Lake Erie Holocene Coastal Evolution Near the Portage River-Catawba

Total Page:16

File Type:pdf, Size:1020Kb

Lake Erie Holocene Coastal Evolution Near the Portage River-Catawba LAKE ERIE HOLOCENE COASTAL EVOLUTION NEAR THE PORTAGE RIVER- CATAWBA ISLAND, OHIO Andrew Clark A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2008 Committee: James E. Evans, Advisor Jeff Snyder Sheila Roberts ii ABSTRACT James E. Evans, Advisor Previous studies on the sedimentology and coastal geomorphology of the Great Lakes have recognized individual features (spits, barrier islands, beaches, coastal wetlands, estuaries) but have compartmentalized the information rather than recognizing that these features are all components in wave-influenced deltas. Wave-influenced deltas form where discharge from a river is sufficient to impose a groin-effect on longshore drift. Such deltas tend to be asymmetric in plain view, with the updrift side of the delta characterized by accreting beach ridges (cheniers or strandplains) and the downdrift side of the delta characterized by coastal wetlands and occasional accreted bars. An asymmetry index > 200 (Bhattacharya and Giosan, 2003) defines wave- influenced deltas. The Portage River delta (north-central Ohio coast of Lake Erie) has an asymmetry index of about 296, meaning it is a wave-influenced delta. Historical aerial photography from the 1930s-1940s, pre-land development, show a chenier plain updrift (east) of the Portage River delta, while downdrift (west) of the Portage River delta are extensive coastal wetlands and rare beach ridges in the Ottawa National Wildlife Refuge. The Portage River delta, then, appears to be a wave-influenced delta. This study used 28 vibracores up to 4.5-m in length, sediment analyses, and 14C geochronology to confirm the classification of this delta and evaluate the implications for understanding the coastal features of the Great Lakes. Sediment cores updrift of the delta consisted of sandy deposits about 4.5-m thick overlying glacial-lacustrine sediment. These sandy deposits are interpreted as a relatively continuous, overall shallowing-upward sequence (shoreface → foreshore → backbeach and iii dune); with a coarsening-upward, storm-dominated shoreface succession influenced more by wave-driven currents in the shallower upper shoreface. Sediment cores from downdrift of the Portage River also represent an overall shallowing-upward sequence with a coarsening-upward, storm-dominated shoreface succession. However, these sandy deposits are only 1.5-m thick and overlie thick wetland (peaty) deposits. In this succession, coarser horizons in the upper shoreface are associated with sediment transport within rip channels during storm intervals. In downdrift areas, the vertical facies succession of sediment cores is very irregular suggesting more input from the fluvial system. The 14C analysis in this study determined three 14C age dates from vibracore 07-PC-14 in a thick peat interval overlying glacial lacustrine sediment. The 14C age dates ranged in age from 1616-2025 cal BP representing a much younger age than the underlying glacial lacustrine sediment. The cal BP age determinations followed a linear trend (R2 = 0.9931) when plotted with depth, indicating a constant sedimentation rate of 0.86 mm/yr throughout the peat sequence. The 14C age dates indicate the formation of a coastal wetland from about 1700-2070 YBP. The top 39-cm of vibracore 07-PC-14 showed a sedimentation rate of 2.05 cm/yr while the siliciclastic interval just below indicated a sedimentation rate of 0.58 mm/yr. After the formation of wetlands, the multiple coarsening-upward successions are present resulting from the accretion of beach ridges along the shoreline. The deposition of the shoreface sequence begins at about 1513 cal BP and multiple shoreface sequences coarsen upward to about 19 cal BP. iv ACKNOWLEDGMENTS I would like to start by acknowledging the support that my family has shown me over the past two years. The encouragement of my parents (Robert and Cheryl Clark), my sister (Krista Clark), and my brother (Benjamin Clark) has been a constant source of motivation to finish this manuscript. I would also like to thank the members of my thesis committee. Dr. James E. Evans, my advisor, for his guidance, assistance, and willingness to point me in the right direction and Dr. Jeff Snyder and Dr. Sheila Roberts for offering invaluable suggestions in how to complete parts of this study. Finally, I would like to thank all of my friends and fellow students here at BGSU. These past two years have been a stressful, but enjoyable time. I know that the great friendships that I have forged here will remain with me for the rest of my life. v TABLE OF CONTENTS Page INTRODUCTION ............................................................................................................ 1 Estuaries ................................................................................................................ 2 Beaches ................................................................................................................. 3 Strandplains .......................................................................................................... 5 Deltas .................................................................................................................... 7 Fluvial-Dominated Deltas .......................................................................... 10 Tide-Dominated Deltas .............................................................................. 10 Wave-Dominated Deltas ............................................................................ 12 Wave-Influenced Deltas ............................................................................. 12 Examples of Asymmetric Deltas ................................................................ 