface temperature

Forhigh tubular velocities and for slow scaling growth, n would be equal to the order of the reaction. He postulated

that n would be equal to 1 if the process is mass transfer controlled.

Charlesworth Model (31 )

Charlesworth studied the effect of heat flux on deposi- tion of iron from water dosed with at a boiling reactor surface. He found that the deposition rate is pro- portional to concentration and the release rate is proportion- al to deposit rate:

dm

= (K10)(C)-(K11)(W) ( 2-24 ) de

where

m = mass of deposited

K10 = deposition rate constant

K11 = release rate constant

Fixing the concentration, the mass deposited will be

K10

m= C (1-Exp(-K11 * t) ( 2-25 ) K11 18

Based on his experimental results, Charlesworth indicated the

approximate kinetics of the process on heated surfaces as

K10 2

= 0.0025 q ( 2-26 ) K11

where

q = heat flux

Asakura,' et, al.( 32 )

The effect of heat flux, concentration of iron oxide and flow

rate on the deposition rate during the initial deposition

period have been studied by Asakura, et, al. ( 32 ). They showeda linear relationship between the deposition rate and

the heat flux as follows:

dm

= K12 Q C / T ( 2-26 ) da

where

K12 = the deposition rate coefficient

X= heat of evaporation

C = concentration 19

III. EXPERIMENTAL EQUIPMENT

A schematic flow sheet of the experimental apparatus is shown in Fig. 3-1. It consists of a test section and a counter- current heat exchanger in order to condense the generated water vapor and maintain the inlet temperature of 200 °F.

Theauxilliary equipment such as an pipings, valves, pump and storage tank are made of non corrosive material.

The annular test section shown in Fig. 3-2A and 3-2B is an outer glass tube (1.253 in. I.D.) with an electrically heated concentric stainless steel rod 0.5 in. outside diameter.

The heater specifications and the reciprocal thermal resistance of the heater wall are listed in table 3-1.

Copper constantan thermocouples ( Type T) TC1, TC2, TC3 and TC4 are located underneath the heated surface of the con- centric rod to indicate wall temperature at four different 0 locations 90 apart. Thermocouple outputs are displayed on a digital thermometer by means of a thermocouple selector swich. A constantan thermocouple is also placed at the inlet of the test section to determine bulk temperatureof the flowing fluid.

A concentric stainless steel rod with only one copper constantan thermocouple ( TC1) was used for the 1st run. For the other runs three thermocouples were active ( TC2 was in- active ). The electric power supply to the concentric heater 20

City Water 2 tan

Condones.' .5 in Distilled Water To Drain =1- Go F Flow Meter a TThermocouple o E P Pressure Gusge o a) A Acquisition Data Unit O

ti

7 Venturi Meter

Excess Steam To Drain Safety Valve

pc, Steam in City Water

Steam Condensate Circulating PumP To Drain

Storage Tank

Fig. 3-1. Schematic Flow Sheet of Experimental System 21 rod is regulated by a variable transformer.

A calibrated venturi meter 3/4 inch in diameter was used

to measure water flow rate. The following equation is the cal-

ibration equation for the venturi meter.

G.P.M. = 0.767 * LsP ( 3-1 )

where GO ispressure difference in inches of water determined by a manometer.

The condenser is a counter current double heat ex- changer with an outer pipe stainless steel 1.75 in. in dia- meter and an inner brass tube 0.5 in. in diameter.

The storage tank, a 20 gallon jacketed vessel, filled to

80 %of its capacity by distilled water. Steam is sup- plied to maintain the water supply to the test section at 200 F

+2 °F. The tank is covered tightly during operation and water lost due to evaporation is replaced by distilled water through the level control valve.

Circulation in the system loop is provided by a brass centrifugal pump with a 1.5 hp electric motor giving a pumping capacity of 10 gallons/min.

Pipingwas mainly brass, polyvinyl chlorideand stain- less steel. All valves in Fig. 3-1 are operated manually.

Valves 1 and 2 control city water supply to the storage tank and shell side of the heat exchanger. Valve 3 controls distil- led water supply to the storage tank through the level control valve. Valves 4 and 6 control the output and input steam 4

4 11 11. 4 C

EI4- r --1 Healer tad sealed wilh dIsc,,, rinSSYS Heater end sliver solder . m -...... _

,. \ t====i-R--k-iili; ''''' bushing silver (Tube- 0.S-inch O.O. by isoldered to lobo Null Thermocouples 16 OW well Poshlog to Ill NWACJIM /6141! NEATER DIPE11519PS lit riot NS-I110-1-11

4

1/2 -Inch pipe plug drilled accommodate tube Rushing A

4 2

Tube flied In pipe A plug with epoxy

cfnuse Ninas Ho. 17, 1/2-Inch r 0000 nectur 1111:101 H.111111 NIA 1 11511 with cover and gestet

-7=-T 12-gage 'stranded 1 -wire klactric cord Section A A U-5

Fig. 3-2A. Heater Rod-Heated Section and Thermocouple Location 23

40 an Outer Glass Tube J,,,,/,/,/,,/,,,/,,///,//.10 an Inner Flaw Care Scale Farmedan Heater Surface

Fig. 3-2B. Cross-Section of Annular Test Section 24 supply to the vessel. Valve 5 is a safety valve and valve 7 controls the water flow through the test section.Valve 8 controls the water flow through the bypass and valve 9 con- trols the distilled water storage tank on the second floor of the laboratory.

In order to prevent the heater from overheating when the flow failed, a low flow rate cut off switch was provided. 25

Table 3-1

Heater Specification

Tube Material: Stainless Steel - T304

Tube Size: 0.5 in. O.D. * 16 BWG wall ( 0.065 in. )

Heater: Watlow Firerod Cartridge Heater No.G6A56

Dimensions

A - Total Length of tube 24"

B - Thermocouple Position 9-3/4"

C - Heater Position 7-3/4"

D - Heater Overall Length 6.05"

E - Bushing Position 1-1/4"

F - Bushing Length 1-1/2"

G - Total Length of Heater 25-3/4"

Thermocouple Information

Thermocouple k/x

1st run 2nd-5th run

1 3216 2913

2

3 4450

4 2238 26

IV. EXPERIMENTAL PROCEDURE

Experimental Condition

The major objective of this experimental study was to in- vestigate the effect of water quality on asymtotic fouling resistance under forced circulation boiling conditions. The

1st run was planned to study the fouling phenomenon using dis-

tilled water under constant velocity of 2 G.P.M. ( 1.44 ft/ 2 sec ) and constant heat flux of 93300 Btu/hr ft ( 294000 / 2 m ). Steam supply was controlled manually to maintain con- stant inlet temperature of 200 °F. It was found that there was no significant deposition. Therefore the fluid temperture, the surface temperature and the wall temperature obtained in this run were considered as a reference data for clean condi- tion for the calculation of fouling resistance.

Artificially was made up in 16 gallon batches by addtion of CaCla and NaHCO3 to distilled water. The amount of chemicals were determined on the basis of stoichiometry, although this chemical reaction was found not to be stoichio- metric. Each run was started with artificial hard water hav- ing a total hardness and calcium hardness in the range of 70 ppm ( as CaCO3) and 235 ppm ( as CaCO3 ) respectively.

The water level in the storage tank was controlled by replacing the water evaporated by distilled water through the level control valve. The amount of chemicals used to formul- 27

ate the artificially hard water for each run are listed in

table 4-1.

A total of five runs were conducted besides the initial

run. All runs were operated at the same heat flux and fluid

velocity as the initial run.

The chronology and general information on the test are

shown in table 6-2.

Run Initiation

The precisely measured chemicals were mixed with water in

the storage tank and well agitated. They were, then, cir- culated through the system with a desired heat flux and at the desired flow rate.

Data .Processing

Data for each were recorded four times a day manually and are listed in Appendix C. Selected data were processed by the computer at the end of each run.

Process Monitoring

Thepower input, flow rate and the fluid temperature checked 8 or 10 times a day to maintain the desired conditions.

One half liter of sample of circulated water was analysed once a week. Total hardness ( TH ), Calcium hardness ( CaH ), 28

Table 4-1

Mass of Chemicals added to each 16-Gallon Bach of Distilled Water

Run CaC1 2H,0 (gr ) NaHCO3 ( gr )

1 6.23 3.56

2 15.12 8.64

3 24.02 13.73

4 32.91 18.86

5 24.02 13.76 29 methyl orange akalinity ( m-alk ), chloride (ci ), silica and

PH were determined. The results are listed in table 6-1 as average value for each run.

Run Termination

Each run was terminated when the fouling resistance reach-

ed an asymtotic value. The heater rod was then removed from

the test section after the shut down.

The material deposited on the heater surface was scraped off carefully and the heater was polished clean by a grade 0% steel wool. The material was analysed by a chemical labor- ratory ( Drew Chemical Corporation ). . 30

V. CALCULATION METHODS

For Clean Condition

Assuming boiling condition at 1 atm and the temperature of 0 bulk fluid of 212F in the test section.

Tb = 212 °F L.lrj (2D) '71C L 2 AH - ft 144 2 (de/2) 7C 2 AA = ft 144

de = D1 -D2 in.

PW * 3,413 2 q/A = Btu/fthr AH

Tsc = Twc - q/A * Rw °F

Wf V = ft/sec 7.4805 * 60 * AA

where

Tb = bulk temperature

AH = heat transfer area

AA = annular flow area

de = equivalent diameter cirycy.)

q/A = heat flux

PW = power input in watt

Ts = surface temperature 2 0 Rw = thermal resistance of the tube ft hr F/Btu Fig. 5-1. Cross Section of Test Section - Clean and Fouling

Condition 32

Twc = wall temperature

L = lengh of heated section

For constant heat flux, bulk temperature and flow rate

Tsi = Twc - q/A * Rw

where

Twc = wall temperature

and subscript i denotes initial condition

(q/A) 2 he = Btu/ft hr F Tsc - Tb

(q/A)c =( U )c( Twc - Tb )

where

Uc = overall heat transfer coefficient for the clean condition

also

Twc - Tsc (q/A)c= Rw

then

Twc - Tsc (q/A)c - he ( Tsc - Tb ) Rw

= (U)c ( Twc - Tb )

Twc - Tb

and ( 1/U )c = 1/hc + Rw (q/A)c

For fouled conditions

Twf - Tsf

(q/A) = = h ( Tsf - Tb ) f Rw + Rf 33

=( U )=( Tw - Tb ) f f

then Twf - Tb

( 1/U ) = 1/hf + Rw + Rf f (q/A)

Computer Programming

All calculations and plotting were done by the computer

at the Oregon State University Computer Center using Fortran V

language. The statistical software package BMDP82-BMDP3R for non-linear regression available at the computer center was used to simulate the HTRI (1, 2) model. The HTRI model used to predict the fouling factor and three parameters K1, K2 and Eg/Rg as a function time is

K1

Rf= exp ( -Eg/Rg Ts ) 1 - exp ( -K2 6)} (2-14) K2

Values of parameters obtained for K1, K2 and Eg/Rg are shown in table ( 6-4 ) and table ( 6-6 ) respectively.

The computer program package " EASYPLT " was used for the plottings of fouling resistance vs.time.

Main programs and subroutines are listed in Appendix B.

Serial correlation and statistical analysis are shown in

Appendix E. 34

VI. RESULTS AND DISCUSSIONS

Operating Conditions

A total number of 5 runs were conducted. The bulk temper- ature at the boiling surface was assumed to be constant at

212 F and the pressure was at 1 atm.

The total hardness throughout the five runs varied from

70 ppm to 235 ppm as calcium carbonate. In each run calcium carbonate was decreased by 5 to 10 ppm as calcium carbonate but other water constituents were relatively constant over the duration of the investigation.

The flow velocity and the heat flux were maintained con- stant, 1.44 ft/sec and 93300 Btu/hrft2,respectively, through- out the five runs.

Surface temperature changed from 696 to 718 R as the deposit accumulated on the heater surface, although it was known as a function of heat flux and flow velocity.

The average water qualities ofcirculated water for each run are listed in table 6-1 and the general operating conditions are listed in table 6-2.

Results

The computer listing of the fouling resistance vs. time is listed in Appendix C. Also plots of fouling resistance 35

Table 6-1

Average Water Quality

Run TH CaH MgH Cl m-alk Silica PH -- _..._. ...._

1 70 60 10 35 20 36.5 7.9

2 110 95 15 85 50 14.3 8.75

3 190 155 35 125 70 15.3 8.10

14 235 215 20 160 100 10.85 7.65

5 205 190 15 140 70 14.0 7.88

where

TH ( ppm CaCO3 )

CaH ( ppm CaCO3 )

MgH ( ppm CaCO3 )

Cl ( ppm CaC12 ) m-alk ( ppm CaCO3)

Silica ( PPm SiO2) Table 6-2. Operating Conditions

Run Velocity Heat Flux, Ti Tb Surface Temperature ( R )

(ft/sec) (Btu/hr ( °F )(°F ) TC1 TC3 TC4 Tavg

1 1.44 93300 200 212 696.4 696.4

2 1.44 93300 200 212 756.1 700.2 696.7 718.3

3 1.44 93300 200 212 729.9 705.7 695.1 709.6

II 1.44 93300 200 212 754.6 705.9 686.8 715.8

5 1.44 93300 200 212 753.1 709.7 676.2 713.0 Table 6-3.

