Lithofacies and Structure of the Taconic Flysch, Melange, and Allochthon, in the New York Capital District

Total Page:16

File Type:pdf, Size:1020Kb

Lithofacies and Structure of the Taconic Flysch, Melange, and Allochthon, in the New York Capital District LITHOFACIES AND STRUCTURE OF THE TACONIC FLYSCH, MELANGE, AND ALLOCHTHON, IN THE NEW YORK CAPITAL DISTRICT WILLIAM S.F. KIDD, ANDREAS PLESCHl Dept. of Geological Sciences, University at Albany, Albany, NY, 12222 FREDERICK W. VOLLMER Dept of Geological Sciences, SUNY College at New Paltz, New Paltz, NY, 12561 INTRODUCTION The Taconic Allochthon of eastern New York is bordered to the west by a zone of mid-Ordovician shale and greywacke turbidites, which are appropriately characterised by the term "flysch". These synorogenic deep-water clastics are now interpreted to represent the fill of the migrating flexural basin created by the advance of the Taconic thrust sheets onto the Cambro-Ordovician passive margin of easten North America (Rowley and Kidd, 1981; Bradley and Kusky, 1986). The flysch is markedly diachronous, with a thick basal carbonaceous shale unit, the Utica Shale, and extends many hundreds of kilometres west of the present margin of the Taconic Allochthon. The Allochthon consists almost exclusively of sedimentary rocks that represent a sample of the continental rise part of the Cambro-Ordovician passive margin, and of the latest Precambrian-earliest Cambrian clastics of the late-stage rift fill, and rift to passive margin transition; all are strongly folded and have been transported westward on a complex system of thrusts at least 150 to 200 km relative to the North American craton (Bradley, 1989). In the New York Capital District, a zone about 16-20 kilometers wide of the Ordovician flysch adjoining the western margin of the Allochthon has also undergone strong deformation, including widespread conversion of once stratified rocks to melange, associated with the later stages of the Taconic Orogeny. It is the purpose of this guide and field trip to examine these rocks, to attempt to illuminate the structures which they contain, to try to roll back at least some of the nomenclatural and stratigraphic confusion they have suffered, and to place them in the larger regional context of the Champlain Thrust system. GENERAL GEOLOGICAL SETTING OF THE FIELD TRIP Before confusing readers and trip attendees with the "stratigraphic" terminology, we set out the distribution of basic rock types and their structural condition (refer to Figures 1 and 2, the geological maps). West from a NNE-trending line through a point on the Mohawk River in Niskayuna, just east of Schenectady, regionally flat-lying [very gently-dipping] Paleozoic strata are exposed, which consist, in the immediate area of the field trip, of the medial Ordovician flysch, that is greywackes and shales, in varying proportions. East of this boundary, the western limit of Taconic deformation, deformed medial Ordovician rocks occur in a zone 16-20 kilometers wide, bounded to the east by the [also] NNE-trending western border fault of the Taconic Allochthon, the Taconic Frontal Thrust. The deformed rocks of this zone dominantly consist of highly disrupted shales and greywackes, and these are appropriately termed shale-matrix melange. The western side of the deformed zone consists of a belt about 5-6 kilometers wide of folded and internally faulted rocks that are still largely bedded (we term this the Vischer Ferry Zone), and which can be interpreted as expressing a zone of increasing strain transitional from the undeformed flat-lying strata in the west to the highly-strained, disrupted melange in the east. Within the melange, there are lens-shaped belts of less­ deformed material, both of shale-dominated, and of greywacke-dominated proto lith, and ranging in structural condition from merely folded, to "broken formation", transitional to melange. These less-deformed lenses range up in size to regionally mappable; the most prominent in the area of the field trip is the bedded greywacke and shale of the Halfmoon Greywacke Zone (see Figures 1 and 2). South of the Capital District, 1 now at Te1egrafenberg C2, 14472 Potsdam, Germany fu Garver, 1.1.. and Smith. J.A. (editors). Field Trips for the 67th annual meeting of the New York State Geological Association, Union College. Schenectady NY. 1995. p. 57-80. 57 Ballston Spao / Devonian / / Taconic Allochthon / / / / / / .I melange 1FZ - Troy Frontal Zone WFl - Waterford Flysch Zone MRZ - Mohawk River central Zone (w, e parts) --~ / / / / / / flysch / / .; slices / / RWZ - Rip van Winkle Greywacke Zone RGZ - Ravena Greywacke Zone / / SSZ - Stillwater Shale Zone HGZ - Halfmoon Greywacke Zone / / RTZ - Rocky Tucks Greywacke Zone VFZ - Vlscher Ferry Zone / / / / / undeformed / / flysch and shale / / tectonic contact / / / / TFT - Taconic Frontal Thrust / / / / .; / / 50km ® Field Trip Stops / / / / / / / / / / / / / / / / / / / / / / Fig 1. Tectonic units in the Saratoga Lake - Capital District - Kingston segment of the central Hudson Valley 58 along the Hudson valley as far as Kingston, most of the exposed width of the flysch and melange belt is occupied by two of these bedded