Computing in Algebraic Closures of Finite Fields

Total Page:16

File Type:pdf, Size:1020Kb

Computing in Algebraic Closures of Finite Fields Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-23-2015 12:00 AM Computing in Algebraic Closures of Finite Fields Javad Doliskani The University of Western Ontario Supervisor Eric Schost The University of Western Ontario Joint Supervisor Jan Minac The University of Western Ontario Graduate Program in Computer Science A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Javad Doliskani 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Computer Sciences Commons Recommended Citation Doliskani, Javad, "Computing in Algebraic Closures of Finite Fields" (2015). Electronic Thesis and Dissertation Repository. 3282. https://ir.lib.uwo.ca/etd/3282 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Western University Scholarship@Western Electronic Thesis and Dissertation Repository Computing in Algebraic Closures of Finite Fields Javad Doliskani Supervisor Eric Schost The University of Western Ontario Follow this and additional works at: http://ir.lib.uwo.ca/etd Part of the Computer Sciences Commons This Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Computing in Algebraic Closures of Finite Fields (Thesis format: Integrated-Article) Javad Doliskani Department of Computer Science A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © J. Doliskani 2015 Abstract We present algorithms to construct and perform computations in algebraic closures of finite fields. Inspired by algorithms for constructing irreducible polynomials, our approach for con- structing closures consists of two phases; First, extension towers of prime power degree are built, and then they are glued together using composita techniques. To be able to move elements around in the closure we give efficient algorithms for computing isomorphisms and embeddings. In most cases, our algorithms which are based on polynomial arithmetic, rather than linear algebra, have quasi-linear complexity. Keywords: Algebraic closure, polynomial arithmetic, finite field. ii Co-Authorship This document is based on the following joint works with Éric Schost and Luca Defeo. Chapter2 Taking roots over high extensions of finite fields. Mathematics of Computation, 83(285), pp. 435-446, 2014. Chapter3 Computing in degree 2k-extensions of finite fields of odd characteristic. Des. Codes Cryptography, 74(3), pp. 559-569, 2015. Chapter4 Fast algorithms for `-adic towers over finite fields. In Proceedings of the 38th Interna- tional Symposium on Symbolic and Algebraic Computation (ISSAC’13). ACM, New York, NY, USA. Chapter5 Fast arithmetic for the algebraic closure of finite fields. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC ’14), ACM, New York, NY, USA. iii List of Tables 2.1 Some special cases for square roots............................... 12 k 3.1 Costs for computations in Fq n , with n = 2 ......................... 23 3.2 Timings for lifting 2k -torsion.................................. 31 4.1 Summary of results........................................ 35 iv List of Figures 1.1 Algebraic closure of Fq ......................................5 2.1 Our square root algorithm vs. Cipolla’s and Tonelli-Shanks’ algorithms. .......... 18 2.2 Our algorithm vs. Kaltofen and Shoup’s algorithm. ...................... 19 3.1 The new square root algorithm vs. the one in [6] ........................ 30 4.1 The `-adic towers over Fq and K0................................ 36 4.2 The isogeny cycle of E0...................................... 43 4.3 Times for building 3-adic towers on top of F2 (left) and F5 (right), in Magma (first three lines) and using our code.................................. 48 5.1 Timings in seconds, p = 5, n = m + 1............................ 66 5.2 Magma timings in seconds, p = 5, n = m + 1........................ 66 v Contents 1 Introduction2 1.1 Notations...............................................2 1.2 Our approach............................................4 Bibliography................................................7 2 Taking Roots over High Extensions of Finite Fields9 2.1 Introduction.............................................9 2.2 Previous work............................................ 12 2.3 A new root extraction algorithm................................ 14 2.3.1 An auxiliary algorithm................................. 15 2.3.2 Taking t-th roots..................................... 16 2.3.3 Experimental results................................... 18 Bibliography................................................ 20 3 Computing in Degree 2k -Extensions of Finite Fields of Odd Characteristic 22 3.1 Introduction............................................. 22 3.2 Proof of the complexity statements.............................. 24 3.2.1 Representing the fields Lk ............................... 25 3.2.2 Arithmetic operations................................. 26 3.2.3 Frobenius computation................................. 26 3.2.4 Trace, norm and quadratic residuosity test.................... 27 3.2.5 Taking square roots................................... 28 3.2.6 Computing embeddings................................ 29 3.3 Experiments............................................. 30 Bibliography................................................ 31 4 Fast Algorithms for `-adic Towers over Finite Fields 33 4.1 Introduction............................................. 