15 Purpose of Study ................................................................................................... 18 BACKGROUND .............................................................................................................. 20 Bedrock Geology ................................................................................................... 20 Structural Geology................................................................................................. 20 Late Cenozoic and Modern History ....................................................................... 20 The Great Lakes ......................................................................................... 20 Lake Erie ................................................................................................... 25 Portage River ............................................................................................. 26 METHODS ....................................................................................................................... 30 Field Work ............................................................................................................ 30 Vibracoring ................................................................................................ 30 vi Laboratory Work ................................................................................................... 33 Core Stratigraphy ....................................................................................... 33 Water Content and Porosity........................................................................ 33 Grain Size Analysis .................................................................................... 34 14C Analysis ............................................................................................... 35 Aerial Photographs ..................................................................................... 40 RESULTS ......................................................................................................................... 51 Lithofacies Analysis .............................................................................................. 51 Facies A (Glacial lacustrine sediment) ....................................................... 51 Interpretation .................................................................................. 51 Facies B (Planar-stratified sands) ............................................................... 55 Interpretation .................................................................................. 55 Facies C (Low-angle cross-stratified sands)................................................ 56 Interpretation .................................................................................. 56 Facies D (Trough cross-stratified sands) ..................................................... 56 Interpretation .................................................................................. 58 Facies E (Gravel sediment) ........................................................................ 58 Interpretation .................................................................................. 58 Facies F (Laminated sands) ........................................................................ 59 Interpretation .................................................................................. 59 Facies G (Organic mud-peat sediment) ....................................................... 60 Interpretation .................................................................................. 60 Facies H (Massive to faintly laminated sands) ............................................ 60 vii Interpretation .................................................................................
Recommended publications
  • Microplastics in Beaches of the Baja California Peninsula
    UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA Chemical Sciences and Engineering Department MICROPLASTICS IN BEACHES OF THE BAJA CALIFORNIA PENINSULA TERESITA DE JESUS PIÑON COLIN FERNANDO WAKIDA KUSUNOKI Sixth International Marine Debris Conference SAN DIEGO, CALIFORNIA, UNITED STATES 7 DE MARZO DEL 2018 OUTLINE OF THE PRESENTATION INTRODUCTION METHODOLOGY RESULTS CONCLUSIONS OBJECTIVE. The aim of this study was to investigate the occurrence and distribution of microplastics in sandy beaches located in the Baja California peninsula. STUDY AREA 1200 km long and around 3000 km of seashore METHODOLOGY SAMPLED BEACHES IN THE BAJA CALIFORNIA PENINSULA • . • 21 sampling sites. • 12 sites located in the Pacific ocean coast. • 9 sites located the Gulf of California coast. • 9 sites classified as urban beaches (U). • 12 sites classified as rural beaches (R). SAMPLING EXTRACTION METHOD BY DENSITY. RESULTS Bahía de los Angeles. MICROPLASTICS ABUNDANCE (R) rural. (U) urban. COMPARISON WITH OTHER PUBLISHED STUDIES Area CONCENTRATIÓN UNIT REFERENCE West coast USA 39-140 (85) Partícles kg-1 Whitmire et al. (2017) (National Parks) United Kigdom 86 Partícles kg-1 Thompson et al. (2004) Mediterranean Sea 76 – 1512 (291) Partícles kg-1 Lots et al. (2017) North Sea 88-164 (190) Particles Kg-1 Lots et al. (2017) Baja California Ocean Pacific 37-312 (179) Particles kg-1 This study Gulf of 16-230 (76) Particles kg-1 This study California MORPHOLOGY OF MICROPLASTICS FOUND 2% 3% 4% 91% Fibres Granules spheres films Fiber color percentages blue Purple black Red green 7% 2% 25% 7% 59% Examples of shapes and colors of the microplastics found PINK FILM CABO SAN LUCAS BEACH POSIBLE POLYAMIDE NYLON TYPE Polyamide nylon type reference (Browne et al., 2011).
    [Show full text]
  • Natural Communities of Michigan: Classification and Description
    Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council.