belts, with a narrow melange belt separating them, and another bordering the eastern side (Figure 1). The change of structural style, from melange-dominated in the north, to "fold/thrust"-dominated to the south, was probably controlled by the change from shale-rich to greywacke­ rich strata, which in turn must have been a product of sediment supply and local basin geometry. PREVIOUS WORK Detailed and systematic studies of the medial Ordovician rocks of the Hudson River Valley are contained in Ruedemann's reports of mapping and stratigraphic and structural studies, Geology of Saratoga Springs and vicinity (Cushing and Ruedemann, 1914) and Geology of the Capital District (Ruedemann, 1930), which even now include the most detailed published maps of this area. Ruedemann identified, and marked on his maps, the western limit of deformation in the medial Ordovician flysch, meaning folding and pervasive faulting and melange formation, and devoted considerable space in his text to the structural condition of the deformed zone, which occupies most of the width of the exposure of these rocks in the Hudson River lowlands in this area. It is unfortunate that this pioneer structural work has been submerged by the choice of the compilers of the last several geological maps of New York State (Fisher et al., 1970, Rogers et al., 1990) and of the Albany County area (Fickes, 1982) not to indicate that the medial Ordovician flysch in most of this area is significantly deformed, in strong contrast to these strata farther west, and to have continued use of a stratigraphic nomenclature that, among other defects, actively works to obscure this fact. It is ironic that Ruedemann himself remains responsible for creating much of the stratigraphic nomenclature and confusion in the first place! Bird (1963, 1969) first clearly documented the regional extent of the melange, and its general structural significance in its relation to the emplacement of the Taconic Allochthon, although we reject the then-prevalent notion of gravity sliding for the emplacement mechanism of the Allochthon and the formation of the melange. More recent work in the Hudson Valley flysch by Vollmer (1981a), Bosworth and Vollmer (1981), Vollmer and Bosworth (1984), and Plesch (1994) includes detailed mapping of the area between Ravena and Saratoga Lake, and compilation of outcrop mapping farther south to the area of Middletown (in Plesch, 1994). This work reveals, more clearly than that of previous workers, the abundance of melange in the Capital District (see Figure 1), and that this is a product largely of subsurface shear strain, not of superficial slumping, and that the shearing was accommodated by significant brittle fracturing, largely on a small scale, besides more ductile behaviour. These melange zones of the Hudson Valley are a part of the southern extension of the Champlain Thrust and its subsidiary faults. Vollmer (1981a) and Vollmer and Bosworth (1984) pointed out that melange produced by this thrusting is unconformably overlain in the southern Capital District of New York by the earliest Devonian Helderberg Group carbonates. The unconformable contact constrains the formation of the melange, and the thrusting which produced it, to be a product of the Taconic Orogeny, and hence a purely Ordovician event. This unconformable relationship applies to the deformation in the westernmost (and hence youngest) part of the Taconic fold and thrust belt, implying that similar melange now east of the outcrop of the unconformity is also a product of Ordovician tectonism. The Champlain thrust system links the deformed fl ysch of the central Hudson Valley to similar sections in southern Quebec; it is a purpose of this guide and field trip to point out that there is much greater similarity between the marginal zone of the Taconic fold and thrust belt in these two areas than might be inferred from the existing published maps which, despite similar poor outcrop, clearly indicate the importance of melange and the extent of the marginal deformed zone in Quebec (St. Julien and Hubert, 1975; St. Julien et al., 1983; Avramtchev, 1989), but do not in New York. STRATIGRAPHIC TERMS Names and assigned ages ofrocks in the deformed belt of the Ordovician flysch of New York are badly confused, both because of the structural complexity and because of the application, by Ruedemann and subsequent workers, of biostratigraphic names to inadequately defined lithic units. To the west of the deformed belt, where strata are close to flat-lying, the black shales of the basal part of the foreland basin sequence are termed Utica shale [Canajoharie shale has been biostratigraphically distinguished as slightly older than the type Utica, but is lithologically not distinguishable from it]. This shale is overlain by rapidly coarsening-upward flysch, which is termed Schenectady Formation in the eastern Mohawk Valley. West of the central Mohawk Valley this is replaced by the Frankfort Formation which is not that different lithologically, although on average containing somewhat thinner-bedded greywackes, and in part somewhat 59 Fig 2. Geology of the Ordovician flysch Ubs and melange, or Albany-Saratoga Lake Ss area.