Summary of Chemical Composition of Deposit (% )

Run Ca Mg Si Fe Cu Na S P C LOI, Oil (Ca0) (Mg0)(S102)(Fe203) (CuO) (Maa0) (SO3)(Pa05) (C0a ) & Grease

1 43 <1.0 <1.05 <1.0 <1.0 <1.0 <1.0<1.0 -- IS

2 50 1.2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 38 Is

3 53 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 35 is

4 51 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 37 IS

5 51 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 35 IS

IS Insufficient Sample 38

Table 6-4. Summary of Model Parameters

TC1 TC3 TC4 Run K1E(-40) K2 K1E(-40) K2 K1E(-40) K2

1 2.5E-59.5E-3

2 2.3E-4 0.15 2.1E-4 0.16 1.5E-3 1.09

3 1.9E-3 9.77 4.0E-4 0.29 7.7E-3 7.88

4 1.8E-4 8.3E-2 4.1E-4 2.15 2.5E-2 23.6

5 4.3E-3 1.83 3.5E-3 5.36 4.9E-2 2220 39

Table 6-5. Summary of Asymtotic Fouling Resistance

(Rf*)4110000(ft2hr oF/Btu)

Run TC1 TC3 TC4 avg

1 1.0 -- -- 1.0

2 5.42 0.48 2.41 2.77

3 2.17 1.14 2.02 1.78

4 5.35 1.07 1.11 2.51

5 4.91 1.47 0.14 2.17 40

Table 6-6. Summary of k1/k2 and Eg/Rg

TC1 TC3 TC4 avg

aNOMEMMINIIIMMP k1 Eg k1 Eg k1 Eg k1 Eg Run k2 Rg k2 Rg K2 Rg K2 Rg

1 2.6E-3 60000 2.6E-3 60000

2 1.5E-3 63450 1.3E-3 60340 1.4E-3 59260 1.4E-3 61000

3 2.0E-357970 1.4E-359800 1.0E-3 59140 9.0E-458970

4 2.1E-3 63590 2.0E-4 59240 1.1E-3 54230 1.1E-3 59020

5 2.4E-363740 7.0E-4 59882 2.0E-5 59140 1.0E-3 60920

Overall Average of Eg/Rg 60000 141

Table 6-7. Summary of Asymtotic Fouling Resistance and Surface Temperature

TC1 TC3 Tc4

4 4 4 Run Ts (R) Rf*10 Ts (R) Rf*10 Ts (R) Rf*10 (1/TS)*1000 (1/Ts)*1000 (1/Ts)*1000

1 696.1 1.0 ,,,..... (1.44)

2 756.1 5.4 700.1 0.5 698.7 2.4 (1.32) (1.43) (1.43)

3 729.9 2.2 708.7 1.1 698.1 2.0 (1.37) (1.42) (1.44)

4 754.6 5.3 705.9 1.1 686.8 1.1 (1.33) (1.42) (1.46)

5 756.1 4.9 709.6 1.5 676.2 0.1 (1.32) (1.41) (1.48) 42

plus the reciprocal convective heat transfer coefficient vs.

time are shown in Appendix D. Plots of fouling resistance,

observed data and predicted curves vs. time are given in Append-

ix D.

Several models in the literature were investigated to

correlate the data. Ultimately it was possible to fit the

data approximately to the HTRI model since the form of the

fouling resistance-time curve are similiar to those obtained

for cooling tower water. This involves determination of the

parameters k1, k2 and Eg/Rg by non-linear regression. The

values of the model parameters k1,k2 and E/R are obtained by

using the statistical software package program of BMDP82-

BMDP3R. Values of these parameters are shown in table 6-4.

The asymtotic fouling resistance obtained by using HTRI model

for each thermocouple are tabulated in.table 6-5.

The large value of the activation energy, Eg/Rg,( shown

in table 6-6) under the conditions of experiment indicates

that the deposition process is reaction controlled rather than

the diffusion controlled. In addition, the values of activa- tion energy are almost constant and very nearly the same as obtained by Imdakm (12 ). The average value of Eg/Rg for all thermocouples and all runs is 60000 Btu/mol with a stand- ard deviation of 2400 Btu/mol.

Effects of Water Quality 43

0

co

Cfl 0

CNI. CO 0) I

0

-J 0 40 80''120 160 200 240 280 320, Total Hardness ( ppm )

Fig. 6-1 Relationship between Model Parameters and Water Quality 44

Table 6-4 is a tabulation of the values of K1,K2 and

the values of Eg/Rg are listed in table 6-6 with the values

of K1/K2. The solid lines in Appendix D. are plots of eq.

( 2-14 ) using values of K1,K2 and Eg/Rg determined by the

BMDP program. The parameters are strongly influenced by the water quality but the asymtotic fouling resistance is a weak function of water quality. The parameter K2 determines the shape of the fouling resistance-time curve and determines how rapidly the asymtotic fouling resistance is attained.

Fig. 6-1 is a plot of K1,K2 versus the total hardness of water. Both K1,K2 increase with increasing hardness up to about 205 ppm hardness. There is an indication that particul- ary K1 will decrease beyond-this hardness value. A change in the character of the deposit may occur in the vicinity of this hardness. More various waters data are necessary to study this phenomenon. The average values of K1 and K2 shown as solid lines indicate an approximate linear relationship with the hardness of water. And the slopes of K1 and K2 are

0.037 and 0.051 respectively.

The equation of the two solid lines are 34

K1 = ( 3.062 ) ( 10 ) exp( 0.037 H ) ( 6-1 ) -4

K2 = ( 4.477 ) ( 10 ) exp( 0.051 H ) ( 6-2 )

where H = calcium hardness, ppm as calcium carbonate

These values are somewhat different than those obtained by

Imdakm (12 ) but have the same trends. The difference in 145 actual value probably is due to the different nature of de- posit. In this work, the deposit was calcium carbonate while

Imdakm obtained a calcium deposit.

The ratio, K1/K2,( shown in table 6-6 ) is weak funtion of water hardness and given by the equation

K1 37 =( 6.84 ) ( 10 ) exp (-0.014 H ) (6-3) K2

Inserting the average value of Eg/Rg, K2 and K1/K2 into eq.

( 2-14 ) the followingexpression for the fouling resist- ance is obtained

37

Rf =( 6.84 ) ( 10 ) exp ( -0.014 H - 60000/Ts) [ 1-exp -4

[ -{ 4.477 (10 )exp( 0.051 H ) }e]] ( 6-4 )

where

Rf = fouling resistance ( hr ft F/Btu )* 10000

H = calcium hardness, ppm calcium carbonate ( 70 to 220 )

Ts = temperature of heated surface, ( R )

9 = time, hr

This equation is considered to be applicable for the condi- tions of the experiments conducted in this investigation and in surface change range 690 to 715R ( 230 to 255 CF).

The effect of k2 in determining the shape of the fouling resistance-time curve is shown by the following example. For a calcium hardness of 70 ppm calcium carbonate the fouling factor reaches 95 % of the asymtotic value in 500 hours. 46

When the hardness is 200 ppm the time required for the foul- ing factor to reach 95 % of the asymtotic valve is about half an hour.

The rate of deposition ( at e = 0) can be determined from eq.( 6-4) by differentiating it with respect to time and letting time = 0 ( H and Ts constant )

dRf 37 ( 6.84 ) ( 10 ) exp ( -0.014 H - 60000/Ts) d9 0=0 -4

* [( 4.477 ) ( 10 ) exp ( 0.051 H )]

( 6 -5 )

For Ts = 700 R

( dRf/d )"2.00 8'2122.7 ( dRf/d )4.10, 9.0 The above equation compares the initial deposition rate for

H = 200 ppm and H = 70 ppm. The higher hardness shows a much higher initial deposition rate.

However, the asymtotic fouling resistances are not great- ly different. For Ts = 700 R, H = 70 ppm 2 Rf = 1.3 Btu/hr ft F 2 For Ts = 700 R, H = 200 ppm Rf = 0.7 Btu/hr ft F * The value of Rffor H = 200 ppm is about one half the value of H = 70 ppm. This may be indicative of the character of the deposit. The higher hardness water initially deposits very rapidly and may not give as strong or consolidated a deposit as the low hardness water which initially deposits very slowly. it 7 O

K >1 Range of Eq.(6-4)

0 0

O

1.32 1.36 1.40 1.44 1.4-8 1.52 1/Ts X 1000-(°R)

Fig. 6-2Re.vs. 1/Ts 148

Effects of Surface Temperature

Surface temperature at each thermocouple and aymptotic fouling resistance is summarized in table 6-7 and the plot of these variables is shown in Fig. 6-2.

Thermocouple no.1 always indicated a higher tem- perature than the others. This could have been due to some flow maldistribution in the annular duct. A majority of the data lie in the surface temperature range of 690 to 715R( 230 0F). to 255 The solid lines are a plot of eq.( 6-4 ) for calcium hardness of 70 ppm and 220ppm. Within the calciumhardnessrange of 70 ppmand 220 ppm and

0 a surface temperature range of 230 to 255 F eq.( 6-4) can probably be expected to predict asymtotic fouling resistance within + 50 % for conditions in this investigation. 49

VII. CONCLUSION

The effect of water quality having a total hardness in

the range of 70 to 240 ppm as CaCO3 has been studied.

Heat flux and water velocity were maintained constant at 2 93300 Btu/hr ftand 1.4 ft/sec respectively. The data ob- tained are correlated by the HTRI model using the non-linear regression computer program BMDP82-BMDP3R.

Within the range of operating condition studied, it is concluded that:

( 1 ) The parameters of eq.- ( 2-14 ) are strongly influenced by water quality as well as The nature of deposit on the heat transfer surface.

( 2) The asymtotic fouling resistance can be expressed as an exponential function of total hardness, and found to be a weak function of water quality.

( 3) The fouling resistance equation on the effect of water quality has been obtained as

37 Rf =( 6.84 ) ( 10 ) exp ( -0.014H - 60000/Ts ) -4

* [ 1 - exp -( 4.477 * 10 ) exp ( 0.051H) }A] within the calcium hardness range of 70 to 220 ppm as calcium carbonate and in the range of surface temperature of 230-255°F.

( 4) The initial deposition rate was much higher for the 50 water having higher hardness.

( 5) The amount of data is limited so these results must be considered as preliminary. Additional studies at various other water qualities are warranted. 51

BIBLIOGRAPHY

1. Taborek, J., Aoki, T., Ritter, R. B., Palen, J. W. and Knudsen, J. G. "Fouling: The Major Unresolved Problem in Heat Transfer". Chem. Eng. Progr. 68, 59-67 (Jan. 1972)

2. Taborek, J., Aoki, T., Ritter, R. B., Palen, J. W. and Knudsen, J. G. "Predictive Methods for Fouling Behavior" Chem. Eng. Progr. 68, 69-78 (July,1972)

3. Epstein, N. "Fouling in Heat Exchanger". Proc. of the Sixth International Heat Transfer Conference, Toronto, Canada, 7-11 (Aug. 1978) Vol. 6, P.235, Hemisphere Pub. Corp.

4. Watkinson, A. P. "Water Quality Effects on Fouling from Hard Waters". Seminar on Advancement in Heat Exchangers, Int. Center Heat and Mass Transfer, Dubrovnik, Yugoslavia, 7-12, (Sep. 1981)

5. Hasson, D., Avriel, M.,Resnick, W., Rozenman, T. and Windriech, S. "Mechanism of Calcium Carbonate sacle de- position on Heat Transfer Surface". Industrial and Engi- neering Chemistry Fundaiihtals, 7, 59-65 (1968)

6. Freeborn, J. and Lewis, D. "Initiation of Scale Formation". Journal Mechanical Engineering Science, Vol. 4, No.1 (1962)

7. Sommerscales, E. F. C. and Knudsen, J. G. eds, "Foul- ing of Heat Transfer Equipment". Proc. of a conf., Ren- sselaer Polytechnic Institute, Troy, N.Y. 13-17, (Aug. 1979), Hemisphere Pub. Corp., N.Y. (1981)

8. Knudsen, J. G. and Morse, R. W. "Effect of akalinity on the Scailing of Simulated Cooling Tower Water". Can. J. Chem. Eng., 55, P272 (1977)

9. Langelier, W. F. "The Analytical Control of Anti-corro- sion ". Journal of American Water Works Association, 28, 1500-1521 (1936)

10. Ryznar, J. W. "A new Index for determining amount of Calcium Carbonate Scale formed by a Water". Journal of the American Water Works Association, 36, 472-486 (1944)

11. Knudsen, J. G. and Lahm, L., Jr. "Precipitation Foul- ing of Cooling Tower". Seminar on Advancement in Heat Exchangers, Int. Center for Heat and Mass Transfer, 52

Dubrovnik, Yugoslavia, 7-12, (Sep. 1981)

12. Imdakm, A. O. "Fouling of Heat Transfer Surfaces under forced Circulation Boiling Condition". M.S. Thesis, Oregon State University, (1984)

13. Frederick, W. J. and Grace, T. M. "Analysis of Scal- ing in a Black liquor ". Chem. Engr. Prog. Symp. Series, No. 75, Vol. 184, 95-101, (1979)

14. Fisher, P., Suitor, J. W., and Ritter, R. B. "Foul- ing Measurement Techniques". Chem. Engr. Prog., 71, (7) 66-72, (July, 1975)

15. Rankin, B. H., Adamson, W. L. "Scale Formation as Related to Evaporator Surface Conditions", , Vol. 13, 63-87 (1973)

16. Banchero,J. T., Gordon, K. F., Adv. in Chem. Series, No.27, 105, A,C,S., Wash., D.C. (1960)

17. Palen, J. W., Westwater, J. W. "Heat Transfer and Fouling Rates During Pool Boiling of Calcium Sulfate Solutions". Chem. Engr. Prog. Symp. Series, Vol. 62, 77-86 (1966)

18. Watkinson, A. P., Louis, L. and Brent, R. "Scailing of Enhanced Heat Exchanger Tubes". Can. J. of Chem. Engr. Vol. 52, (Oct,1974)

19. Story, . "Surface Temperature Effects on Fouling Characteristics of Cooling Water". M.S. Thesis Oregon State University (1975)

20. Morse, R. W. "Akalinity Effects on the Scailing of simulated Cooling Tower Water". M.S. Thesis, Oregon State University (1975)

21. Lee, S. H. "Deposition Characteristics of Magnesium Silicate and Calcium Carbonate in Cooling Tower Water". M.S. Thesis, Oregon State University (1979)

22. Coats, K. E. "Surface Temperature Effects on Fouling Characteristics of Cooling Tower Water". M.S. Thesis, Oregon State University (1975)

23. Cross, P. H. "Preventing Fouling in Plate Heat Exchang- ers". Chemical Engineering, Jan.,1, (1979) 53

24. Haluska, J. L. "Proces Fouling Control by Effective Antifoulant Selection". Material Performance, (Nov. 1976)

25. Bott, T. R. and Pinheiro, M. M. V. P. S., Can. J. Chem Eng., Vol. 55, P.473 (1977)

26. Kern, D. Q., Seaton, R. E. "A theoretical Analysis of Thermal Surface Fouling". Poritish Chemical Engineering, 4, 258-262 (1959)

27. Kern, D. Q., Seaton, R. E. "Surface Fouling - How to Calculate Limits" Chem. Eng. Prog., 55, (6), 72-73 (June,1959)

28. Watkinson, A. P., Epstein, N. "Particulate Fouling of Sensible Heat Exchangers". Proc. of the Fourth Inter- national Heat Transfer Conference, Vol. 1, Paris (1970)