33 4.2 Quasi-cyclotomic towers..................................... 35 4.2.1 Finding P0 ......................................... 37 4.2.2 Gm-type extensions................................... 37 4.2.3 Chebyshev-type extensions.............................. 37 4.2.4 The general case..................................... 38 4.3 Towers from irreducible fibers................................. 40 vi 4.3.1 Towers from algebraic tori............................... 40 4.3.2 Towers from elliptic curves.............................. 43 4.4 Lifting and pushing........................................ 45 4.4.1 Lifting............................................ 45 4.4.2 Pushing........................................... 46 4.5 Implementation........................................... 47 Bibliography................................................ 48 5 Fast arithmetic for the algebraic closure of finite fields 51 5.1 Introduction............................................. 51 5.2 Preliminaries............................................. 53 5.2.1 Polynomial multiplication and remainder..................... 53 5.2.2 Duality and the transposition principle...................... 54 5.3 Trace and duality.......................................... 55 5.4 Embedding and isomorphism.................................. 57 5.4.1 Embedding and computing R ............................. 58 5.4.2 Isomorphism....................................... 60 5.5 The algebraic closure of Fp ................................... 63 5.6 Implementation........................................... 65 Bibliography................................................ 67 Conclusion 70 A Finite Fields 71 A.1 Basic properties........................................... 72 A.2 Irreducible polynomials..................................... 73 A.3 Traces and Norms......................................... 75 A.4 Algebraic closures......................................... 76 1 Chapter 1 Introduction The theory of finite fields has found much attention during recent decades, most notably due to developments in the branches of computer science such as cryptography, coding theory, switch- ing circuits, and combinatorics [18]. In applications, one almost always encounters finite fields that are extensions of the so-called prime fields. For example, in public-key cryptography, there are cryptosystems that are based on the group of points on an algebraic curve. To have a secure system one must go through the process of choosing a random secure curve. A good class of candidates for such curves are hyperelliptic curves. One of the efficient methods of choosing a secure hyperelliptic curve requires counting the number of points on the curve, which in turn requires building a large number of successive extensions over a small prime field [10, 11]. The natural need for extensions usually arises from the need for manipulating polynomials and their roots. Once the extension are built, the next step is to be able to move elements from one extension to the other. This is where algebraic closures come to the fore. From a computational point of view, an algebraic closure of a given field can be seen as a large enough finite extension that contains the roots of a given finite set of polynomials. Computation in algebraic closures has been considered by others, e.g. [24] and references therein. In this chapter, we briefly review some basic properties of finite fields, and discuss some notations on the running time complexities of some basic arithmetics over them. At the end,
Recommended publications
  • Effective Noether Irreducibility Forms and Applications*
    Appears in Journal of Computer and System Sciences, 50/2 pp. 274{295 (1995). Effective Noether Irreducibility Forms and Applications* Erich Kaltofen Department of Computer Science, Rensselaer Polytechnic Institute Troy, New York 12180-3590; Inter-Net: [email protected] Abstract. Using recent absolute irreducibility testing algorithms, we derive new irreducibility forms. These are integer polynomials in variables which are the generic coefficients of a multivariate polynomial of a given degree. A (multivariate) polynomial over a specific field is said to be absolutely irreducible if it is irreducible over the algebraic closure of its coefficient field. A specific polynomial of a certain degree is absolutely irreducible, if and only if all the corresponding irreducibility forms vanish when evaluated at the coefficients of the specific polynomial. Our forms have much smaller degrees and coefficients than the forms derived originally by Emmy Noether. We can also apply our estimates to derive more effective versions of irreducibility theorems by Ostrowski and Deuring, and of the Hilbert irreducibility theorem. We also give an effective estimate on the diameter of the neighborhood of an absolutely irreducible polynomial with respect to the coefficient space in which absolute irreducibility is preserved. Furthermore, we can apply the effective estimates to derive several factorization results in parallel computational complexity theory: we show how to compute arbitrary high precision approximations of the complex factors of a multivariate integral polynomial, and how to count the number of absolutely irreducible factors of a multivariate polynomial with coefficients in a rational function field, both in the complexity class . The factorization results also extend to the case where the coefficient field is a function field.