Recommended publications
  • Brooklyn College and Graduate School of the City University of NY, Brooklyn, NY 11210 and Northeastern Science Foundation Affiliated with Brooklyn College, CUNY, P.O
    FLYSCH AND MOLASSE OF THE CLASSICAL TACONIC AND ACADIAN OROGENIES: MODELS FOR SUBSURFACE RESERVOIR SETTINGS GERALD M. FRIEDMAN Brooklyn College and Graduate School of the City University of NY, Brooklyn, NY 11210 and Northeastern Science Foundation affiliated with Brooklyn College, CUNY, P.O. Box 746, Troy, NY 12181 ABSTRACT This field trip will examine classical sections of the Appalachians including Cambro-Ordovician basin-margin and basin-slope facies (flysch) of the Taconics and braided and meandering stteam deposits (molasse) of the Catskills. The deep­ water settings are part of the Taconic sequence. These rocks include massive sandstones of excellent reservoir quality that serve as models for oil and gas exploration. With their feet, participants may straddle the classical Logan's (or Emmon 's) line thrust plane. The stream deposits are :Middle to Upper Devonian rocks of the Catskill Mountains which resulted from the Acadian Orogeny, where the world's oldest and largest freshwater clams can be found in the world's oldest back-swamp fluvial facies. These fluvial deposits make excellent models for comparable subsurface reservoir settings. INTRODUCTION This trip will be in two parts: (1) a field study of deep-water facies (flysch) of the Taconics, and (2) a field study of braided- and meandering-stream deposits (molasse) of the Catskills. The rocks of the Taconics have been debated for more than 150 years and need to be explained in detail before the field stops make sense to the uninitiated. Therefore several pages of background on these deposits precede the itinera.ry. The Catskills, however, do not need this kind of orientation, hence after the Taconics (flysch) itinerary, the field stops for the Catskills follow immediately without an insertion of background informa­ tion.
    [Show full text]
  • Nd Isotope Mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, Ontario
    Canadian Journal of Earth Sciences Nd isotope mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, Ontario Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0142.R1 Manuscript Type: Article Date Submitted by the 26-Sep-2018 Author: Complete List of Authors: Dickin, Alan; School of Geography and Geology Strong, Jacob; School of Geography and Geology Keyword: Nd isotopes,Draft Model ages, Grenville Province Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 34 Canadian Journal of Earth Sciences 1 Nd isotope mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, 2 Ontario 3 4 A.P. Dickin and J.W.D. Strong 5 School of Geography and Earth Sciences, McMaster University, Hamilton ON, Canada 6 7 Abstract 8 Over fifty new Nd isotope analyses are presented for high-grade orthogneisses from 9 Algonquin Park and surrounding region in order to map major Grenvillian thrust boundaries. Nd 10 model ages display a consistent geographical pattern that allows detailed mapping of the 11 boundary between the Algonquin and MuskokaDraft domains, here interpreted as the local trajectory 12 of the Ottawan-age Allochthon Boundary Thrust (ABT). The ABT is underlain by a domain with 13 Paleoproterozoic Nd model ages, interpreted as a tectonic duplex entrained onto the base of the 14 main allochthon. The boundaries determined using Nd isotope mapping are consistent with field 15 mapping and with remotely sensed aeromagnetic and digital elevation data. The precise location 16 of the ABT can be observed in a road-cut on Highway 60, on the north shore of the Lake of Two 17 Rivers in the centre of Algonquin Park.