29. Watkinson, A. P., Martinez, O. "Scailingof Heat Exchangers by Calcium Carbonate". ASME Journal of Heat Transfer, 97, 504-508 (1075)

30. Reitzer,B. J. "Rate of Scale Formation in Tubular Heat Exchanger". Ind:-and Eng. Chemistry Process Design and Development, 3 (4), 345-348 (1964)

31. Charlesworth, D. H. "The Deposition of Corrosion Pro- duct in Boiling Water System". Nuclear Engineering - Part XXI, Chem. Engr. Symp. Series, Vol. 66, No. 104, P.21, (1970)

32. Asakura, Y., Kikuchi, M., Uchida, S., Yusa, H. "De- position of Iron Oxide on Heat Surfaces in Boiling Water" Nuclear Science and Engineering, 67, 1-7, (1978)

33. Tubular Exchanger Manufacturers Association.TEMA Standards, 5th Ed. N.Y. (1968) 54

APPENDICES 55

APPENDIX A

Symbol Definition Unit

2 A,AH Area of heating Surface ft

AA Annular flow rate

3 C Concentration lb mol/ft

3 Cb Bulk foulant Concentration lb mol/ft

Cs Concentration of Foulant 3 at the Surface lb mol/ft

Cp Heat Capacity Btu/lbm°F

CaH Calcium Hardness ppm CaCO3

Cl Chloride ppm NaC1

de Equivalent Diameter inches

dRf/d Rate of change of fouling a0 resistance ft F/Btu dXf/d Rate of change of the thickness of fouling deposit ft/hr

D1 Inside diameter of glass tube inches

D2 Outside diameter of heater rod inches

Eg Activation energy Btu/lb mol f Friction factor

h Convective heat transfer 2 o coefficient Btu/ft hr F kf Thermal conductivity of z 0 fouling deposit Btu/ft hr F km Convective mass transfer ft/hr 56

K,K1,K2..KN Proportionality constant Units vary

L Length of heated surface inch n Empirical constant m - alk Methyl orage alkalinity ppm CaCO3

Pd Probability function defined

in eq.( 2 -14 )

PH Acidity

PHs The PH value of water saturated with calcium carbonate

Q Heat duty Btu/hr

a q/A Heat flux Btu/hr ft

a R Heat transfer resistance ft hr F/Btu

a 0 Rf Fouling resistance ft hr F/Btu

Rf Asymtotic fouling resistance ftIhr°F/Btu

Rg Gas constant

Rw Thermal resistance of tube 2 0 wall ft hr F/Btu

S Sticking probability defined in eq. 2-19

Si Silica concentration ppm SiO

T Temperature F

Ti Inlet Temperature °F

To Outlet temperature of

Tw Wall temperature °F

TH Total hardness ppm CaCO3

Ts Surface temperature °F v Flow velocity ft/sec 57

PW Power Supply watts

Wf Volumetric flow rate gallons/min.

x/k Thermal resistance of tube a o wall ft hr F/Btu

Subscript Definition

avg Average value

b bulk conditions

c clean condition

f fouled condition

i initial condition

( inside of ttube )

o outside of tube

s fouled deposit surface

w tube wall

Greek letter Definition unit

9 time hr

0D Rate of deposition of 20 foulant ft F/Btu

Rate of removal of 2.0 4 foulant ft F/Btu

l Shear stress lbf/fta 2 Deposit strength factor lbf/ft $0 3 P Density of water lbm/ft 3 Density of foulant lbm/ft (); 58

Abbreviation Meaning

GPM Gallons per minite

HTRI Heat Transfer Research Inc.

LSI Langelier Saturation Index

RSI Ryznar Saturation Index

TC1 Thermocouple location 1

TC2 Thermocouple location 2

TC3 Thermocouple location 3

TC4 Thernocouple location 4

TEMA Tubular Exchanger Manufacturers Assocition 59

APPENDIX B

COMPUTER PROGRAMS IN FORTRAN V 60

C PROGRAM FOULING (IMPUT,OUTPUT,TAPE5=INPUT,TAPE6=0U7PUT) DIMENSION TIME(73),TC1(73),TC3(73),TC4(73) TB=212.0 W=1640.0 OPA=U*56.89 RW1=3.43275E-4 RU3=2.22269E-4 RW4=4.46888E-4 WRITE(6,1) WRITE(6,2) N=73 READ(5,*) (TIME(J),TC1(J),TC3(J),TC4(J),J=1,N) DO 10 I=1,N J=TIME(I) TUC1=TC1(I) TUC3=1C3(I) TWC4=TC4(I) URITE(6,3) T,TUC1,TWC3,711C4 10 CONTINUE URITE(6,-4) WRITE(6,5) URITE(6,6) DO 20 I=1,N TUC1=TC1(I) TUC3=TC3(I) TUC4=TC4(I) C U1=0PA/(TWC1-TB) U3= QPA /(TUC3 -TB) U4=0PA/(TWC4-TB) C RFH1=(1.0/U1)-RW1 RFH3=(1.0/U3)-RW3 RFH4=(1.0/1J4)-RW4 C WRITE(6,7) TWC1,U1,RFH1,TWC3,U3,RFH3,TUC4,U4,RFH4 20 CONTINUE C

1 FORMAT(/////,41WFOULING OF HEAT TRANSFER SURFACES', A636X,'UNDER FORCED CIRCULATION BOILING CONDITION', &//,45X,'RAU DATA RUN NO. 2') 2 FORMAT( / / / /,13X,'TIME (HRS)",10X,'TEMP1 (F)',1?X, &'TEMP3 (F)',19X,'TEMP4 (F)',//) 3 FORMAT(F21.2,F20.3,F28.3,F28.3,/) 4 FORMAT(10(/),41X,'FOULING OF HEAT TRANSFER SURFACES',/, &36X,'UNDER FORCED CIRCULATION BOILING CONDITION',/653X, &'RUN NO. 2') 5 FORMAT(////,12X,"THERMOCOUPLE NO.1',19X,/THERMOCOUPLE NO.3/ 61

,19X,'THERNOCOUPLE NO.4') 6 FORMAT(//,3X./TENP.F',8X,'U',10X,/RF+1/14'.8X,'TEHP.F'y a8X,'U',10X,'RF+1/14',8X,'TEMP.F/y8X,'U',10X,'RF+1/H'.//) 7 FORMAT(F10.4,2X,F10.492X,E12.5,3X,F10.4,2X,F10.4,2X,E12.5 3,3X,F10.4,2X,F10.4,2X,E12.5,/) STOP END EOI ENCOUNTERED. 62

/PROBLEM TITLE IS 'FOULING FACTORCORRELATION'. /INPUT VARIABLES ARE 3. UNIT IS10. FORMAT IS '(F12.5,F9.1,F12.3)". /VARIABLE NAMES ARE FOULING.CASEWT,TIME. /REGRESS DEPENDENT IS FOULING. PARAMETERS ARE 3. WEIGHT IS CASEWT. /PARAMETER INITIAL ARE .00015,.0133,60000. /PLOT VARIABLE IS TIME. NORMAL. SIZE=40,25. /END

SUBROUTINE P3RFUN(F,DF,P,X,N,KASE,NVAR,NPAR,IPASS,XLOSS,IDEF) DIMENSION DF(NPAR),P(NPAR),X(NVAR) TS=636.83 A=1.0E40 RS=CA*P(1)/P(2))*(EXPt-P(3)/TS)) DF(1)=(A/P(2))*(EXPC-P(3)/TS))*(1.0-(EXPt-P(2)*X(3)))) DF(2)=(-1.0/1412))*RS*(1.0-(EXPt-P(2)*X(3))))+ & RS *X(3) *(EXP(-P(2) *X(3))) DF(3)=( -1.0/TS)*RS*(1.0-(EXPC-P(2)*X(3)))) F=RS*(1.0-(EXP(-P(2)*X(3)))) RETURN END 63

APPENDIX C.

RAW DATA AND FOULING RESISTANCE

PLUS RECIPROCAL FILM HEAT TRANSFER COEFFICIENT 64

FOULING OF HEATTRANSFER SURFACES UNDER FORCED CIRCULATION BOILING CONDITION

RAW DATA RUN NO. 1

TIME (HRS) TEMP (F)

..00 260.700

6.00 261.700

12.00 264.900

18.00 264.400

24;00 264.800

30.00 265.800

36.00 264.900

42.00 265.300

48.00 265.400

54.00 267.600

60.00 266.800

66.00 267.000

72.00 265.800

78.00 265.000

84.00 265.800

90.00 266.000

96.00 266.700

102.00 266.500

108.00 266.500 65 114.vv .0o.Jvv

120.00 266.600

126.00 266.600

132.00 266.500

138.00 266.900

144.00 266.400

150.00 267.400

156.00 268.000

162.00 267.900

168.00 267.500

174.00 266.000

180.00 266.900

186.00 266.900

192.00 267.500

198.00 267.300

204.00 267.500

210.00 269.500

216.00 268.500

217.00 267.300

222.00 267.800

228.00 268.600

230.00 268.400

234.00 267.700

240.00 267.700

246.00 267.700

254.00 269.400 66

264.50 269.100

270.00 269.600

276.00 269.700

282.00 269.100

289.50 269.100

294.00 269.500

301.00 269.100

306.30 269.100

312.30 268.900

318.00 269.600

324.00 269.600

330.00 268.200

336.00 269.700

342.00 269.600

346.00 270.900

352.00 270.000

358.00 271.600

364.00 271.700

370.00 271.500

376.00 271.200

382.00 272.000

388.00 2'2.100

394.00 271.400

400.00 269.800

406.00 271.400 67

412.00 270.300

418.00 269.300

424.50 270.100

430.50 270.300

436.50 270.200

443.00 269.400

448.50 269.800

454.50 269.500

460.50 269.700

466.50 269.400

472.50 269.400

478.50 270.700

484.50 269.700

490.50 269.700

496.50 270.100

502.50 269.600

FOULING OF HEAT TRANSFER SURFACES UNDER FORCED CIRCULATION BOILING CONDITION

RUN NO. 1

TEMP.F RF+1/H

260.7000 1915.8029 .18450E-03

110.7.1nn 1 P,'free .19"1,'F-01 68

257.9000 1669.0447 .26167E-03

267.5000 1681.0739 .25738E-03

266.0000 1727.7704 .24130E-03

266.9000 1699.4463 .25095E-03

266.9000 1699.4463 .25095E-03

267.5000 1681.0739 .25738E-03

267.3000 1687.1537 .25524E-03

267.5000 1681.0739 .25738E-03

269.5000 1622.6017 .27882E-03

268.5000 1651.3204 .26810E-03

267.3000 1687.1537 .25524E-03

267.8000 1672.0358 .26060E-03

268.6000 1648.4028 .26917E-03

268.4000 1654.2482 .26703E-03

267.7'000 1675.0377 .25952E-03

267.7000 1675.0377 .25952E-03

267.7000 1675.0377 .25952E-03

269.4000 1625.4286 .27775E-03

269.1000 1633.9685 .27453E-03

269.6000 1619.7847 .27989E-03

269.7000 1616.9775 .28096E-03

269.1000 1633.9685 .27453E-03

269.1000 1633.9685 .27453E-03

269.5000 1622.6017 .27882E-03

269.1000 1633.9685 .27453E-03 n0 Irian 1A1/ 0A1r. .n/le, --Al 69

268.9000 1639.7118 .27239E-03

269.6000 1619.7847 .27989E-03

269.6000 1619.784? .27989E-03

268.2000 1660.1352 .26488E-03

269.7000 1616.9775 .28096E-03

269.6000 1619.7847 .27989E-03

270.9000 1584.0340 .29382E-03

270.0000 1608.6138 .28418E-03

271.6000 1565.4295 .30133E-03

271.7000 1562.8074 .30240E-03

271.5000 1568.0605 .30025E-03

271.2000 1526.0068 .29704E-03

272.0000 1554.9933 .30561E-03

272.1000 1552.4060 .30668E-03

271.4000 1570.7003 .29918E-03

269.8000 1614.1799 .28203E-03

271.4000 1570.7003 .29918E-03

270.3000 1600.3362 .28739E-03

269.3000 1628.2653 .27667E-03

270.1000 1605.8451 .28525E-03

270.3000 1600.3362 .28739E-03 `

270.2000 1603.0859 .28632E-03

269.4000 1625.4286 .27775E-03

269.8000 1614.1799 .28203E-03

269.5000 1622.6017 .27882E-03 70

269.7000 1616.9775 .28096E -03

269.4000 1625.4286 .27775E-03

269.4000 1625.4286 .27775E-03

270.7000 1589.4310 .29168E-03

269.7000 1616.9775 .28096E-03

269.7000 1616.9775 .28096E-03

270.1000 1605.8451 .28525E-03

269.6000 1619.7847 .27989E-03

EDI ENCOUNTERED. 71

FOULING OF HEAT TRANSFER SURFACES UNDER FORCED CIRCULATION BOILING CONDITION

RAU DATA RUN NO. 2

TIME (HRS) TEMPI (F) TEMP3 (F) TEMP4 (F)

.00 301.800 257.000 277.500

1.00 304.100 258.200 275.800

2.75 306.660 258.200 275.800

3.25 307.400 257.200 277.300

6.25 307.200 258.900 279.800

8.75 309.200 260.800 279.600

15.00 311.900 261.600 280..500

18.50 326.200 262.200 284.100

20.00 327.700 262.500 , 285.000

21.00 328.000 262.600 284.800

28.00 335.900 262.600 286.000

31.00 336.300 263.500 286.500

33.50 336.400 263.400 286.500

24.00 336.300 263.500 286.800

40.50 336.300 263.900 291.20n

41.50 335.500 262.800 289.500

46.00 335.400 262.300 290.000 EL

00'8G 009'h 009'Z9Z 000'88Z

OS'S9 00rtEE 00Z*E9Z 009'18Z

SZ*69 009'EU 009'19Z 00S'ZBZ

WIG OWEEE 00S'19Z 000'ZCZ

00'SZ 000'M 009'09Z 00Z'ZBZ

00'6C 00rZEE 00009Z 00S'ZBL

SCI0 002'2EE 00Z*19Z 006'EBZ

SZ'Z6 OOMEE 000*Z9Z 001'EBZ

00'i6 00C2EE 009'19Z 009'ZBZ

00'26 00S'ZIE 00C19Z 000'EBZ

00'66 000'21£ 009'19Z 009'EBZ

SZ'101 000'Iff 00E'19Z owns:

OS'POI 00I'ZEE 00S'19Z 009'ESZ

OS'Ell 0011'2EE 000*E9Z 00rZ

00'911 006'2EE 009'Z9Z 00CEBZ

006'1EE 00r19Z OWES?.