    [Show full text]
  • Real Closed Fields
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1968 Real closed fields Yean-mei Wang Chou The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Chou, Yean-mei Wang, "Real closed fields" (1968). Graduate Student Theses, Dissertations, & Professional Papers. 8192. https://scholarworks.umt.edu/etd/8192 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. EEAL CLOSED FIELDS By Yean-mei Wang Chou B.A., National Taiwan University, l96l B.A., University of Oregon, 19^5 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1968 Approved by: Chairman, Board of Examiners raduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP38993 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI OwMTtation PVblmhing UMI EP38993 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
    [Show full text]
  • THE RESULTANT of TWO POLYNOMIALS Case of Two
    THE RESULTANT OF TWO POLYNOMIALS PIERRE-LOÏC MÉLIOT Abstract. We introduce the notion of resultant of two polynomials, and we explain its use for the computation of the intersection of two algebraic curves. Case of two polynomials in one variable. Consider an algebraically closed field k (say, k = C), and let P and Q be two polynomials in k[X]: r r−1 P (X) = arX + ar−1X + ··· + a1X + a0; s s−1 Q(X) = bsX + bs−1X + ··· + b1X + b0: We want a simple criterion to decide whether P and Q have a common root α. Note that if this is the case, then P (X) = (X − α) P1(X); Q(X) = (X − α) Q1(X) and P1Q − Q1P = 0. Therefore, there is a linear relation between the polynomials P (X);XP (X);:::;Xs−1P (X);Q(X);XQ(X);:::;Xr−1Q(X): Conversely, such a relation yields a common multiple P1Q = Q1P of P and Q with degree strictly smaller than deg P + deg Q, so P and Q are not coprime and they have a common root. If one writes in the basis 1; X; : : : ; Xr+s−1 the coefficients of the non-independent family of polynomials, then the existence of a linear relation is equivalent to the vanishing of the following determinant of size (r + s) × (r + s): a a ··· a r r−1 0 ar ar−1 ··· a0 .. .. .. a a ··· a r r−1 0 Res(P; Q) = ; bs bs−1 ··· b0 b b ··· b s s−1 0 . .. .. .. bs bs−1 ··· b0 with s lines with coefficients ai and r lines with coefficients bj.
    [Show full text]
  • APPENDIX 2. BASICS of P-ADIC FIELDS
    APPENDIX 2. BASICS OF p-ADIC FIELDS We collect in this appendix some basic facts about p-adic fields that are used in Lecture 9. In the first section we review the main properties of p-adic fields, in the second section we describe the unramified extensions of Qp, while in the third section we construct the field Cp, the smallest complete algebraically closed extension of Qp. In x4 section we discuss convergent power series over p-adic fields, and in the last section we give some examples. The presentation in x2-x4 follows [Kob]. 1. Finite extensions of Qp We assume that the reader has some familiarity with I-adic topologies and comple- tions, for which we refer to [Mat]. Recall that if (R; m) is a DVR with fraction field K, then there is a unique topology on K that is invariant under translations, and such that a basis of open neighborhoods of 0 is given by fmi j i ≥ 1g. This can be described as the topology corresponding to a metric on K, as follows. Associated to R there is a discrete valuation v on K, such that for every nonzero u 2 R, we have v(u) = maxfi j u 62 mig. If 0 < α < 1, then by putting juj = αv(u) for every nonzero u 2 K, and j0j = 0, one gets a non-Archimedean absolute value on K. This means that j · j has the following properties: i) juj ≥ 0, with equality if and only if u = 0. ii) ju + vj ≤ maxfjuj; jvjg for every u; v 2 K1.