    [Show full text]
  • The High Pressure Belt in the Grenville Province: 75 Architecture, Timing, and Exhumation1
    100 867 100 95 95 75 The High Pressure belt in the Grenville Province: 75 architecture, timing, and exhumation1 25 25 Toby Rivers, John Ketchum, Aphrodite Indares, and Andrew Hynes 5 5 0 0 Abstract: We propose that the Grenvillian allochthonous terranes may be grouped into High Pressure (HP) and Low Pressure (LP) belts and examine the HP belt in detail in the western and central Grenville Province. The HP belt is developed in Paleo- and Mesoproterozoic rocks of the pre-Grenvillian Laurentian margin and characterized by Grenvillian eclogite and co-facial HP granulite in mafic rocks. Pressure–temperature (P–T) estimates for eclogite-facies conditions in well-preserved assemblages are about 1800 MPa and 850°C. In the central Grenville Province, HP rocks formed at -1060–1040 Ma and underwent a single stage of unroofing with transport into the upper crust by -1020 Ma, whereas farther west they underwent two stages of unroofing separated by penetrative mid-crustal recrystallization before transport to the upper crust at -1020 Ma. Unroofing processes were comparable in the two areas, involving both thrusting and extensional faulting in an orogen propagating into its foreland by understacking. In detail, thrusting episodes preceded extension in the western Grenville Province, whereas in the central Grenville Province, they were coeval, resulting in unroofing by tectonic extrusion. In the central Grenville Province, the footwall ramp is well preserved, but any former ramp in the western Grenville Province was obliterated by later lower crustal extensional flow. Continuation of the HP belt into the eastern Grenville Province is not established, but likely on geological grounds.
    [Show full text]
  • Crespi, Cooper Boemmels, and Robinson Geology of The
    CRESPI, COOPER BOEMMELS, AND ROBINSON C2-1 GEOLOGY OF THE NORTHERN TACONIC ALLOCHTHON: STRAIN VARIATION IN THRUST SHEETS, BRITTLE FAULTS, AND POSTRIFT DIKE EMPLACEMENT by Jean Crespi, Jennifer Cooper Boemmels, and Jessica Robinson Geosciences, University of Connecticut, Storrs, CT 06269 INTRODUCTION This field trip has three purposes: (1) to present a synthesis of structural and strain data for the Taconic slate belt, which lies in the northern part of the Giddings Brook thrust sheet in the Taconic allochthon, (2) to present an analysis of fault-slip data for postcleavage faults in the region, and (3) to present the results of work on mafic dikes in the Taconic lobe of the New England–Québec igneous province. The stops have been selected to illustrate the along-strike variation in structure and strain, to show representative postcleavage faults, and to include dikes in a variety of orientations. The data presented at the stops cover a region that extends for about 60 km along strike in the Giddings Brook thrust sheet, from Hubbardton, Vermont, in the north to Salem, New York, in the south (Figs. 1 and 2). Emplacement of the Taconic allochthon took place during the Early to Late Ordovician Taconic orogeny. In the northeastern United States, the Taconic orogeny has traditionally been interpreted as resulting from the collision of a west-facing volcanic arc with the eastern margin of Laurentia (Bird and Dewey, 1970; Rowley and Kidd, 1981; Stanley and Ratcliffe, 1985). In this interpretation, emplacement of the Taconic allochthon occurred in a proforeland setting. New geochronological data, however, indicate that the orogeny involved several phases (Karabinos et al., 1998, 2017; Macdonald et al., 2014, 2017).