OS'611 008'1E£ 00S.19Z 000'EBZ

OCEZI 006'IEE 009'19Z OWEBZ

SZ'SZI 000'1EE 00S*19Z 009'ZBZ

SZ'al OWZEE 000'Z9Z 00UZ8Z

OS'OEI 00E'0EE 00Z'I9Z 001rZBZ

SZ'al 008'0EE 00'19Z 009'ZBZ

SZ'BEI 009'0EE 004'19Z 008'ZIK

00'02I 00E'OEE 000'19Z OWZBZ

00'ESI 00Z'OEE Of'19Z 008'ZBZ 73

162.50 330.500 261.800 281.400

163.00 330.400 261.500 231.0n0

164.00 334.000 261.500 230.200

167.00 330.100 261.600 280.000

174.25 329.500 260.600 279.800 175.00 330.100 260.800 279.800

186.00 330.200 261.800 278.600

191.00 328.800 261.200 277.300

194.75 329.200 261..200 277.300 198.00 328.500 260.800 276.300

'202.00 328.600 260.800 276.300

212.00 328.600 261.000 275.800 214.75 329.400 261.300 275.900

221.00 328.900 261.200 2'5.900

224.50 328.400 260.800 276.000

226.00 327.700 260.600 275 R00

234.00 328.700 260.700 275.700

239.00 328.400 260.500 2'5.300

241.00 328.300 260.300 275.2nn

244.75 328.100 260.300 275.600

248.50 327.200 260.000 275.300

248.75 328.300 260.300 2'5.700

249.00 328.300 260.300 275.700

219.00 328.000 260.600 275.5.10

259.'5 3211.040 260.600 2'5.600 711

263.00 327.700 260.600 275.300

268.00 327.200 260.100 276.200

272.75 327.000 260.200 276.300

281.00 326.100 260:800 276.200

FOULINS.OF NEAT TRANSFER SURFACES UNDER FORCED CIRCULATION SOILING CONDITION

RUN MO. 2

THERMOCOUPLENO.! THERMOCOUPLE 00.3 THERMOCOUPLENO.4

TEMP.F U RF+1/1! TEMP.F U RF+1/11 TEMP.F U RF+1/11

301.8000 1038.9710 .61922E-03 257.0000 2073.3244 .26005E-03 277.5000 1424.4214 .25515E-03

304.1000 1013.0250 .64387E-03 258.2000 2019.4719 .27291E-03 275.8000 1462.3762 .23693E-03

306.6000 986.2537 .67066E-03 258.2000 2019.4719 .27291E-03 275.80)0 1462.3762 .23693E-03

307.4000 977.9832 .67924E-03 257.2000 2064.1504 .26219E-03 277.3000 1428.7841 .25301E-03

307.2000 980.0378 .67709E-03 258.9000 1989.3305 .28041E-03 279.8000 1376.1003 .27980E-43

349.2000 959.8724 .69853E-03 260.0000 1911.8770 .30078E-03 279.6000 1380.1716 .27766E-03

311.9000 933.9299 .72747E-03 261.6000 1881.0403 .30935E-03 280.5000 1362.0380 .28731E-03

326.2000 816.9842 .88074--03 262.2000 1858.5578 .31578E-03 284.1000 1294.0305 .12589E-03

12'.,000 806.3924 .89682E-03 262.5000 1847.5168 .31900E-03 285.0000 1278.0767 .33554E-03 75

328.0000 804.3069 .90003E-03 262.6000 1843.86')6 .32007E-03 284.8000 1281.5879 .33339E43

335.9000 753.0234 .99470E-03 262.6000 1843.8656 .32007E-03 286.0000 1260.8054 .34626E-03

336.3000 750.6002 .98899E-03 263.5000 1811.6427 .32972E-03 286.5000 1252.3436 .35141E-03

336.4000 749.9968 .99006E-03 263.4000 1815.1673 .32864E-03 286.5000 1252.3436 .35161E-03

336.3000. 750.6002 .98899E43 263.5000 1811.6427 '.32972E-03 286.8000 1247.3209 .35483E -03

336.3000 . 750.6002 .98899E-03 263.9000 1797.6802 .33400E-03 291.2000 1178.0253 .40199E-03

335.5000 755.4623 -.98042E-03 262.8000 1836.6063 .32221E-03 289.5000 1203;8658 .38377E-03

335.4000 756.0746 .97935E-03 262.3000 18",4.8628 .31685E-03 290.0000 1196.1487 .34913E-03

335.0000 758.5333 .97506E-03 262.4000 1851.1025 .31793E-03 289.3000 1203.8658 .38377E-03

334.6000 761.0082 .97077E-03 262.6000 1843.8656 .32007E-03 288.0000 1227.6263 .36769E-03

334.3000 762.8749 .96756E-03 263.2000 1822.2578 .32650E-03 281.6000 1340.5115 .29910E-03

333.6000 767.2664 .96005E-03 261.6000 1881.0403 .30935E-03 282.5000 1323.3986 .30874E-03

:33.3000 769.1641 .95684E-03 261.5000 1884.8404 .30828E-03 282.0000 1332.8514 .30334E-03

333.0000 771.0711 .95362E-03 260.6000 1919.7449 .29863E-03 282.2000 1329.0541 .30553E-03

332.4000 774.9136 .94719E-03 260.7000 1915.8029 .29971E-03 282.5000 1323.3986 .30874E -03

332.5000 774.2705 .94826E-03 261.2000 1896.3333 .30506E-03 283.9000 1297.6300 .32375E-03

322.2000 776.2030 .94505E-03 262.0000 1865.9920 .31364E-03 283.1000 1312.2307 .31517E-01

332.3000 775.5578 .94612E-03 261.6000 1881.0403 .30935E-03 282.6000 1321.5241 .30981E-03

332.5000 774.2705 .94826E-03 261.7000 1877.2555 .31042E-03 283.0000 1314.0789 .31410E-03

332.0040 777.4967 .94290E-03 261.6000 1881.0403 .30935E-03 283.6000 1303.0670 .32053E-03

331.8000 778.7947 .94076E-03 261.3000 1892.4868 .30614E-03 283.2000 1310.3876 .31624E-03

332.1000 776.8493 .94348E-03 261.5000 1884.8404 .30828E-03 283.6000 1303.0670 .32053E-01

332.8000 772.3477 .95148E-03 263.0000 1829.4039 .32436E-03 295.4000 1271.1111 .33982E-03

332.9000 '71.7089 .95255E-03 262.6000 1943.8656 .32007E-03 243.9900 1297.6300 .32375E-03

331.9004 7'8.1451 .94183E-03 261.4000 1888.6559 .30721E-03 283.7000 1301.249' .32160E-03 76

331.9000 778.1451 .94183E-03 261.6000 1881.0403 .30935E-03 283.3000 1308.5498 .31732E-03

331.0000 784.0303 .93219E-03 261.5000 1894.8404 .30828E-03 282.6000 1321.5241 .309818-01

332.4000 774.9136 .94719E-03 262.0000 1865.9920 .31364E-03 282.3000 1327.1436 .30660E-03

330.3004. 788.6695 .92460E-03 261.2000 1896.3333 .30506E-03 282.8000 1317.7910 .31196E-03

330.8000 785.3502 .93004E-03 261.4000 1888.6559 .30721E-03 282.6000 1321.5241 .30981E-03

330.4000 786.6745 .92790E-03 261.4000 1888.6559 .30721E-03 282.8000 1317.7910 .31196E-03

330.3000 788.6695 .92468E-03 261.0000 1904.0735 .30292E-03 282.4000 1325.2784 .30767E-03

330.2000 789.3367 .92361E-03 261.3000 1892.4868 .30614E-03 282.8000 1317.7910 .31196E-03

330.5000 787.3384 .92683E-03 261.8000 1873.4859 .31150E-03 281.4000 1344.3746 .29695E-03

330.4000 788.0034 .92576E-03 261.5000. 1884:8404 .30828E-03 281.0000 1352.1681' .29267E-03

330.0000 790.6746 .92147E-03 261.5000 1884.8404 .30828E-03 280.2000 1368.0293 .28409E-03

330.1000 790.0051 .92254E-03 261.6000 111J.0403 .30935E-03 280.0000 1372.0529 .28195E-03

329.5000 794.0391 .91611E-03 260.6000 1919.7449 .29863E-03 279.8000 1376.1003 .27980E-03

330.1000 790.0051 .92254E-03 260.8000 1911.8770 .30078E-03 279.8000 1376.1003 .27990E-03

330.2000 789.3367 .92361E-03 261.8000 1873.4859 .31150E-03 278.6000 1400.8949 .26694E-03

328.8000 798.7979 .90861E-03 261.2000 1896.3333 .30506E-03 277.3000 1428.7941 .25301E-03

329.2000 796.0717 .91289E-03 261.2000 1896.3333 .30506E-03 277.3000 1428.7841 .25101E-03

328.5000 800.8549 .90539E-03 260.8000 1911.8770 .30078E-03 276.3000 1451.0047 .24229E-03

328.4000 800.1681 .90646E-03 260.8000 1911.8770 .30078E-03 276.3000 1451.0047 .24229E-03

328.6000 800.1681 .90646E-03 261.0000 1904.0735 .30292E-03 275.8000 1462.3762 .23693E-03

329.4000 794.7155 .91504E-03 261.3000 1892.4868 .30614E-03 275.9000 1460.0876 .23800E-03

328.9000 798.1146 .90968E-03 261.2000 1896.3333 .30506E-03 275.9000 1460.0876 .23800E-03

328.4000 801.5430 .90432E-03 260.8000 1911.8770 .30-78E-03 276.0000 1457.8063 .23907E-03

327.7000 806.3924 .89412E-03 260.6000 1919.7449 .29863E-03 275.8000 1462.3762 .23693E-03

3:3.-A00 /99.4824 .90753E-03 200.'000 1913.8029 .29971E-03 275.7000 1464.6.10 .21516E-03 77

328.4000 801.5430 .90432E-03 260.5000 1923.7031 .29756E-03 275.3000 1473.9273 .23157E-03-

328.3000 802.2322 .90325E-03 260.3000 1931.6687 .29542E-03 275.2000 1476.2595 .23050E-03

328.1000 803.6141 .90110E-03 260.3000 1931.6687 .29542E-03 275.6000 1466.9748 ..23479E-03

327.2000 809.8924 .89146E-03 260.0000 1943.7417 .29220E-03 275.3000 1473.9273 .23157E-03

328.3000 802.2322 .90325E-03 260.3000 131.6687 .29542E-03 275.7000 1464.6719 .23586E-03

328.3400 802.2322 .90325E-03 260.3000 1931.6687 .29542E-03 275.7000 1464.6719 .23386E-03

328.0000 804.3069 .90003E-03 260.6000 1919.7449 .29863E-03 275.5000 1469.2850 .23372E-03

328.0000 804.3069 .90003E-03 260.6000 1919.7449 .29863E-03 275.6000 1466.9748 .23479E-03

327.7000 806.3924 .89682E-03 260.7000 1915.8029 .29971E-03 275.8000 1462.3762 .23693E-03

327.7000 806.3924 .89682E-03 260.6000 1919.7449 .29863E-03 275.3000 1473.9273 .23157E-03

327.2000 809.8924 .89146E-03 260.1000 1939.7006 .29327E-03 276.2000 1453.2648 .24122E-03

327.0000 811.3009 .88931E-03 260.2000 1935.6763 .29435E-03 276.3000 1451.0047 .24229E-03

326.1000 817.7003 .87967E-03 260.8000 1911.8770 .30078E-03 276.2000 1453.2648 .24122E-03

EDI ENCOUNTERED. 78

FOULING OF NEAT TRANSFER SURFACES UNDER FORCED CIRCULATION BOILING COMBiTION

RAU DATA RUN NO. 3

TIME MD . TEMPI (F) TENP3 (F) TEMPO IF)

.00 296.800 261.800 273.800

.25 298.700 261.200 274.700

.50 299.800 262.300 276.500

1.75 300.200 261.200 276.600

2.50 299.000 - 262.200 277.200 4.00 301.400 262.800 276.200

6.25 304.400 266.900 278.600

7.25 304.200 264.700 278.400

7.75 303.200 265.200 279.200

17.25 307.600 269.600 279.200

18.75 305.800 270.800 278.200

20.00 305.900 270.300 278.500

23.00 305.900 270.900 280.100

26.25 303.800 270.800 277.400

28.50 304.700 271.500 279.800

32.00 305.500 272.500 281.000

32.50 305.800 273.300 281.800

40.50 303.400 272.400 280.300 6L

00-Zt 008'10E 00E'l72 009'84Z

00'91 002-20E 00E'ILZ 00E*84Z

°S'81 008'00E 001'69C 000'6CZ

OS'OS 00E'00E 009'89Z CoOrlia

00"ES 00Z'OOE 000'492 006'6LZ

SC'SS 001'66Z 009'992 008'6a.

OS'9 006'86Z 001'792 006.8CZ

OS'69 009'46Z 00L'S9Z 006'SZZ

SZ*4 001'862 000'99Z 008'62

OS'64 006'86Z 008'99Z 000'64Z

00'00 006'86Z 006'99Z 007.'6a

01'68 002'662 004'99Z 00Z1142

SL'16 008'86C 00E'S9C 008'94Z

OS'46 000'86Z 009'192 00094Z

17"6 00E'86Z 00E'S9Z 000'44Z

SZ.ZOt 00S'86Z 00E'SVZ 000'LLZ

Will 006'86Z 000'99Z 009'9ZZ

12*11 008'86Z 000'99Z 001,'94Z

00'611 000'68Z 00L'E:9Z 008'Sa

SZ'EZ1 ,06'46Z 009'192 001,";Z2

00'9Z1 001.86Z 006'S9Z 006'172

12'6E1 00e762 00Z'S9Z 0001.C.