    [Show full text]
  • The Algebraic Closure of a $ P $-Adic Number Field Is a Complete
    Mathematica Slovaca José E. Marcos The algebraic closure of a p-adic number field is a complete topological field Mathematica Slovaca, Vol. 56 (2006), No. 3, 317--331 Persistent URL: http://dml.cz/dmlcz/136929 Terms of use: © Mathematical Institute of the Slovak Academy of Sciences, 2006 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz Mathematíca Slovaca ©20106 .. -. c/. ,~r\r\c\ M -> ->•,-- 001 Mathematical Institute Math. SlOVaCa, 56 (2006), NO. 3, 317-331 Slovák Academy of Sciences THE ALGEBRAIC CLOSURE OF A p-ADIC NUMBER FIELD IS A COMPLETE TOPOLOGICAL FIELD JosÉ E. MARCOS (Communicated by Stanislav Jakubec) ABSTRACT. The algebraic closure of a p-adic field is not a complete field with the p-adic topology. We define another field topology on this algebraic closure so that it is a complete field. This new topology is finer than the p-adic topology and is not provided by any absolute value. Our topological field is a complete, not locally bounded and not first countable field extension of the p-adic number field, which answers a question of Mutylin. 1. Introduction A topological ring (R,T) is a ring R provided with a topology T such that the algebraic operations (x,y) i-> x ± y and (x,y) \-> xy are continuous.
    [Show full text]
  • 11. Splitting Field, Algebraic Closure 11.1. Definition. Let F(X)
    11. splitting field, Algebraic closure 11.1. Definition. Let f(x) F [x]. Say that f(x) splits in F [x] if it can be decomposed into linear factors in F [x]. An∈ extension K/F is called a splitting field of some non-constant polynomial f(x) if f(x) splits in K[x]butf(x) does not split in M[x]foranyanyK ! M F . If an extension K of F is the splitting field of a collection of polynomials in F [x], then⊇ we say that K/F is a normal extension. 11.2. Lemma. Let p(x) be a non-constant polynomial in F [x].Thenthereisafiniteextension M of F such that p(x) splits in M. Proof. Induct on deg(p); the case deg(p) = 1 is trivial. If p is already split over F ,thenF is already a splitting field. Otherwise, choose an irreducible factor p1(x)ofp(x)suchthat deg(p1(x)) 1. By, there is a finite extension M1/F such that p1 has a root α in M1.Sowe can write p≥(x)=(x α)q(x) in M [x]. Since deg(q) < deg(p), by induction, there is a finite − 1 extension M/M1 such that q splits in M.ThenM/F is also finite and p splits in M. ! 11.3. Lemma. Let σ : F L be an embedding of a field F into a field L.Letp(x) F [x] be an irreducible polynomial→ and let K = F [x]/(p(x)) be the extension of of F obtained∈ by adjoining a root of p.Theembeddingσ extends to K if and only if σ(p)(x) has a root in L.