    [Show full text]
  • Geology of the Western Boundary of the Taconic Allochthon Near Troy
    32 Figure 4.3 Olive green massive micaceous wacke of the Bomoseen Formation exposed at the Devil's Kitchen in Oakwood Cemetery, Troy. 38 Figure 4.4 Olive green silty shale with thin quartzite beds of the Truthville Formation exposed in a quarry near the type locality of “Diamond Rock”. 42 Figure 4.5 Dark grey to black silty shale of the Browns Pond Formation exposed along Gurley Avenue near the St. Johns Cemetery. 44 Figure 4.6 Browns Pond black silty shale containing sandstone and greywacke lumps. 45 Figure 4.7 Light gray granular quartzite near the base of the Browns Pond Formation exposed at the type locality of the “Diamond Rock Quartzite”. 46 Figure 4.8 Tan to pink, orange or rusty brown-weathering, ferruginous calcareous sandstone beds of the Browns Pond Formation. 48 Figure 4.9 Conglomerates of limestone pebbles in the upper part of the Browns Pond Formation. The matrix is sandy and dolomitic. 50 Figure 4.10 Light gray granular quartzite containing pebbles of dark gray fine-grained sandstone or siltstone near the top of the Browns Pond Formation. 57 Figure 4.11 Indian River green slate underlying the white-weathering black chert beds of the Mount Merino Formation. 58 Figure 4.12 Light gray siliceous argillite with dark gray chert ribbons in the Indian River Formation. 62 Figure 4.13 The Mount Merino Formation: well bedded white-weathering black chert beds interlayered with black shale. 69 Figure 4.14 Sandstone block with primary folds contained in the dark gray to black shale of the Snake Hill formation.
    [Show full text]
  • Structural Geology of Parautochthonous and Allochthonous Terranes of the Penokean Orogeny in Upper Michigan Comparisons with Northern Appalachian Tectonics
    Structural Geology of Parautochthonous and Allochthonous Terranes of the Penokean Orogeny in Upper Michigan Comparisons with Northern Appalachian Tectonics U.S. GEOLOGICAL SURVEY BULLETIN 1904-Q AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated monthly, which is for sale in microfiche from the U.S. Geological Survey, Book and Open-File Report Sales, Box 25286, Building 810, Denver Federal Center, Denver, CO 80225 Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books of the U.S. Geological Survey are available over the niques of Water-Resources Investigations, Circulars, publications counter at the following U.S. Geological Survey offices, all of of general interest (such as leaflets, pamphlets, booklets), single which are authorized agents of the Superintendent of Documents. copies of periodicals (Earthquakes & Volcanoes, Preliminary De­ termination of Epicenters), and some miscellaneous reports, includ­ ANCHORAGE, Alaska-Rm.
    [Show full text]
  • Provenance of the Bosnian Flysch
    1661-8726/08/01S031-24 Swiss J. Geosci. 101 (2008) Supplement 1, S31–S54 DOI 10.1007/s00015-008-1291-z Birkhäuser Verlag, Basel, 2008 Provenance of the Bosnian Flysch TAMÁS MIKES 1, 7, *, DOMINIK CHRIST 1, 8, RÜDIGER PETRI 1, ISTVÁN DUNKL1, DIRK FREI 2, MÁRIA BÁLDI-BEKE 3, JOACHIM REITNER 4, KLAUS WEMMER 5, HAZIM HRVATOVIć 6 & HILMAR VON EYNAttEN 1 Key words: Dinarides, Adriatic plate, ophiolite, flysch, Cretaceous, provenance, geochronology, biostratigraphy, mineral chemistry ABSTRACT Sandwiched between the Adriatic Carbonate Platform and the Dinaride olitic thrust sheets and by redeposited elements of coeval Urgonian facies reefs Ophiolite Zone, the Bosnian Flysch forms a c. 3000 m thick, intensely folded grown on the thrust wedge complex. Following mid-Cretaceous deformation stack of Upper Jurassic to Cretaceous mixed carbonate and siliciclastic sedi- and thermal overprint of the Vranduk Formation, the depozone migrated fur- ments in the Dinarides. New petrographic, heavy mineral, zircon U/Pb and ther towards SW and received increasing amounts of redeposited carbonate fission-track data as well as biostratigraphic evidence allow us to reconstruct detritus released from the Adriatic Carbonate Platform margin (Ugar Forma- the palaeogeology of the source areas of the Bosnian Flysch basin in late Me- tion). Subordinate siliciclastic source components indicate changing source sozoic times. Middle Jurassic intraoceanic subduction of the Neotethys was rocks on the upper plate, with ophiolites becoming subordinate. The zone shortly followed by exhumation of the overriding oceanic plate. Trench sedi- of the continental basement previously affected by the Late Jurassic–Early mentation was controlled by a dual sediment supply from the sub-ophiolitic Cretaceous thermal imprint has been removed; instead, the basement mostly high-grade metamorphic soles and from the distal continental margin of the supplied detritus with a wide range of pre-Jurassic cooling ages.