    [Show full text]
  • Catawba Island, the Great Peach Growing Center of Ohio from Sketches and Stories of the Lake Erie Islands, by Lydia J
    Catawba Island, the Great Peach Growing Center of Ohio From Sketches and Stories of the Lake Erie Islands, by Lydia J. Ryall, American Publishers, Norwalk, OH, 1913 This reprint Copyright © 2003 by Middle Bass on the Web, Inc. "Why, and wherefore an island?" This question is usually the first formulated and put by the curiosity seeking stranger who approaches Catawba Island by stagecoach from Port Clinton - which, by the way, is the most available, and at certain seasons the only feasible, route thither. A trip to an island by stagecoach, instead of in a boat! The idea appears anomalous as it is novel: something similar to going to sea by rail, and, to discover how the thing is done, grows into a matter of keen interest as the observer progresses. His geography informs him that an island is “a body of land entirely surrounded with water”; and looking ahead - as the driver whips up his team - he vaguely wonders where, and how far along, the water lies, and how they are to get across it. Imagine, then, his complete surprise when, after a jaunt of several miles, the driver informs him that the mainland is already far behind, and that they are now on Catawba Island. Had the stranger turned back a few miles over the route, to a place where the two main thoroughfares, the “sand road,” and “lakeside” road, form a cross, or fork, he might have been shown a narrow ditch with an unpretentious bridge thrown across it. This ditch, terminating at the lake, is all that now serves to make Catawba an island.
    [Show full text]
  • Flood Basalts and Glacier Floods—Roadside Geology
    u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1.
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • The Rate of Granule Ripple Movement on Earth and Mars
    Icarus 203 (2009) 71–76 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The rate of granule ripple movement on Earth and Mars James R. Zimbelman a,*, Rossman P. Irwin III a, Steven H. Williams b, Fred Bunch c, Andrew Valdez c, Scott Stevens d a Center for Earth and Planetary Studies, National Air and Space Museum MRC 315, Smithsonian Institution, Washington, DC 20013-7012, USA b Education Division, National Air and Space Museum MRC 305, Smithsonian Institution, Washington, DC 20013-7012, USA c Great Sand Dunes National Park and Preserve, 11500 Highway 150, Mosca, CO 81146-9798, USA d National Climatic Data Center, Federal Building, 151 Patton Ave., Asheville, NC 28801-5001, USA article info abstract Article history: The rate of movement for 3- and 10-cm-high granule ripples was documented in September of 2006 at Received 25 July 2008 Great Sand Dunes National Park and Preserve during a particularly strong wind event. Impact creep Revised 13 March 2009 induced by saltating sand caused 24 granules minÀ1 to cross each cm of crest length during wind that Accepted 13 March 2009 averaged 9msÀ1 (at a height well above 1 m), which is substantially larger than the threshold for sal- Available online 17 April 2009 tation of sand. Extension of this documented granule movement rate to Mars suggests that a 25-cm-high granule ripple should require from hundreds to thousands of Earth-years to move 1 cm under present Keywords: atmospheric conditions. Earth Published by Elsevier Inc. Geological processes Mars surface 1. Introduction ples.
    [Show full text]
  • Growing Grapes in Missouri
    MS-29 June 2003 GrowingGrowing GrapesGrapes inin MissouriMissouri State Fruit Experiment Station Missouri State University-Mountain Grove Growing Grapes in Missouri Editors: Patrick Byers, et al. State Fruit Experiment Station Missouri State University Department of Fruit Science 9740 Red Spring Road Mountain Grove, Missouri 65711-2999 http://mtngrv.missouristate.edu/ The Authors John D. Avery Patrick L. Byers Susanne F. Howard Martin L. Kaps Laszlo G. Kovacs James F. Moore, Jr. Marilyn B. Odneal Wenping Qiu José L. Saenz Suzanne R. Teghtmeyer Howard G. Townsend Daniel E. Waldstein Manuscript Preparation and Layout Pamela A. Mayer The authors thank Sonny McMurtrey and Katie Gill, Missouri grape growers, for their critical reading of the manuscript. Cover photograph cv. Norton by Patrick Byers. The viticulture advisory program at the Missouri State University, Mid-America Viticulture and Enology Center offers a wide range of services to Missouri grape growers. For further informa- tion or to arrange a consultation, contact the Viticulture Advisor at the Mid-America Viticulture and Enology Center, 9740 Red Spring Road, Mountain Grove, Missouri 65711- 2999; telephone 417.547.7508; or email the Mid-America Viticulture and Enology Center at [email protected]. Information is also available at the website http://www.mvec-usa.org Table of Contents Chapter 1 Introduction.................................................................................................. 1 Chapter 2 Considerations in Planning a Vineyard ........................................................