    [Show full text]
  • THE ARTIN-SCHREIER THEOREM 1. Introduction the Algebraic Closure
    THE ARTIN-SCHREIER THEOREM KEITH CONRAD 1. Introduction The algebraic closure of R is C, which is a finite extension. Are there other fields which are not algebraically closed but have an algebraic closure that is a finite extension? Yes. An example is the field of real algebraic numbers. Since complex conjugation is a field automorphism fixing Q, and the real and imaginary parts of a complex number can be computed using field operations and complex conjugation, a complex number a + bi is algebraic over Q if and only if a and b are algebraic over Q (meaning a and b are real algebraic numbers), so the algebraic closure of the real algebraic numbers is obtained by adjoining i. This example is not too different from R, in an algebraic sense. Is there an example that does not look like the reals, such as a field of positive characteristic or a field whose algebraic closure is a finite extension of degree greater than 2? Amazingly, it turns out that if a field F is not algebraically closed but its algebraic closure C is a finite extension, then in a sense which will be made precise below, F looks like the real numbers. For example, F must have characteristic 0 and C = F (i). This is a theorem of Artin and Schreier. Proofs of the Artin-Schreier theorem can be found in [5, Theorem 11.14] and [6, Corollary 9.3, Chapter VI], although in both cases the theorem is proved only after the development of some general theory that is useful for more than just the Artin-Schreier theorem.
    [Show full text]
  • Constructing Algebraic Closures, I
    CONSTRUCTING ALGEBRAIC CLOSURES KEITH CONRAD Let K be a field. We want to construct an algebraic closure of K, i.e., an algebraic extension of K which is algebraically closed. It will be built out of the quotient of a polynomial ring in a very large number of variables. Let P be the set of all nonconstant monic polynomials in K[X] and let A = K[tf ]f2P be the polynomial ring over K generated by a set of indeterminates indexed by P . This is a huge ring. For each f 2 K[X] and a 2 A, f(a) is an element of A. Let I be the ideal in A generated by the elements f(tf ) as f runs over P . Lemma 1. The ideal I is proper: 1 62 I. Pn Proof. Every element of I has the form i=1 aifi(tfi ) for a finite set of f1; : : : ; fn in P and a1; : : : ; an in A. We want to show 1 can't be expressed as such a sum. Construct a finite extension L=K in which f1; : : : ; fn all have roots. There is a substitution homomorphism A = K[tf ]f2P ! L sending each polynomial in A to its value when tfi is replaced by a root of fi in L for i = 1; : : : ; n and tf is replaced by 0 for those f 2 P not equal to an fi. Under Pn this substitution homomorphism, the sum i=1 aifi(tfi ) goes to 0 in L so this sum could not have been 1. Since I is a proper ideal, Zorn's lemma guarantees that I is contained in some maximal ideal m in A.
    [Show full text]
  • Chapter 3 Algebraic Numbers and Algebraic Number Fields
    Chapter 3 Algebraic numbers and algebraic number fields Literature: S. Lang, Algebra, 2nd ed. Addison-Wesley, 1984. Chaps. III,V,VII,VIII,IX. P. Stevenhagen, Dictaat Algebra 2, Algebra 3 (Dutch). We have collected some facts about algebraic numbers and algebraic number fields that are needed in this course. Many of the results are stated without proof. For proofs and further background, we refer to Lang's book mentioned above, Peter Stevenhagen's Dutch lecture notes on algebra, and any basic text book on algebraic number theory. We do not require any pre-knowledge beyond basic ring theory. In the Appendix (Section 3.4) we have included some general theory on ring extensions for the interested reader. 3.1 Algebraic numbers and algebraic integers A number α 2 C is called algebraic if there is a non-zero polynomial f 2 Q[X] with f(α) = 0. Otherwise, α is called transcendental. We define the algebraic closure of Q by Q := fα 2 C : α algebraicg: Lemma 3.1. (i) Q is a subfield of C, i.e., sums, differences, products and quotients of algebraic numbers are again algebraic; 35 n n−1 (ii) Q is algebraically closed, i.e., if g = X + β1X ··· + βn 2 Q[X] and α 2 C is a zero of g, then α 2 Q. (iii) If g 2 Q[X] is a monic polynomial, then g = (X − α1) ··· (X − αn) with α1; : : : ; αn 2 Q. Proof. This follows from some results in the Appendix (Section 3.4). Proposition 3.24 in Section 3.4 with A = Q, B = C implies that Q is a ring.