    [Show full text]
  • Structural Geology Along Part of the Blackfoot Fault System Near Potomac Missoula County Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1987 Structural geology along part of the Blackfoot fault system near Potomac Missoula County Montana Michael B. Thomas The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Thomas, Michael B., "Structural geology along part of the Blackfoot fault system near Potomac Missoula County Montana" (1987). Graduate Student Theses, Dissertations, & Professional Papers. 7524. https://scholarworks.umt.edu/etd/7524 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1975 Th is is an unpublished manuscript in which copyright sub ­ s is t s . Any further r e p r in t in g of its contents must be approved BY THE AUTHOR. Mansfield Library U niversity of Montana D ate ; ____1 _______ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. STRUCTURAL GEOLOGY ALONG PART OF THE BLACKFOOT FAULT SYSTEM NEAR POTOMAC, MISSOULA COUNTY. MONTANA By Michael B. Thomas 8. S., Central Washington University, 1982 Presented in partial fulfillment of the requirements for the degree of Master of Science University of Montana 1987 Approved by Chairman, Board of Examiners DeSrT, Graduate SchoÏÏ Date Reproduced with permission of the copyright owner.
    [Show full text]
  • Western Carpathians, Poland)
    Geological Quarterly, 2006, 50 (1): 169–194 Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland) Nestor OSZCZYPKO Oszczypko N. (2006) — Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geol. Quart., 50 (1): 169–194. Warszawa. The Outer Carpathian Basin domain developed in its initial stage as a Jurassic-Early Cretaceous rifted passive margin that faced the east- ern parts of the oceanic Alpine Tethys. Following closure of this oceanic basin during the Late Cretaceous and collision of the Inner Western Carpathian orogenic wedge with the Outer Carpathian passive margin at the Cretaceous-Paleocene transition, the Outer Carpathian Basin domain was transformed into a foreland basin that was progressively scooped out by nappes and thrust sheets. In the pre- and syn-orogenic evolution of the Outer Carpathian basins the following prominent periods can be distinguished: (1) Middle Juras- sic-Early Cretaceous syn-rift opening of basins followed by Early Cretaceous post-rift thermal subsidence, (2) latest Creta- ceous-Paleocene syn-collisional inversion, (3) Late Paleocene to Middle Eocene flexural subsidence and (4) Late Eocene-Early Miocene synorogenic closure of the basins. In the Outer Carpathian domain driving forces of tectonic subsidence were syn-rift and thermal post-rift processes, as well as tectonic loads related to the emplacement of nappes and slab-pull. Similar to other orogenic belts, folding of the Outer Carpathians commenced in their internal parts and progressed in time towards the continental foreland. This process was initi- ated at the end of the Paleocene at the Pieniny Klippen Belt/Magura Basin boundary and was completed during early Burdigalian in the northern part of the Krosno Flysch Basin.
    [Show full text]
  • Gravity-Spreading Origin of the Heart Mountain Allochthon, Northwestern Wyoming
    Gravity-spreading origin of the Heart Mountain allochthon, northwestern Wyoming THOMAS A. HAUGE Department of Geological Sciences, University of Southern California, Los Angeles, California 90089-0741 ABSTRACT catastrophically as individual slide blocks. Subsequent mapping, primarily by Pierce (1941,1950,1957,1960,1965,1966; Pierce and Nelson, 1969, Field studies of the Heart Mountain detachment and overlying 1971; Pierce and others, 1973), extended the detachment area to the volcanic rocks reveal that "autochthonous" Eocene volcanic rocks northwest into the Clarks Fork River drainage and led to his recognition of previously reported as postdating faulting are tectonically emplaced a "break-away" fault, marking the western margin of the detachment area; and, in many places, far traveled. Evidence of tectonic deformation of a "bedding" fault, where the detachment follows a bedding plane within these volcanic rocks is documented in areas where volcanic rocks the Ordovician Bighorn Dolomite in an estimated 1,300 km2 area of the directly overlie the detachment, as well as at structurally higher levels northeast Absaroka Mountains; a "transgressive" fault, where the detach- within the allochthon. Such evidence includes shearing, brecciation, ment ramps upsection; and a "fault on former land surface," recogn ized by and faulting of volcanic rocks, and tilting and truncation of volcanic previous workers, where allochthonous blocks were thought to have over- strata. This widespread deformation casts doubt concerning earlier ridden the Eocene land surface (Fig. 1). Pierce's mapping and interpreta- suggestions that volcanic rocks were deposited upon the detachment tions (for summaries, see Pierce, 1963b, 1973) supported Bucher's concept and upon numetous detached slide blocks after detachment faulting.