    [Show full text]
  • Kentucky Viticultural Regions and Suggested Cultivars S
    HO-88 Kentucky Viticultural Regions and Suggested Cultivars S. Kaan Kurtural and Patsy E. Wilson, Department of Horticulture, University of Kentucky; Imed E. Dami, Department of Horticulture and Crop Science, The Ohio State University rapes grown in Kentucky are sub- usually more harmful to grapevines than Even in established fruit growing areas, ject to environmental stresses that steady cool temperatures. temperatures occasionally reach critical reduceG crop yield and quality, and injure Mesoclimate is the climate of the vine- levels and cause significant damage. The and kill grapevines. Damaging critical yard site affected by its local topography. moderate hardiness of grapes increases winter temperatures, late spring frosts, The topography of a given site, including the likelihood for damage since they are short growing seasons, and extreme the absolute elevation, slope, aspect, and the most cold-sensitive of the temperate summer temperatures all occur with soils, will greatly affect the suitability of fruit crops. regularity in regions of Kentucky. How- a proposed site. Mesoclimate is much Freezing injury, or winterkill, oc- ever, despite the challenging climate, smaller in area than macroclimate. curs as a result of permanent parts of certain species and cultivars of grapes Microclimate is the environment the grapevine being damaged by sub- are grown commercially in Kentucky. within and around the canopy of the freezing temperatures. This is different The aim of this bulletin is to describe the grapevine. It is described by the sunlight from spring freeze damage that kills macroclimatic features affecting grape exposure, air temperature, wind speed, emerged shoots and flower buds. Thus, production that should be evaluated in and wetness of leaves and clusters.
    [Show full text]
  • Croze Napa Valley PO Box 2679 Yountville, CA 94599 PH: 707.944.9247
    Daniel Benton is the Vintner at Benton Family Wines (BFW) in Napa, California. Daniel was born and raised in Salisbury, North Carolina where much of his family still resides. He attended Catawba College and was a member of the 1996 conference champion football team. While attending Catawba, Daniel studied biology and chemistry, which ultimately led to his interest in wine production. Upon graduation, Daniel spent 10 years in corporate American before the romance of wine lured him away. After leaving his corporate post, he spent the next several years traveling wine regions and networking in the wine industry, eventually returning to school to obtain degrees in Viticulture and Enology. From there Daniel worked every aspect of the wine business from retail to distribution management, ultimately leading to wine production. From early mornings in the vineyard to harvest and fermentation in the winery, Daniel has been involved with every aspect of producing wine. As winemaker for Benton Family Wines, Daniel is responsible for all aspects of production, grower relations, and manages nationwide distribution for the company. BFW produces several wine brands with Croze Napa Valley being the flagship. With an emphasis on the production of wines that demonstrate balance and a European style, Croze distinguishes itself from many of its Napa neighbors. “Our philosophy is steeped in classic European tradition, and our wines have a profound sense of place. Vintages are meticulously handcrafted from vineyard to bottle, ensuring quality and recognizable style that is Croze.” Daniel, wife Kara, and son Callan work together with a talented staff to bring Croze wines to life each vintage.
    [Show full text]
  • Marine Plankton Diatoms of the West Coast of North America
    MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E. CUPP UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1943 BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY OF THE UNIVERSITY OF CALIFORNIA LA JOLLA, CALIFORNIA EDITORS: H. U. SVERDRUP, R. H. FLEMING, L. H. MILLER, C. E. ZoBELL Volume 5, No.1, pp. 1-238, plates 1-5, 168 text figures Submitted by editors December 26,1940 Issued March 13, 1943 Price, $2.50 UNIVERSITY OF CALIFORNIA PRESS BERKELEY, CALIFORNIA _____________ CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND [CONTRIBUTION FROM THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, NEW SERIES, No. 190] PRINTED IN THE UNITED STATES OF AMERICA Taxonomy and taxonomic names change over time. The names and taxonomic scheme used in this work have not been updated from the original date of publication. The published literature on marine diatoms should be consulted to ensure the use of current and correct taxonomic names of diatoms. CONTENTS PAGE Introduction 1 General Discussion 2 Characteristics of Diatoms and Their Relationship to Other Classes of Algae 2 Structure of Diatoms 3 Frustule 3 Protoplast 13 Biology of Diatoms 16 Reproduction 16 Colony Formation and the Secretion of Mucus 20 Movement of Diatoms 20 Adaptations for Flotation 22 Occurrence and Distribution of Diatoms in the Ocean 22 Associations of Diatoms with Other Organisms 24 Physiology of Diatoms 26 Nutrition 26 Environmental Factors Limiting Phytoplankton Production and Populations 27 Importance of Diatoms as a Source of food in the Sea 29 Collection and Preparation of Diatoms for Examination 29 Preparation for Examination 30 Methods of Illustration 33 Classification 33 Key 34 Centricae 39 Pennatae 172 Literature Cited 209 Plates 223 Index to Genera and Species 235 MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E.