SC661 008*Zoi 008'S9Z 00Z";ZZ

00'1S1 006'46Z 001'99Z 00,7;4Z

SZ'Z91 001'66Z 002'7°2 001';a 80

170.75 290.900 266.200 274.300

174.25 298.600 265.800 273.400

183.75 299.900 266.500 273.400

187.25 298.900 266.100 272.800

192.25 298.000 265.000 271.800

FOULING OF HEAT TRANSFER SURFACES UNDER FORCED CIRCULATION SOILING CONDITION

RUN NO. 3

THERMOCOUPLE NO.! THERMOCOUPLE 010.3 THERMOCOUPLE NO.4

TEMP.F U RF+1/11 TEMP.F RF +1 /H :EMP.F U RF+1114

296.8000 1100.2311 .56562E-03 261.8000 1873.4859 .31150E-03 275.8000 1462.3752 .23693E-03

299.7000 1076.1200 .58599E-03 261.2000 1896.3333 .30506E-03 274.7000. 1488.0319 .22514E-03

299.8000 1062.6378 .59778E-03 262.3000 1854.8628 .31685E-03 276.5000 1446.5054 .24441E-03

J30.2000 1057.8186 .60207E-03 261.2000 1896.3333 .30506E-03 276.6000 1444.2663 .24511E-03

299.0000 1072.4092 .58920E-03 262.2000 1858.5578 .31578E-03 277.2000 1430.9755 .21194E-03

301.4000 1043.6197 .61493E-03 262.8000 1836.6063 .32221E-03 276.2000 1453.2648 .24122E-03

304.4000 1009.7359 .64708E-03 266.9000 1699.4463 .36616E-03 278.6000 1400.8949 .26694E-03

304.2000 1011.9262 .64494E-03 264.7000 1770.3909 .34258E-03 278.4000 14C1.1145 .75480E-01 81

303.2000 1023.0219 .63422E-03 265.2000 1753.7519 .34794E-03 279.2000 1388.3869 ..27337E-03

307.6000 975.9372 .68138E-03 269.6000 1619.7847 ..39510E -03 279.2000 1388.3869 .27337E-03

305.8000 994.6652 .66209E-03 270.8000 1586.7279 .40796E-03 278.2000 1409.3595 .26265E-03

305.9000 993.6060 .66316E-03 270.3000 1600.3362 .40260E-03 279.5000 1403.0015 .26587E-03

305.9000 993.6060 .66316E-03 270.9000 1584.0340 .40903E-03 280.1000 1370.0382 .28302E-03

303.8000 1016.3355 .64065E-03 270.8000 1586.7279 .40796E-03 277.4000 1426.5994 .25408E-03

304.7000 1006.4682 .45030E-03 271.5000 1568.0605 .41546E-03 279.8000 1376.1003 .27980E-03

305.5000 997.8567 .65087E-03 272.5000 1542.1421 .42618E-03 281.0000 1352.1681 .29267E-03

305.8000 994.6652 .66209E-03 273.3000 1522.0163 .43475E-03 281.8000 1336.6705 .30124E-03

303.4000 1020.7834 .63636E-03 272.4000 1544.6954 .42511E-03 280.3000 1366.0264 .28516E-03

301.8000 1038.9710 .61922E-03 271.3000 1573.3491 .41332E-03 278.6000 1400.8949 .26694E-03

302.2000 1034.3636 .62350E-03 271.3000 1573.3491 .41332E-03 278.3000 1407.2338 .26373E-03

300.8000 1050.6712 .60850E-03 269.1000 1633.9685 .38974E-03 279.0000 1392.5313 .27123E-03

300.3000 1056.6206 .60314E-03 268.6000 1648.4028 .38438E-03 279.2000 1388.3869 .27337E-03

300.200, 1057.8186 .60207E-03 267.0000 1696.3564 .36723E-03 279.8000 1376.1003 .27980E-03

299.1000 1071.1780 .59028E-03 266.6000 1708.7839 .36294E-03 279.8000 1376.1003 .27980E-03

298.9000 1073.6433 .58813E-03 267.4000 1684.1083 .37152E-03 278.9000 1394.6129 .27016E-03

297.6000 1089.9486 .!7420E-03 265.7000 1737.4227 .35330E-03 275.9000 1460.0876 .23800E-03

298.5000 1078.6081 .58335E-03 266.0000 1727.7704 .35651E-03 277.8000 1417.9271 .25837E-01

298.9000 1073.6433 .58813E-03 266.8000 1702.5474 .36509E-03 279.0000 1392.5313 .27123E-03

298.9000 1073.6433 .58813E-03 266.9000 1699.4463 .36616E-03 279.2000 1388.3869 .27337E-03

299.2000 1069.9495 .59135E-03 266.7000 1705.6600 .36401E-03 278.2000 1409.3595 .26265E-03

298.80;10 1074.8802 .58706E-03 265.3000 1750.4615 .34901E-03 276.8000 1439.8086 .24765E-03

.98.0000 1084.8791 .57849E-03 264.6000 1773.7567 .34151E-03 276.0000 1457.8063 .23907E-03

290.3000 1091.1078 .58170E-03 265.3000 1750.4615 .34901E-03 277.0000 1435.3785 .24977E-03 82

298.4000 1079.8565 ..58277E-03 266.0000 1727.7704 .35651E-03 276.6000 1444.2663 .24551E-03

298.8000 1074.8802 .58706E-03 266.0000 1;27.7704 .35651E-03 276:4000 1448.7516 .24336E-03

289.0000 1211.6831 .48202E-03 265.7000 1737.4227 .35330E-03 275.8000 1462.3762 .23693E-03

297.9000 1086.1420 .57741E-03 265.6000 1740.6642 .35222E-03 275.4000 1471.6025 .23264E-03'

298.5000 1078.6081 .58385E -03 265.9000 1730.9759 .35544E-03 275.9000 1460.0876 .23800E-03

297.7000 1088.6768 .57527E-03 265.2000 1753.7519 .34794E-03 274.0000 1504.8323 .21764E-03

297.8000. 1087.4079 .57634E-03 265.8000 1734.1933 .35437E-03 275.2000 1476.2595 .23050E-03

297.9000 1086.1420 .57741E-03 266.1000 1724.5767 .35758E-03 275.2000 1476.2595 .23050E-03

299.1000 1071.1780 .59028E-03 267.2000 1690.2101 .36937E-03 275.1000 1478.5990 .22943E-03

299.0000 1072.4092 .58920E-03 266.3000 1718.2247 .35973E-03 274.4000 1495.1859 .22193E-03

298.9000 1073.6433 .58813E-03 266.2000 1721.3948 .35866E-03 274.3000 1497.58S9 .22085E-01

298.6000 1077.3626 .58492E-03 265.8000 1734.1933 .35437E-03 273.4000 1519.5375 .21121E-03

298.9000 1073.6433 .58813E-03 266.5000 1711.9193 .36187E-03 273.4000 1519.5375 .21121E-03

298.9000 1073.6433 .58813E-03 266.1000 1724.5767 .35758E-03 272.8000 1534.5329 .20478E-03

298.0000 1084.8791 .57849E-03 265.0000 1760.3698 .34579E-03 271.8000 1560.1940 .19406E-03

EDI ENCOUNTERED. 83

FOULING OF NEAT TRANSFER SURFACES UNDER FORCED CIRCULATION BOILING CONDITION

RAU DATA RUN NO. 4

TIME (MRS) TEMPI (F1 TEMPS (F1 TEMPI (F)

.00 301.700 265.300 276.500

.50 302.800 263.700 275.400

2.50 303.600 265.200 276.400

4.00 305.800 265.600 276.600

6.25 308.000 - 268.300 278.000

8.75 308.000 268.300 277.500

9.25 308.300 268.200 276.800

14.50 310.600 270.800 230.300

19.25 311.400 270.200 277.300

22.50 315.800 270.500 277.300

23.75 324.500 269.300 277.200

26.00 323.700 267.400 275.800

27.75 324.100 267.800 276.800

33.50 324.800 263.200 2)6.800

40.50 3:2.900 268.800 275.000

43.00 324.300 268.000 274.s00

48.50 320.800 265.100 271.00o 84

57.00 324.500 264.500 270.200

63.75 320.200 265.200 270.700

69.75 321.800 265.300 270.600

75.75 320.600 264.400 269.500

77.25 320.400 264.500 269.200

79.75 320.200 264.000 269.000

88.25 324.200 265.000 269.900

91.25 322.000 264.500 269.500

95.50 323.500 264.000 268.200

100.25 328.500 264.000 267.800

103.25 322.900 263.600 267.400

113.25 323.400 265.200 268.400

117.25 323.000 265.700 267.400

120.75 325.000 264.200 266.700

123.25 327.100 264.500 266.900

126.75 326.700 264.600 266.900

139.50 328.000 265.400 267.500

141.50 327.800 264.800 266.300

145.00 327.400 265.000 266.000

147.50 326.900 265.000 266.000

150.50 327.400 265.100 266.100

152.75 327.400 264.900 266.200

161.25 329.000 265.800 266.200

165.00 328.500 265.200 265.900

1'2.25 328.900 261.400 265.800 85

176.00 329.700 265.800 266.400

184.25 330.000 266.000 265.900

189.00 331.000 267.000 66.000

192.25 330.800 266.500 265.800

194.50 331.300 266.300 261.900

200.00 331.800 266.200 266.000

209.00 332.400 267.000 266.600

213.25 332.600 266.600 265.200

220.00 332.200 267.800 267.600

223.00 333.000 267.300 266.900

231.50 334.000 267.300 267.000

235.25 334.600 267.900 267.400

239.00 335.200 268.100 267.400

246.00 335.600 268.200 267.600

257.25 336.300 269.900 267.600

260.50 335.000 269.200 267.200

265.00 334.800 268.000 266.300

270.75 335.300 268.000 266.200

282.50 336.400 268.800 266.200

296.75 335.600 268.100 265.900

291.75 335.900 268.000 265.900

294.75 335.900 268.000 266.000

303.25 336.000 264.000 265.700

307.50 336.800 268.900 265.700

310.75 335.400 268.000 264.500 86

318.00 335.200 268.100 265.000

326.75 334.200 268.600 265.600

335.00 335.400 268.900 265.300

340.00 334.300 268.500 265.800

342.25 333.900 268.200 265.800

351.25 335.100 269.800 266.500

354.50 334.200 269.300 265.500

359.50 334.900 269.300 .265.800

364.25 333.400 268.600 265.000

366.00 333.100 260.500 265.800

373.75 334.000 269.300 266.200

376.75 333.700 268.800 265.200

FOULING OF HEAT TRANSFER SURFACES UNDER FORCED CIRCULATION BOILING CONDITION

RUN NO. 4

THERMOCOUPLE NO.1 THERMOCOUPLE NO.3 THERMOCOUPLE NO.4

TEMP.F 11 RF+1/M TEMP.F U RF +1 /H TEMP.F U RF+1/H

111.'100 1040.1293 .st814E-03 265.3000 1750.4615 .34901E-03 276.5000 1446.5054 .24443E-03 87