    [Show full text]
  • Flysch – Molasse Sediments of the Paleogene Foreland Basin of North Arabia, Shiranish Area, North Iraq
    Iraqi Bulletin of Geology and Mining Vol.4, No.1, 2008 p 1 −−− 20 FLYSCH – MOLASSE SEDIMENTS OF THE PALEOGENE FORELAND BASIN OF NORTH ARABIA, SHIRANISH AREA, NORTH IRAQ Basim A. Al-Qayim *, Majid M. Al-Mutwali ** and Bahjat Y. Nissan *** Received: 20/ 6/ 2007, Accepted: 6/ 12/ 2007 ABSTRACT The Paleogene clastic strata of northern part of Iraq are represented by the Kolosh Formation (Paleocene – Early Eocene) and the Gercus Formation (Middle – Late Eocene). Detailed investigations of these strata at Shiranish area of north Iraq including stratigraphic association, lithofacies type, petrographic investigation, and mineralogical analysis of heavies and clay fractions disclose the geological aspects and the nature of the Paleogene Foreland Basin, which is developed along the north – northeastern margin of the Arabian Plate. Analysis of lithofacies association of the Kolosh sediments shows that it represents a distal turbidite facies of an unattached submarine fan complex that is developed far from feeding channel systems. The Gercus lithofacies is characterized by predominant continental section with a possibility of shallow marine influence near the bottom of the section. The petrographic analysis of sandstones from both units shows the predominancy of lith- arenite type with significant occurrence of feldspar, igneous and metamorphic rock fragments in Gercus samples. Petrofacies analyses of these sandstones show that the Kolosh sandstones were derived from “Recycled Orogen” province, and developed as a part of the foreland system. The Gercus sandstones show similar tendency with clear effect of arc-volcanicity. Heavy and clay minerals analysis show assemblages, which support similar interpretation. The sediments of Kolosh and Gercus formations are believed to represent the flysch – molasse facies of the distal part of the Paleogene Foreland Basin, which is developed in North Iraq as result of the advancing Bitlis Nappes onto the northern Arabian margin.
    [Show full text]
  • Formation of Melange in Afore/And Basin Overthrust Setting: Example from the Taconic Orogen
    Printed in U.S.A. Geological Society of America Special Paper 198 1984 Formation of melange in afore/and basin overthrust setting: Example from the Taconic Orogen F. W. Vollmer* William Bosworth* Department of Geological Sciences State University of New York at Albany Albany, New York 12222 ABSTRACT The Taconic melanges of eastern New York developed through the progressive deformation of a synorogenic flysch sequence deposited within a N-S elongate foreland basin. This basin formed in front of the Taconic Allochthon as it was emplaced onto the North American continental shelf during the medial Ordovician Taconic Orogeny. The flysch was derived from, and was subsequently overridden by the allochthon, resulting in the formation of belts of tectonic melange. An east to west decrease in deformation intensity allows interpretation of the structural history of the melange and study of the flysch-melange transition. The formation of the melange involved: isoclinal folding, boudinage and disruption of graywacke-shale sequences due to ductility contrasts; sub­ aqueous slumping and deposition of olistoliths which were subsequently tectonized and incorporated into the melange; and imbrication of the overthrust and underthrust sedi­ mentary sections into the melange. The characteristic microstructure of the melange is a phacoidal conjugate-shear cleavage, which is intimately associated with high strains and bedding disruption. Rootless isoclines within the melange have apparently been rotated into an east-west shear direction, consistent with fault, fold, and cleavage orientations within the flysch. The melange zones are best modeled as zones of high shear strain developed during the emplacement of the Taconic Allochthon. Total displacement across these melange zones is estimated to be in excess of 60 kilometers.
    [Show full text]