    [Show full text]
  • Algebraic Closure 1 Algebraic Closure
    Algebraic closure 1 Algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemma, it can be shown that every field has an algebraic closure,[1] and that the algebraic closure of a field K is unique up to an isomorphism that fixes every member of K. Because of this essential uniqueness, we often speak of the algebraic closure of K, rather than an algebraic closure of K. The algebraic closure of a field K can be thought of as the largest algebraic extension of K. To see this, note that if L is any algebraic extension of K, then the algebraic closure of L is also an algebraic closure of K, and so L is contained within the algebraic closure of K. The algebraic closure of K is also the smallest algebraically closed field containing K, because if M is any algebraically closed field containing K, then the elements of M which are algebraic over K form an algebraic closure of K. The algebraic closure of a field K has the same cardinality as K if K is infinite, and is countably infinite if K is finite. Examples • The fundamental theorem of algebra states that the algebraic closure of the field of real numbers is the field of complex numbers. • The algebraic closure of the field of rational numbers is the field of algebraic numbers. • There are many countable algebraically closed fields within the complex numbers, and strictly containing the field of algebraic numbers; these are the algebraic closures of transcendental extensions of the rational numbers, e.g.
    [Show full text]
  • 11: the Axiom of Choice and Zorn's Lemma
    11. The Axiom of Choice Contents 1 Motivation 2 2 The Axiom of Choice2 3 Two powerful equivalents of AC5 4 Zorn's Lemma5 5 Using Zorn's Lemma7 6 More equivalences of AC 11 7 Consequences of the Axiom of Choice 12 8 A look at the world without choice 14 c 2018{ Ivan Khatchatourian 1 11. The Axiom of Choice 11.2. The Axiom of Choice 1 Motivation Most of the motivation for this topic, and some explanations of why you should find it interesting, are found in the sections below. At this point, we will just make a few short remarks. In this course specifically, we are going to use Zorn's Lemma in one important proof later, and in a few Big List problems. Since we just learned about partial orders, we will use this time to state and discuss Zorn's Lemma, while the intuition about partial orders is still fresh in the readers' minds. We also include two proofs using Zorn's Lemma, so you can get an idea of what these sorts of proofs look like before we do a more serious one later. We also implicitly use the Axiom of Choice throughout in this course, but this is ubiquitous in mathematics; most of the time we do not even realize we are using it, nor do we need to be concerned about when we are using it. That said, since we need to talk about Zorn's Lemma, it seems appropriate to expand a bit on the Axiom of Choice to demystify it a little bit, and just because it is a fascinating topic.
    [Show full text]
  • Lecture 8 : Algebraic Closure of a Field Objectives
    Lecture 8 : Algebraic Closure of a Field Objectives (1) Existence and isomorphisms of algebraic closures. (2) Isomorphism of splitting fields of a polynomial. Key words and phrases: algebraically closed field, algebraic closure, split- ting field. In the previous section we showed that all complex polynomials of positive degree split in C[x] as products of linear polynomials in C[x]: While working with polynomials with coefficients in a field F , it is desirable to have a field extension K=F so that all polynomials in K[x] split as product of linear polynomials in K[x]: Definition 8.1. A field F is called an algebraically closed field if every polynomial f(x) 2 F [x] of positive degree has a root in F: It is easy to see that a field F is algebraically closed if and only if f(x) is a product of linear factors in F [x]. The fundamental theorem of algebra asserts that C is an algebraically closed field. Let us show that any field is contained in an algebraically closed field. Existence of algebraic closure Theorem 8.2. Let k be a field. Then there exists an algebraically closed field containing k: Proof. (Artin) We construct a field K ⊇ k in which every polynomial of positive degree in k[x] has a root. Let S be a set of indeterminates which is in 1 − 1 correspondence with set of all polynomials in k[x] of degree ≥ 1. Let xf denote the indeterminate in S corresponding to f: Let I = (f(xf ) j deg f ≥ 1) be the ideal generated by all the polynomials f(xf ) 2 k[S].
    [Show full text]