302.8000 1027.5286 .62993E-03 263.7000 1804.6344 .33186E-03 275.4000 1471.6025

303.6000 1018.5546 .63851E-03 265.2000 1753.7519 .34794E-03 276.4000 1448.7516 .24336E-03

305.8000 994.6652 .66209E-03 265.6000 1740.6642 .35222E-03 276.6000 1444.266 .24551E-03

308.0000 971.8708 .68567E-03 268.3000 1652.1865 .38116E-03 278.0000 1413.6303 .26051E-03

308.0000 971.8708 .68567E-03 268.3000 1657.1865 .38116E-03 277.5000 1424.4214 .25515E-03

.24765E-03 308.3000 968.8432 .68888E-03 268.2000 1660.1352 .38009E-03 276.8000 1439.8086

310.6000 946.2434 .71354E-03 270.8000 1586.7279 .40796E-03 280.3000 1366.0264 .28516E-03

.25301E-03 311.4000 938.6278 .7221/0-03 270.2000 1603.0859 .40153E-03 277.3000 1428.7841

.25301E-03 315.8000 898.8401 .76927E-03 270.5000 1594.8650 .40474E-03 277.3000 1428.7841

324.5000 829.3298 .86252E-03 269.3000 1628.2653 .39188E-03 277.2000 1430.9755 .22794E-03

.21693E-03 323.7000 835.2695 .85394E-03 267.4000 1684.1083 .37152E-03 275.8000 1462.3762

.24765E-01 32 4.1000 832.2890 .85823E-03 267.8000 1672.0358 .37580E-03 276.8000 1439.0086

324.8000 827.1241 .86573E-03 268.2000 1660.1352 .38009E-03 276.8000 1439.8086 .24765E-03

.22836E-03 322.9000 841.2949 .84537E-03 268.8000 1642.5986 .38652E-03 275.0000 1480.9460

.22407E-03 324.3000 830.8068 .86037E-03 268.0000 1666.0643 .37795E-03 274.6000 1490.4089

.19406E-03 320.8000 857.5331 .82286E-03 265.1000 1757.0546 .34687E-03 271.8000 1560.1940

.17477E-03 319.3000 869.5210 .80678E-03 264.5000 1777.1352 .34043E-03 270.0000 1608.6138

.17691E-03 324.5000 829.3298 .86252E-03 264.5000 1777.1352 .34043E-03 270.2000 1603.0859

1589.4310 .18227E-03 320.2000 862.2884 .81643E-03 265.2000 1753.7519 .34794E-03 270.7000

321.8000 849.7231 .83358E-03 265.3000 1750.4615 .34901E-03 270.6000 1592.1433 .18120E-03

1,22.6017 .16041E-03 520.6000 859.1123 .82072E-03 264.4000 1780.5267 .33936E-03 269.5000

.16619E-03 320.4000 860.6974 .81857E-03 264.5000 1777.1352 .34043E-03 269.2000 1631.1119

1638.8351 .16405E-03 320.2000 862.2884 .81643E-03 264.0000 1794.2231 .33508E-03 269.0000

1611.3921 .17369E-03 324.2000 831.5472 .85930E-03 265.0000 1760.3698 .34579E-03 269.9000

1622.6017 .16947E-03 322.0000 848.17E2 .83572E-03 264.5000 1777.1352 .34043E-03 269.5000 88

328.5000 000.3549 . ?0539E -03 264.0000 1794.2231 .33508E-03 267.9000 1672.0358 .15119E-03

322.9000 841.2949 .84537E-03 263.6000 1808.1318 .33079E-03 267.4000 1684.1063 .14690E-03

323.4000 837.5189 .85073E-03 265.2000 1753.7519 .34794E-03 268.4000 1654.2482 .15762E-03

323.0000 840.5369 .84644E-03 265.7000 1737.4227 .35330E-03 267.4000 1684.1083 .14690E-03

325.0000 825.6602 .86788E -03 264.2000 1787.3487 .33722E-03 266.7000 1705.6600 .13940E-03

327.1000 810.5960 .89039E-03 264.5000 1777.1352 .34043E-03 266.9000 1699.4463 .14154E-03

326.7000 813.4228 .88610E-03 264.6000 1773.7567 .34151E-03 266.9000 1699.4463 .14154E-03

328.0000 804.3069 .90003E-03 265.4000 1747.1835 .35008E-03 267.5000 1681.0739 .14797E-03

327.8000 805.6960 .89789E-03 264.8000 1767.0379 .34365E-03 266.3000 1718.2247 .13511E-03

327.4000 808.4887 .89360E-03 265.0000. 1760.3698 .34579E-03 266.0000 1727.7704 .13189E-03

326.9000 812.0070 .88824E-03 265.0000 1760.3698 .34579E-03 266.0000 1727.7704 .13189E-03

327.4000 808.4887 .89360E-03 265.1000 0.7.0546 .34687E-03 266.1000 1724.5767 .13296E-03

327.4000 808.4887 .89360E-03 264.9000 1763.6975 .34472E-03 266.2000 1721.3948 .13404E-03

329.0000 797.4325 .91075E-03 265.8000 1734.1933 .35437E-03 266.2000 1721.3948 .1104E-03

328.5000 800.8549 .90539E-03 265.2000 1753.7519 .34794E -03 265.9000 1730.9759 .13002E-03

328.9000 798.1146 .90968E-03 265.4000 1747.1835 .35008E-03 265.8000 1734.1933 .129756-03

329.7000 792.6899 .91825E-03 265.8000 1734.1933 .35437E-03 266.4000 1715.0662 .12618E-03

330.0000 790::.746 .92147E-03 266.0000 1727.7704 .35651E-03 265.9000 1730.9759 .11222E-03

331.0000 784.0303 .93219E-03 267.0000 1696.3564 .36723E-03 266.0000 1727.7704 .13189E-01

330.0000 785.3502 .93004E-03 266.5000 1711.9193 .36187E-03 265.8000 1734.1933 .129758-03

331.3000 782.0587 .93540E-03 266.3000 1718.2247 .35973E-03 265.9000 1730.9759 .13022E-03

331.0000 776.7947 .94076E-03 266.2000 1721.3948 .35866E-03 266.0000 1727.770.1 .13189E-03

332.4000 774.9136 .94719E-03 267.0000 1696.3564 .36723E-03 266.6000 1700.7039 .11832E-03

332.6000 773.6285 .94934E-03 266.6000 1708.7839 .36294E-03 265.2000 1752.77,19 .123326-03

332.2000 776 . 2230 .94505E-03 267.0000 1672.0358 .37560E-03 267.8000 1678.0504 .1004E-07 89

333.0000 771.0711 .95362E-03 267.3000 1687.1537 .37045E-03 266.9000 1699.4463 .14154E-03

334.0000 764.7508 .96434E-03 267.3000 1687.1537 .37045E-03 267.0000 1696.3564 .14261E-03

134.6000 761.0082 .97077E-03 267.9000 1669.0447 .37688E-03 267.4000 1684.1083 .14690E-03

335.2000 757.3019 .97720E-03 268.1000 1663.0945 .37902E-03 267.4000 1684.1083 .14690E-03

335.6000 754.8511 .98149E-03 268.2000 1660.1352 .38009E-03 267.6000 1678.0504 .14904E-03

=76.3000 750.6002 .98899E-03 269.9000 1611.3921 .39831E-03 267.6000 1678.0504 .14904E-03

335.0000 758.5333 .97506E-03 269.2000 1631.1119 .39081E-03 267.2000 1690.2101 .14475E-03

334.8)00 759.7687 .97291E-03 268.0000 1666.0643 .37795E-03 266.3000 1718.2247 .13511E-03

335.3000 756.6878 .97827E-03 268.0000 1666.0643 .37795E-03 266.2000 1721.3948 .13404E-03

336.4000 749.9968 .99006E-03 . 268.8000 1642.5986 .38652E-03 266.2000 1721.3948 .13404E-03

32..6000 754.8511 .98149E-03 268.1000 1663.0945 .37902E-03 265.9000 1730.9759 .13082E-03

335.9000 753.0234 .98470E-03 268.0000 1666.0643 .37795E-03 265.9000 1730.9759 .13082E-03

335.9000 753.0234 .98470E-03 268.0000 16611.0643 .37795E-03 266.0000 1727.7704 .13189E-03

336.0000 752.4161 .98578E-03 269.0000 1636.8351 .38867E-03 265.7000 1737.4227 .12868E-03

336.8000 747.5929 .994352-03 268.9000 1639.7118 .38759E-03 265.7000 1737.4227 .12868E-03

335.4000 756.0746 .97935E-03 268.0000 1666.0643 .37795E-03 264.5000 1777.1352 .11582E-03

335.9000 753.0234 .98470E-03 268.2000 1660.1352 .38009E-03 265.6000 1740.6642 .12701E-03

335.2000 757.3019 .97720E-03 268.1000 1663.0945 .37902E-03 265.0000 1760.3698 .12117E-03

334-1000 763.4992 .96648E-03 258.6000 1648.4028 .38438E-03 265.6000 1740.6642 .12761:-03

335.4000 756.0746 .97935E-03 268.9000 1639.7118 .38759E-03 265.3000 1750.4615 .12439E-03

334.3000 762.8749 .96756E-03 268.5000 1551.3204 .38331E-03 265.8000 1734.1932 .12975E-03

333.9000 765.3782 .96327E-03 268.2000 1660.1352 .38009E-03 265.8000 1734.1933 .12975E-03

335.1000 757.9171 .97613E-03 269.8000 1614.1799 .39724E-03 266.5000 1711.91'93 .137250-01

334.2000 763.4992 .06648E-03 269.3000 1626.2653 .39188E-03 255.5000 1743.9178 .12653E-03

354.9000 759.1505 .07399E-03 269.3000 1623.2653 .39108E-03 265.3010 1'34.1933 .:297!:E-03 90

333.1000 770.4344 .95469E-03 268.5000 1651.3204 .38331E-03 265.8000 1734.1933 .12975E-03

334.0000 764.7508 .96434E-03 269.3000 1623.2653 .39188E-03 266.2000 1721.3948 .13404E-03

333.7000 766.6360 .96113E-03 268.8000 1642.5986 .38652E-03 265.2000 1753.7519 .123328-03

801 ENCOUNTERED. 91

FOULING OF HEAT IRANSFER SURFACES UNDER FORCED CIRCULATION BOILING CONDITION

RAU DATA RUN MO. 5

TIME (NR8) TEMPI (F) TEMP] (F) TENP4 (F)