    [Show full text]
  • Method for Coating Mineral Granules to Improve Bonding to Hydrocarbon-Based Substrate and Coloring of Same
    Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Patents Vice President for Research Office 10-29-2013 Method for coating mineral granules to improve bonding to hydrocarbon-based substrate and coloring of same Bowen Li [email protected] Ralph Hodek [email protected] Domenic Popko Jiann-Yang Hwang [email protected] Follow this and additional works at: https://digitalcommons.mtu.edu/patents Part of the Mining Engineering Commons Recommended Citation Li, Bowen; Hodek, Ralph; Popko, Domenic; and Hwang, Jiann-Yang, "Method for coating mineral granules to improve bonding to hydrocarbon-based substrate and coloring of same" (2013). Michigan Tech Patents. 125. https://digitalcommons.mtu.edu/patents/125 Follow this and additional works at: https://digitalcommons.mtu.edu/patents Part of the Mining Engineering Commons US008568524B2 (12) United States Patent (io) Patent No.: US 8,568,524 B2 Li et al. (45) Date of Patent: Oct. 29,2013 (54) METHOD FOR COATING MINERAL 106/472, 474, 475, 481, 482, 483, 486, 490, GRANULES TO IMPROVE BONDING TO 106/502, 284.04; 427/186; 588/256 HYDROCARBON-BASED SUBSTRATE AND See application file for complete search history. COLORING OF SAME (56) References Cited (75) Inventors: Bowen Li, Chassell, MI (US); Ralph Hodek, Chassell, MI (US); Domenic U.S. PATENT DOCUMENTS Popko, Lake Linden, MI (US); 2,118,898 A * 5/1938 Price ............. 428/145 Jiann-Yang Hwang, Chassell, MI (US) 3,397,073 A * 8/1968 Fehner .......... 428/405 4,378,403 A 3/1983 Kotcharian (73) Assignee: Michigan Technology University, 5,240,760 A 8/1993 George et al. Houghton, MI (US) 5,380,552 A 1/1995 George et al.
    [Show full text]
  • Ode to Catawba Wine “Written in Praise of Nicholas Longworth's Catawba Wine Made on the Banks of the Ohio River” by Henry Wadsworth Longfellow, Circa 1857
    Ode to Catawba Wine “Written In Praise of Nicholas Longworth's Catawba Wine Made on the Banks of the Ohio River” By Henry Wadsworth Longfellow, circa 1857 Nicolas Longworth was a self-made millionaire and attorney who had an avid interest in horticulture. Beginning as early as 1813, he started vineyards along the banks of the Ohio River, hiring German immigrants whose homeland work was similar. He first began with a grape called “Alexander”, but found that it was only palatable as a fortified wine. He also planted “Catawba” vines and made a table wine which met with some success with the German immigrants in the area. An accidental discovery in the 1840’a led him to produce, with the later help of instruction from French winemakers on the “methode champenoise”, a sparkling Catawba wine – which met with great success both locally and on the East Coast. By the 1850’s, Longworth was producing 100,000 bottles of sparkling Catawba a year and advertising nationally. In the mid-1850’s he sent a case to poet, Henry Longfellow, then living in New York City, who wrote this ode. Remember, when Longfellow refers to the “Beautiful River”, he is referring to the Ohio River, which begins in Pittsburgh and passes through Cincinnati and Louisville, Kentucky on its way to Mississippi. Note to Readers: This poem is a great way to learn about grapes, rivers, and wine-making regions. To whit: Muscadine and Scuppernong, a type of Muscandine grape, are native southern American grapes with very thick green or bronze skins and frequently used in the South to made jam.
    [Show full text]