.00 312.100 271.800 266.400

.50 311.600 269.800 265.200

1.75 313.000 267.600 263.800

4.00 314.900 269.800 264.300

7.50 318.000 272.800 264.400

15.75 322.400 275.800 266.600

20.00 324.800 275.600 265.200

26.50 325.400 273.000 263.900

32.00 325.000 273.500 264.200

43.75 324.400 273.300 263.500

47.75 323.900 273.000 262.900

53.00 323.500 271.800 262.400

56.50 321.800 271.200 261.800

65.75 321.600 271.300 261.900

69.25 321.900 271.800 261.500

73.50 321.800 271.800 261.400

81.00 320.400 2'0.100 250.200 92

94.00 321.600 270.500 259.500

104.25 322.500 270.800 259.600

112.25 323.100 270.800 255.800

117.25 322.400 270.000 252.500

121.00 323.600 270.400 252.800

129.00 323.400 270.200 253.200

137.75 325.000 270.300 253.800

142.25 326.300 270.800 253.200

146.75 324.400 269.300 253.400

151.50 325.300 269.800 253.600

t61.25 326.400 270.500 254.000

165.25 326.400 270.600 253.700

172.50 324.700 269.000 253.800

176.25 324.800 269.500 254.300

186.00 325.500 269.800 255.000

190.50 325.500 269.400 254.500

199.25 325.700 269.100 254.900

210.50 326.500 269.500 255.600

212.00 327.100 270.100 255.200

213.75 325.900 269.300 254.800

221.75 324.900 269.000 255.000

224.25 325.600 269.000 255.201

233.75 326.500 269.800 255.300

239.00 326.300 269.800 255.500

240.00 326.300 270.200 :55.500 93

246.50 326.500 269.800 255.800

249.50 326.800 269.800 256.000

258.00 327.300 270.000 256.400

265.50 328.200 270.600 256.300

272.50 327.900 270.400 256.600

280.00 327.800 270.500 256.900

283.75 328.900 270.800 257.200

290.00 328.200 270.300 236.700

292.75 327.500 270.000 236.800

295.75 327.900 270.100 256.800

305.50 328.300 270.400 257.100

312.50 328.600 270.400 257.100

316.25 328.200 270.400 257.800

319.25 327.900 270.300 257.700

330.25 328.900 271.300 257.800

335.00 329.000 270.800 257.800

340.50 327.800 270.400 2!;7.800

345.25 327.900 270.200 258.200

354.00 328.700 271.200 258.000

356.50 329.f00 270.900 258.200

360.00 329.800 271.100 259.200

361.25 328.700 270.700 259.500

364.00 328.600 270.500 259.500

368.75 328.900 270.900 260.000

378.25 329.600 271.500 259.300 94

383.75 329.200 271.200 219.500

389.00 329.000 270.900 259.700

392.00 328.900 271.000 259.800

392.00 328.900 271.000 259.800

401.25 328.900 271.800 259.300

405.25 329.800 271.900 259.800

414.75 328.400 270.900 259.500

425.50 328.900 271.000 219.600

FOULING OF HEAT TRANSFER SURFACES UNDER FORCED CIRCULATION DOILING CONDITION

RUN NO. 5

THERMOCOUPLE NO.1 THERMOCOUPLE NO.3 THERMOCOUPLE NO.4

TEMP.F U RF+I/H TEMP.F U RF+1/14 TEMP.F U RF+I/H

312.1100 932.0639 .72961E-03 271.8000 1560.1940 .41868E-03 266.4000 1715.0662 .13618E-03

311.6000 936.7430 .72425E-03 269.8000 1614.1799 .39724E-03 265.2000 1753.7519 .12332E-01

313.0000 923.7584 .73926E-03 267.6000 1678.0504 .37366E-03 263.8000 1801.1506 .10831E-03

314.9000 906.7017 .75962E-3 269.8000 1614.1799 .39724E-03 264.3100 1783.9312 .1136"E-03

7+8.0000 880.1049 .79285E-03 2'2.8000 1514.5329 .42940E-03- 264.4(P)0 .114'4F-Y7 95

322.4000 845.1051 .84001E-03 275.8000 1462.3762 .46155E-03 266.6000 1708.7839 .11832E-01

3:4.8000 827.1241 .86573E-03 275.6000 1466.9748 .45941E-03 265.2000 1753.7519 .12332E-03

1:5.4000 822.7478 .87216E-03 273.0000 1529-5016 .43154E-03 263.9000 1797.6302 .10938E-03

325.0000 825.6602 .86788E-03 273.5000 1517.0667 .43690E-03 264.2000 1787.3487 .11260E-03

324.4000 830.0676 .86145E-03 273.3000 1522.0163 .43475E-03 263.5000 1811.6427 .10510E-03

32 3.9000 833.7766 .85609E-03 273.0000 1529.5016 .43154E-03 262.9000 1832.9980 .98666E-04

323.5000 836.7677 .85180E-03 271.8000 1560.1940 .41868E-03 262.4000 1851.1825 .93307E-04

321.8000 849.7231 .83358E-01 271.2000 1576.0068 .41225E-03 261.8000 1873.4859 .86876E-04

321.6000 851.2737 .83144E-03 271.3000 1573.3491 .41332E-03 261.9000 1869.7315 .87948E-04

321.9000 848.9500 .83465E-03 271.8000 1560.1940 .41868E-03 261.5000 1884.8404 .83661E-04

721.9000 849.7231 .83358E-03 271.8000 1560.1940 .41868E-03 261.4000 1888.6559 .82589E-04

320.4000 860.6974 .81857E-03 270.1000 1605.8451 .40046E-03 260.2000 1935.6763 .69727E-04

321.0000 855.9596 .82500E-03 270.5000 114.8650 .40474E-03 259.9000 1947.7996 .66512E-04

221.6000 851.2737 .83144E-03 270.5000 1594.8650 .40474E-03 259.5000 1964.2021 .62225E-04

044.3403 .84108E-03 270.8000 1586.7279 .40796E-03 259.6000 1960.0756 .61296E-04

223,1000 339.7804 .84751E-03 270.8000 1586.7279. .40796E-03 255.8000 2130.1279 .22567E-04

122.4000 845.1051 .84001E-03 270.0000 1608.6138 .39938E-03 252.5000 2303.6932 .00001E00

2:2.54)00 836.0179 .85287E-03 270.4000 1597.5959 .40357E-03 252.9000 2286.7549 .0000E4.00

337.513? .35073E-03 270.2000 1603.0859 .40153E-03 253.2000 22,4.5514 .2010.0E4.00

3:5.0000 025.6602 .86788E-03 270.3000 1600.3362 .40260E-03 253.8000 2232.0478 .11311E-05

325.3000 816.2595 .88181E-03 270.8000 1585.7279 .40796E-03 253.2000 2264.5524 .00000E400

324.4000 830.0676 .86145E-03 :59.3000 1528.2553 .39198E-03 253.4000 2253.513' .000008400

325.3000 823.4740 A71090-03 269.8000 1614.1799 .39'24E-03 253.6000 2242.7788 .0000040.00

3:5.4000 815.5559 .88288E-03 270.5000 1594.8650 .40474E-03 254.0000 2221.4190 .72747E-05

326.4000 815.5559 .88288E-03 270.5000 1592.1433 .40582E-03 253.7000 :237.4005 .59254E-07 96

324.8000 827.1241 .96573E-03 269.3000 1622.6017 .39403E-03 254.3000 2205.6643 .64901E-05

325.5000 822.0229 .87324E-03 269.8000 1614.1799 .39724E-03 255.0000 2169.7581 .13993E-04

325.3000 822.0229 .87324E-03 269.4000 1625.4286 .39295E-03 254.5000 2195.2847 .86338E-05

325.7000 920.5770 .87538E-03 269.1000 1633.9685 .38974E-03 254.9000 2174.8159 .12921E-04

326.5000 814.8437 .88395E-03 269.5000 1622.6017 .39403E-03 255.6000 2139.8991 .20424E-04

327.1000 810.5960 .89039E-03 270.1000 1605.8451 .40046E-03 255.2000 2159.7130 .16136E-04

325.9000 819.1361 .87752E-03 269.3000 1628.2653 .39188E-03 254.8000 2179.8972 .11849E-04

324.9000 826.3915 .86681E-03 269.0000 1636.8351 .38867E-03 255.0000 2169.7581 .13993E-04

325.6000 821.2993 .87431E-03 269.0000 1636.8351 .38847E-03 255.2000 2159.7130 .16136E-04

326.5000 814.8437 .88395E-03 269.8000 1614.1799 .39724E-03 255.3000 2154.7252 .17208E-04

326.3000 816.2695 .88181E-03 269.8000 1614.1799 .39724E-03 255.5000 2144.8184 .19352E-04

326.3000 816.2695 .88181E-03 270.2000 +643.0859 .40153E-03 255.5000 2144.8184 .19352E-04

326.5000 814.8437 .88395E-03 269.0000 1614.1799 .39724E-03 255.8000 2130.1279 .22567E-04

326.8000 812.7143 .88717E-03 269.8000 1614.1799 .39724E-03 256.0000 2120.4455 .24711E-04

327.3000 909.1899 .89253E-03 270.0000 1608.6138 .39938E-03 256.4000 2101.3423 .28999E-04

329.2000 802.9225 .90218E-03 270.6000 1592.1433 .40582E-03 256.3000 2106.0858 .27926E-04

327.9000 805.0009 .89896E-03 270.4000 1597.5959 .40367E-03 256.6000 2091.9193 .31142E-04

327.8000 805.6960 .89789E-03 270.5000 1594.8650 .40474E-03 256.9000 2077.9421 .34357E-04

328.9000 798.1146 .90968E-03 270.8000 1586.7279 .40796E-03 257.2000 2064.1504 .37573E-04

:28.2000 802.9225 .90218E-03 270.3000 1600.3362 .40260E-03 256.7000 2087.2394 .32214E-04

5000 807.7987 .89467E-03 270.0000 1609.6138 .39938E-03 256.8000 2082.5804 .33286E-04

:27.9000 805.0009 .89896E-03 270.1000 1605.8451 .40046E-03 256.8000 2082.5804 .33286E-04

328.3000 802.2322 .90325E-03 270.4000 1597.5959 .40367E-03 257.1(00 2068.7273 .36501E-04

328.0000 800.1681 .90646E-03 270.4000 1597.5959 .40367E-03 257.1000 2068.7273 .16501E-04

E02.92213 .90218E-03 170.4000 1597.5959 .40367E-03 257.8000 :037.1092 .44004E-.14 327.9000 805.0009 .89896E -03 270.3000 1600.3362- .40260E-03 257.7000 2041.5667 .42932E-04

328.9000 798.1146 .90968E-03 271.3000 1573.3491 .41332E-03 257.8000 2037.1092 .44004E-04

329.0000 797.4325 .91075E-03 270.8000 1586.7279 .40796E-03 257.8000 2037.1092 .44004E-04

327.8000 805.6960 .89789E-03 270.4000 1597.5959 .40367E-03 257.8000 2037.1092 .44004E-04

327.9000 805.0009 .89896E-03 270.2000 1603.0859 .40153E-03 258.2000 2019.4719 .48291E-04

328.7000 799.4824 .90753E-03 271.2000 1576.0068 .41225E -03 258.0000 2028.2522 .46147E-04

329.1000 796.7515 .91182E-03 270.9000 1584.0340 .40903E-03 258.2000 2019.4719 .48291E-04

329.8000 792.0170 .91932E-03 271.1000 1578.6734 .41117E-03 259.2000 1976.6864 .59009E-04

328.7000 799.4824 .90753E-03 270.7000 1589.4310 .40689E-03 259.5000 1964.2021 .62225E-04

328.6000 800.1t81 .90646E-03 270.5000 1594.8650 .40474E-03 259.5000 1964.2021 .62225E-04

328.9000 798.1146 .90968E-03 270.9000 1584.0340 .40903E-03 260.0000 1943.7417 .67584E-04

329.6000 793.3639 .91716E-03 271.5000 1568.0605 .41546E-03 259.8000 1951.8745 .65440E-04

328.6000 800.1681 .90646E-03 271.2000 1576.0068 .41225E-03 259.7000 1955.9665 .64368E-04

329.2000 796.0717 .91289E-03 271.2000 1576.0068 .41225E-03 259.5000 1964.2021 .62225E-04

329.0000 797.4325 .91075E-03 270.9000 1584.0340 .40903E-03 259.7000 1955.9665 .64368E-04

328.9000 798.1146 .90968E-03 271.0000 1581.3492 .41010E-03 259.8000 1951.8745 .65440E-04

328.9000 798.1146 .90968E-03 271.0000 1581.3492 .41010E-03 259.8000 1951.8745 .65440E-04

329.9000 798.1146 .90968E-03 271.8000 1560.1940 .41868E-03 259.3000 1972.5074 .60081E-04

321.8000 792.0170 .91932E-03 271.9000 1557.5893 .41975E-03 259.8000 1951.8745 .65440E-04

328.4000 801.5430 .90432E-03 270.9000 1584.0340 .40903E-03 259.5000 1964.2021 .62225E-04

328.9000 798.1146 .90968E-03 271.0000 1581.3492 .41010E-03 259.6000 1960.0756 .63296E-04

IEOI ENCOUNTERED. 98

APPENDIX D.

PLOTS OF FOULING RESISTANCE PLUS

RECIPROCAL FILM HEAT TRANSFER COEFFICIENT

PLOTS OF FOULING RESISTANCE

'OBSERVED AND PREDICTED DATA' LY

LL.

In

I .00 4-- 4 4-- 4- I -4. 4,- +-al-. 4 1 .0"0 I ----+ 100.00 200.00 .300.00 100.00 "A00.00 E;00.00

I N1 1_ ( E )

RUN NO,,1 (I CI) 10.00 116

9.00 14tT-tut,-1 D F- ED

LL Icr 13.00 I- LL

Ln 7.00

CD CD

--4

8.00

LL

5.00 + -I +- 1 -4--F-+--,-1 A 4 + .00 50.00 100.00 150.00 200.00 250.00 300.003 TIME (FRS) RUN NO2, (TC1) 0

100.110 150.00 200.00 250.00 300.00 TIME (MRS) UN NO,'` CZ)) 5.0J

1.00

7) in Lid

LL ;16 41% 3.00

in 2.00

(7) cJ

:17 1.00

-F L (1 .,

I ---t - .00 - -I --f- --s -+- -+-- -1- .00 50.00 '100.00 150.00 200.00 250.00 300.00 TIME (1-1R5) PUN NO 2 ( C,1) 13.00

7.00

G.00

I- LL

5.00

1.00

.3.00 - 4 4 - 4 - - 14 1- 4- -1 - -1----4-1----+-1--4-4-4-+-1- -+ +- 1-4 -4-4--4--+ 4-4 .00 ZO.0L1 '10.00 60.00 80.00 100.00 120.00 140.00 160.00 100.00 200.00 TIME (HRS)

HUN Y.) (1 C1) . 0 0

4.00

E- _-8 LL)

LL 3.00

0 In 2.00

CJ cJ C) CD

1.00

.00 + + 1+-r1+t 4.1+ 4 4, + 4 +-4-1.--1- 4-4 h t- 4-4-4 4 -I-- h4 f t.i - ---f .00 20.00 10.00 50.00 90.00 100.00 120.00 140.00 150.00 1E30.00 200.00 TIME (HRS) RUN 1\100 (1-C,1)) !i.00

1:3

CCl

3,00 CC

C3 01 2.00

C) C)

1.00 '-I -F IL LC

Ia I 1-4-- 1- .00 -4 _' + -1-4-4-+ -4-4--I -4-1--+-4- 1-+ ---4 .1-4 -4-4 I-f-4 .00 20.00 10.00 80.00 E30.00 100.00 120.00 110.00 160.00 180.00 200.00 TIME (MRS) RUN N0:3 (1C/1) 10.00

9.00 m

0.00 cr

F- LL

U1 7.00

6.00

I r I 1- -4 5.00 -t -4-- 1- +- 4 -+4- f .00 50.00 100.00 150.00 2110.00 250.00 300.00 350.00 900.00 TIME (HRS) RUNno,ri(Tc1) 5.00

,1.00 -4/1\t-ittlaIN/"\bA3 m ,49,a111117%ija

3.00 -_r

2.00

1.00

.00 -I 4 I -4 *1.-,I 1a( 1 afaillIja-tiatla .00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 100.00 TIME (MRS) HUN NO,LI (iC3) f-- cn

LL

F'

C5 In

C) CD ki143eitzi-41 -t3-13tv-a--j "a-8 Vt,-"tfa3A

Imo_

.00 -ir -4 + I +f * -+ I - 1 F F I -I- 4 I -*--I 00 1_411.00 100.00 150.00 200.00 250.00 300.00 350.00 100.00 TIME (HRS)

NI I ( T C 10.00

jasbiterlitval .\\11 9.00 Ited

D 'ANI/S414 I-- in li E3.00 Lt-

LL 0 in 7.00

6.00

5. (1t) - --I F- --s-- I I I , 1--4-+-f I4-4-4-+ 4I -4- t-f .00 50.00 100.00 151J.OU 200.00 250.00 300.00 350.00 100.00 150.00 500.00 TIME (HRS) RumNo.,5 (Tc1) 1J w

LL

11 I

LL. 0 Cfl

.00 f+ 4- --r I I-. r I 4 4-- .00 50.110 1011.110 IbJ0.00 200.00 250.00 300.00 350.00 400.00 450.00 500.00 TIME (HR5) HUN 110,`D (I C=5) 0 '' Os4) \ iAU' '1.-14143'es" --6 a '713 \-tWkr41431411-11--" i .12, ..1jill -al -41 bl . 0 0 t1-1-44f-l'st "1-414*.4frA1-44? -"- ±-a -I 4t }4 t 1 I ". 4-1-4-474-4-1-1-4-1 .:J 53.0J 13J.00 "i 150.00 2J0.00 250.00 300.00 350.00 400.00 450.00 500.00 TIME (FIRS) 2.00 -

1.00

1.60 -

1.40 it 1.20

LL It

C3 1.00 ! .1.111 cr.) 1/ iA !/ :rt,i cr .80 :1: /11 0 , ,1 :1 :1 !I 0 11" '

II (AD :1 t) 11 '7? .40 -- 11 / 1-1

_ 0 I I- .20 -

.140 4.4-.4-1-4I-4.4 i - I4-1.4 I.1 I 1 .. . 14 - 1I t - 6 1 ,.4. 4110If. t 14/1/.1. .00 tii1.001110,11:, [1:1 '1';1(11! IV!.1(1" 1 11!1 I mt.!II' !'"

I LI I \I I \I I I 1 1 7.00

6.50

utix& 9 6.00 .1 iki"au' IN 14o; w,u '1) . tr..* gm u nn1 u "IL " sun LI 5.00 kJ

/Wit) 1 1.00

(.3 :3`30 (11 3,V0 O 1- (.1 2.00 Li

-, 1.1_1)0 I- 1 1100

.00 50.01) 100.00 150.00' 200.00 250.00 300.00 IME (1.111S) HUN rJO., 1-C1) 2.00

1.00

3 1.60 m 1.40 IL

CY. 1.20

Lt. 0 1.00

.00 0 uN

.60 L/ U U 11 LI 13 113-- - - 19- 1.1,4 Ii 11 I/ 00 .40 0 ll H " :!1 " 0 :1 "

.20

.00 00 100.00 150.110 200.00 :100.00 'ME (III-1') RUN NO.2 1 C.5) 11

11

11 :1 11 u 11 9,"11Y .."

11 11

:1

U 11

11 1, it "" :1 .1u .,11 111. 11 'In

I- a 1. - .00 - 50.00 100.00 150.00 200.00 'U0 300.00 -& T IMF(FIRS) 'LOU

3.60

3.20

2.80 d1 LI bt Lt. cr 11 2.40 U is LL 13

U U f 1 13 0 2.00 u 113 Li 0 EP In 13

1.60 0

1.20 LL

U .E30

.40

.00 i f 4A+ r + vAilf. 1---t .0 20.00 40.00 60.00 00.00 100.00 120.00 140.00 160.00 180.00 200.00 TIME (FIRS) am RUN NO. 3 (TC1) 3.00

2.70

2.40

2.10

I 1.80 LL 11 13 O 1.50 13 13 U1 11 U

1.20 13 OOC 13 F3 ta

13 13 .90 m 13 El 1) 11 U 13 LL 13 O

.60

.30

.00 eF-1 -e+ 111111111es leelo litelseleels#1.11-,eie .00 20.00 111.1 1411 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180. 00 200.00 TIME (HRS) RUN N043 (TC3) 3.00 -

2.'70

o ,--, D 2.40 - 1 I- LI LI M ii ii ----. 'I, ii!, '`-. 2.10 o Li_ 4'; Ella

fY 13 1.(30 ri o

_L u Lt_ 0 1.50 - o CA 0

CY: 1.20 -7

.90 i_t_

'2 .60

.30 --

00 4 -4- t---t- .00 20.00 10.00 60.00 60.00 100.00 120.00 140.00 160.00 180.00 200.00 TIME (MRS) RUN NO.3 (TC4) om 7.00

6.30

ta uu 13 U13 " U 1.1 Iji la 41 5.60 Vnn n" I11 I7 IPaa 1311, 11, -1.0 13

Er 11 u 441 _L 1. 20

LL 3."10 LJ1

2.E30

1

2.10 LL

-2 1.10

0 LL .70

.00 1. ---s 11 -+ 00 50.00 1013.00 150.00 200.00 250.00 300.00 350.00 100.00 TIME (HRS) P,(.11.1 ['di) 2.45

2.10

1.75

1.10 LL 11 0 13 00 0 L3 "13 Ll 13 Ali II th" Lfl 1311 13 U /3113 lh L3

U 11 1.05 -H 13 Lr n II 13 " 0 .1 H 11 " " di 13 uu

.35 C) LL

.00 -4 -4 -4 + -I 1 -I- -rt I 6 1 .00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 '100.00 THE RUN H0,1 (TC3) 1.00

3.60

3.20

2.00

2.40 13

" 01 C3 2.00 11 11 11 (f)

1.G0 oLC

u

11 1.20 14.4 11

11 11 1J 11 IJ 11 " m"^ 13 o 13 11 11 u 1.1 .8U flu DI'11 IhJ1 "1100 01/ u u°131 ..J

. 4 0

- I- 4-- -o- + + 1-- 1- .00 1--t4 -4 1 .OU 50.00 100.00 150.00 200.00 250.00 300.00 350.00 100.00 TIME (MRS) HUN TC4) 7.00

6.30

3 5.60 H Li- u61 chiju 13 13a alip13 b un n 11_ Ly tinII' 4.90 n IJLI nn LL. Ill Ill 11 "IJ 11 11 lL LIFPI/ u u 4.20

3.50

2.60 0

a 2.10 Lt.

1.40

4 4 1 I 1 .00 -I- 4 1- -I -1- 1-1 1 I-1III 1 I 11 I I 1 1 I-4.-1-1-f- .00 50.00 100.30 150.00 200.00 250.00 300.00 350.00 100.00 450.00 500.00 TIME (FIRS) RUNN.01..-3 (TCD 3.00

2.70

2.0 cn 2.10

LL

I 1.

1 111/ Li_ II " 11 1/..j 1.50 11 li LI /1 1.1. LII.,_ Li :III I ij ID -11-1, 11 11 111) 1/0 11 11 II 11 I) 11 111.1111 " II 11 il II, 11 11 IS/ 12 0 Lti . O

(13 LL

.1;0

.30

0 0 I f 1 -I -I -1 I 1- 4 -I- f- .00 '30.00 100.01) 150.00 200.00 250.00 300.00 350.00 '100.00 150.00 500.00 TIME (FIRS)

U N d ,1-r) (1C3) 0 Cr/

031 -1 n rr

F--1

C "J4-ti (I O 01 O a 0

«- - - I 4-I 4-p,til4444-044441---1-4- f-1444+41E4+1-4,-11-110-111141-44-1411-14-R01-4+ if 1-1-1---1--40-144G44-4141-FMi I 1 I , 4_ 00- °wog 00.001 00.0c=iT 00.00Z, 0010qZ 00.00 0011Sic 00.001/ 00.11.qt, 00.005 (SHH) rh"Tc_i (t7oi_ 125

APPENDIX E.

A STATISTICAL ANAYSIS AND

NORMAL PROBABILITY PLOT 126 Run NO.1- TC1

PG 7 7 1M0P3F FOULING FACTCR CORRELATION NORMAL PRORABILITYPLOT OF WEIGYTEERESIDUALS

.... *

i p 4 4 a 4 a X 4 4 T ... 4 4 0 4 4* *

NI ** 4. 0 **

4. M ** A ** ---1 . ** * V -1, + *** + *4v- L ** * * E ** -2 + * 4. 4 V sii+1,...+ologio+Aleofi+esoft+eckoe+041611,+eeib+o** -4075 .075 .225 -.150 0.10 .151 .311 1.FIGHIEC FESICUAL

_45....alasErra4+Gs

Number of Cases Read 86 Degrees of Freedom 84 Serial Correlation 0.744

Minimum Maximum Mean Standard 4 Deviation Rf * 10 (ft hr F)/Btu 0.0000 1.2219 0.8065 0.2352 Time ( hrs ) 0.0000 502.5 250.79 146.67 127

Run No.2 -TC1

COio.ELATI01 Foth.INGFACTC'; PACE 7 timop3R KET ICUALS 4 °LOT OF-WEIGHT f+a+ --÷t0P4tAt.--PROSA3ILIT'f-+.,++.....+

4 E 2 * *

4 *4 4 4- 4 *4 4. -4 fl 4* 0 ** * + A r 4 L * + * V -1 ..._ t__ * t. 4._ U . * E---- -2 4 + e

. 1 . 3 +...++...+.+041111+*+...311______. ..3 a..1..0 2.r ______-_-_.1..5 1.3 L,0 iiEr ilmI,F.:E.;1=E-:. E-I'aU.I_ r1.440F_ECON10: rouTTAc urrl

73 Number ofCases Read 71 Degrees ofFreedom 0.84 SerialCorrelation Mean Standard Minimum Maximum Deviation 5.1848 0.8165 4 2.3258 6.0432 86.311 (ft hrF)/Btu 132.68 Rf * 10 0.0000 281.000 Time ( hrs ) 128 Run No.2 - TC3

PAGE 7 BmCR3R FOULING FACTCR CORRELATION NORMAL PR09A2ILITY++#+++4 PICT OF wEIGHTED RESIDUALS "+ C + * I. r7 * F J. it F * * T . *4 =____1 4-*- **4 0 *44 0 ***4

A * 4-* 44 V -1 + A -0*- * _ ** -2

4 041+10410+410041+0000+.400+504+ 4 +5 -.13 -.13 .115 .18 -.1/ 1.1 .12 14FIGHTEC RESIDUAL

Number of Cases Read 73 Degrees of Freedom 71 Serial Correlation 0.821

Minimum Maximum Mean Standard 4 Deviation Rf * 10 (ft hr F)/Btu 0.0000 0.7396 0.4524 0.1371 Time ( hrs ) 0.0000 281.0 132.68 86.31 129 Run No.2 - TC4

PAGE 7 3MDP1R FOULING FACTO COii;.ELATION --NFORMAL-PRO'BABIL:TY -12LOr OFi4EIG4TEJ ;E3IDIJALS 0+441108+0000+0400111+,0000400004.000+080040004b+0 . . - . E. . + * 7 4 D 3 a E . . 0- 44 34 . T , . 1 + 4.41, E. + a. J . 3 . . N. 4 .. 34 . 0 . R 0 + 34 + *vit . . A 3333 34 . L .

-1 + _____ * L a U 4* a 2 +

44414111*O4000,04.11000+04,00+411100+41004+110-80+004,411+0 -.730 0.30 .710 1.40 2.13

WEIGriTE D-;c 31.14,! CPU TIT'EJSE: -.Si E, SECOND

Number of Cases Read 73 Degrees of Freedom 71 Serial Correlation 0.86

Minimum Maximum Mean Standard 4 Deviation Rf * 10 (ft hr F)/Btu 1.8007 3.5156 2.3921 0.4617 Time ( hrs ) 0.0000 281.0 132.68 86.31 130

Run No.3 - TC1

--PAtF 7 BMOPI:". FOULING FACTOR CORRELA7ION

--4ORMAL FLRO:-...A9It.: PLOT OF WEIGHTEJ mESIDUALS 0.+00011+04040000+00.00+04,00+410410+0,0+ *****

4E- 17 X 1.3 + P * * - * ,... 44, .90 + ivr S. Ir

R -0.0 + 4. -44 A

V -.90 + 4 4. 4 L U 4- -1.3 * 4

4. + 4. 4. 4. II 4. 4. !..4 _1. 2_ -.80 0.0 . 1.6 WEIG,TTEDRE3IO.UAL- CPU TIME 'JS 7coND:-7.

Number of Cases Read 49 Degrees of Freedom 47 Serial Correlation 0.612

Minimum Maximum Mean Standard . 4 Deviation Rf * 10 (ft hr F)/Btu 0.9539 2.9475 2.1624 0.3533

Time ( hrs ) 0.0000 192.25 75.14 59.98 131 Run No.3- TC3

PAGE 7StIDP3,"-?. FCUL!NG 1.kfCTOP r;T:11ELATION FR 0 F.4 LITY- Pt- 0 G H TED RE 3IDUaL3 +000+0000+00010+000.4004104.0400+00141+1,41

+ 1 4. P a 4. 4..

E 11 + 4* 4. TJ *1F 4.4 4. *4 4. 0 44* t3.1 4' 44 4.

A 4 4. L-- v. V --. 91 + + ** a L Li

*

***** +....+....+....+....+....+....+...+ -,125 ...12.5 .373. 5 25 -.?50 C.01 .753 .501 -WEIG,47,1ESI:-,luAl., r1Pu TIME U3En 5.37? S=CON7'7

Number of Cases Read 49 Degrees of Freedom 47 Serial Correlation 0.88

Minimum Maximum Mean Standard 4 Deviation Rf * 10 (ft hr F)/Btu 0.4502 1.7471 1.0515 0.3195 Time ( hrs ) 0.0000 192.25 75.38 59.98 132

Run No.3 - TC4

PAGE 7 eM0P3F; FOULINGFACTOR COE'-ATION

P909A1?-IL ITY ---P4LOT0-ff- WE-IGHT ED- --ICES 1:13U A LS ++0 0+ + + + +

E + 4 + P 4 E 4 ri. 4_ 4 T 4 C 90 + at + .....11. a U . 44

I` I at. ..____ . 0 44 00 + 4 4 M 44.-- A . 4. * L . it V .90 + * + A--_ _-.. ** . L 44 . U . 4 4.-- E ___ .1.8 + 4 + 11+0 + +00.+ 6.411.+4 + + .353 i.as .1.75 0.30 .703 1.40 2.11

i4Z-I G-rti7E:.1----RE-S-17_'UAI CPU TIME USED 5.573 SECOND

Number of Cases Read 49 Degrees of Freedom 47 Serial Correlation 0.558

Minimum Maximum Mean Standard 4 Deviation Rf * 10 (ft hr F)/Btu 0.0000 0.7396 2.0082 0.2433 Time ( hrs ) 0.0000 192.25 75.14 59.98 133

Run No.4- TC1

PACE 7 Bm0P3RFOULTNG FACTOR CORRELATION NORMAL PROBABILITY PLOT OF WEIGHTEC RESIDUALS 4.0.00+001100+411001091111,111111+0404+-11,11.101011111-*00 3 E . X 2 + : P 3 E * * C *

E i : * + 0 ** . N *4 0 344 R 0 + ** + M s,sat

1.. .10 41 2141. S T 1 + lbAP + A *** L U * E 41

3

-50 50 1.5 2.5 -1.1 0.0 111 2..0 WEIGHTEC RESIDUAL CPU TIME USED 6.642 SECONDS

Number of Cases Read 81 Degrees of Freedom 79 Serial Correlation 0.933

Minimum Maximum Mean Standard -4 Deviation Rf * 10 (ft hr F)/Btu 2.3151 6.0772 5.0183 0.9612 Time ( hrs ) 0.0000 376.75 171.26 117.30 134

Run No.4 - TC3

PAGE 7 EIMOP3R FOULING FACTOR CORRELATION NORMAL PROBA3ILITY41041+ ..PLOT-OF-WEIGHTED 0+. ++0 RESIDUALS-4.0+4.0*

X 4. * ** tar. *

1 * -** ** 4.4. 0 4. ***4.4.4.4. *** L 1, -1 4.4. 4. A 4.

-2

11'00044004+000,011.010+11W40.40+4,00****041 -.175 .175 .525 .75 -.350 0.01 -.353 .701 WEIGHTED. RESIDUAL CPU TIME USED 9.375 SECONDS

Number of Cases Read 81 Degrees of Freedom 79 Serial Correlation 0.801

Minimum Maximum Mean Standard 4 Deviation Rf * 10 (ft hr F)/Btu 0.7074 1.4791 1.0639 0.2056

Time ( hrs ) 0.0000 376.75 171.26 117.30 135

Run No.4 - TC4

PtG 7 PmDR7R ROULINf; CORRELATION NORMAL PRCPAEILITY PLOT or WF/C0TED RESIDUALS IPWW04-1161040./O+.110-0+1141004.00011400084.414100+084 . * O.,1,1r . . x 2 + * + o . 444 . C *AL T- #__ S. i + **** + 44 * 1 0 4-4--- *** N . .* 0 + ** + M A ----A- -- o L 4 A + v,.r.:....--46----ii4 A ii . U

.4

.71 .R0 1.5 , 0.1 .80 1.8 1-7I1HTED RESIDUAL TI Mr USED 9.801 SECONCS

Numbr of Cases Read 81 Degrees of Freedom 80 Serial Correlation 0.94

Minimum Maximum Mean Standard 4 Deviation Rf * 10 (ft hr F)/Btu 0.6538 2.3473 1.7205 0.454 Time ( hrs ) 0.0000 376.75 171.26 117.30 136 Run No.5 - TC1

PARE 7TICP3L7. FOUING FACTORCOR-2E.ATION IORMAL PROq.Am ITY PLOT OF wEIG'4iE3ESIJUAtS + .+ . + + ..+ ++ .+ + 4

4. P 4 E 4. 4. ,..., "r 4 4 7 1 4 *

X -a *4 0 + A44 4. 44- A 4. 11+ ** V 1 f A - **

4-4 4-

+ + ÷ 444 0.4. + 4 +a .60_ 1. 3.t3 -1.2 0 1.2 2.4

CPU TIME !JEE :' 3.610S'.7 roNos

Number of Cases Read 77 Degrees of Freedom 75 Serial Correlation 0.631

Minimum Maximum Mean Standard 4 Deviation Rf * 10 (ft hr F)/Btu 3.3762 5.3269 4.8623 0.4247

Time ( hrs ) 0.0000 425.5 213.71 129.16 137 Run No.5 - TC3

-12-AGE---7-9F-CP-3R- FOULING FACTOR CORFLATION 4ORMAL PROBA.eILITY PLOT OF wEIGHTEC RESIDUALS ...+....+....4....+....+....+....+....+....

4

4 C -444 E 4 4

0 + 1 A L 44

V -1 4 A 44

...+....+....+....+....+....+....+.. -.250 .251 .750 1.25 1.10 -.5GG is 04 .50 $4FIC,HTECRESIDUAL CPC TIFF USED 11.147 SECOlkCS

Number of Cases Read 77 Degrees of Freedom 75 Serial Correlation 0.465

Minimum Maximum Mean Standard 4 Deviation Rf *10 (ft hr F)/Btu 1.1361 2.0150 1.4716 0.1404 Time ( hrs ) 0.0000 425.5 213.71 129.16 138

Run No.5 - TC4

PAGE 7 3M0P3P FOULING FACTOc CORRELATION NORMAL PROPABILITY PLOT OF WEIGHTE0...kESIOUAL3 400+040.4.00104.00.10.41040+41010.+11000+0000. OOOO

2

C * 1 3

_ _ 0 0 4.* f 4 .* 4 11

V 1 4.* .* L . * U e*

4.*

0414.800.114.00041+4400+1100.04.001004ooo4.....4. OOOOO .125 .125 .375 625 0.00 .250 .500 .751 WEIr,HTED RESIJJAL CPU TTmc' ue'rr 9.011 EECONC:

NUmber of Cases Read 77 Degrees of Freedom 75 Serial Correlation 0.971

Minimum Maximun Mean Standard 4 Deviation Rf * 10 (ft hr F)/Btu 0.0000 0.8789 0.4992 0.2369 Time ( hrs ) 0.0000 425.5 213.71 129.15