The Sum of the Approximation Errors of Harmonic Numbers

Total Page:16

File Type:pdf, Size:1020Kb

The Sum of the Approximation Errors of Harmonic Numbers Appendix A The Sum of the Approximation Errors of Harmonic Numbers A.1 Introduction In this appendix, we compile a list of identities that involve the sum of approxima- tion errors of harmonic numbers by the natural logarithmic function. Specifically, a famous result, due to Euler, is that the limit: ˚ Xn 1 « lim log n n!1 k kD1 exists and is given by a constant D 0:55721. This was proved in Chap. 2. Consequently, we know that the following alternating series: X1 k .1/ Hk log k (A.1.1) kD1 converges to some finite value. Our first goal is to derive an exact expression to this value. Using the Euler-Maclaurin summation formula, it can be shown that the approx- imation error Hn log n has the asymptotic expansion: 1 1 X B H log n k n 2n knk kD2 P 1 Œ This shows that the sum of approximation errors kD1 Hk log k diverges. Adding an additional term from the asymptotic expansion above gives us: 1 H log n O.1=n2/ n 2n © Springer International Publishing AG 2018 151 I. M. Alabdulmohsin, Summability Calculus, https://doi.org/10.1007/978-3-319-74648-7 152 A The Sum of the Approximation Errors of Harmonic Numbers Hence, the following series: X1 1 H log k (A.1.2) k 2k kD1 converges to some finite value. Our second goal is to derive a closed-form expression for this series. Finally, using the Euler-Maclaurin summation formula, Cesaro and Ramanujan, among others, deduced the following asymptotic expansion [Seb02]: p 1 H log n.n C 1/ n 6n.n C 1/ As a result, the natural logarithms of the geometric means offer a more accurate approximation to the harmonic numbers. In particular, the following series: X1 p Hk log k.k C 1/ (A.1.3) kD1 converges to some finite value. Our third goal is to derive a closed-form expression for this series. A.2 Main Theorem Remarkably, for all the three series in Eqs. A.1.1–A.1.3, their exact values are expressed in terms of itself as well as log . More specifically, we have the following theorem: Theorem A.1 The sum of approximation errors of harmonic numbers by the natural logarithmic function satisfy the following identities: 1 h i X 1 log.2/ 1 log.k/ C H C D k 2k 2 kD1 1 h i X p log.2/ 1 k.k C 1/ C H D log k 2 kD1 1 h i X log .1/k k C H D log k 2 kD1 Proof The third identity was proved in Eq. 5.1.33 using the theory of summability of divergent series. The second equation was proved in Eq. 6.2.12 using the infinite Reference 153 product representation of the superfactorial function. The first identity follows from the second identity because: X1 1 X1 p 11 1 log k C H C D log k.k C 1/ C H C log.1 C / k 2k k 2 k k kD1 kD1 .2/ 1 D log C 2 2 .2/ 1 D log 2 Reference [Seb02] P. Sebha, Collection of formulae for Euler’s constant (2002). http://scipp.ucsc.edu/~haber/ archives/physics116A06/euler2.ps. Retrieved on March 2011 Glossary P 1 ˛ Abel Summability Method Given a series kD0 k, the Abel summability method assigns the following value if the limit exists: X1 X1 k ˛k , lim ˛k x x!1 kD0 kD0 The Abel summability method is consistent with, but is more powerful than, all Nörlund Means. Bernoulli Numbers Bernoulli numbers is a sequence of rational numbers that arise frequently in number theory. Their first few terms are given by: 1 1 1 B0 D 1; B1 D ; B2 D ; B3 D 0; B4 D ; B5 D 0;::: 2 6 30 D1 Throughout this monograph, we adopt the convention B1 2 . Bernoulli numbers vanish at positive odd integers exceeding 1. The generating function of Bernoulli numbers is given by: 1 x X B D r xr ex 1 rŠ rD0 Composite Finite Sums A function f .n/ is a composite finite sum if it is of the form: Xn1 f .n/ D g.k; n/ kD0 © Springer International Publishing AG 2018 155 I. M. Alabdulmohsin, Summability Calculus, https://doi.org/10.1007/978-3-319-74648-7 156 Glossary PHere, the iterated functionP g.k; n/ can depend on the bound n. The functions n1 .1 C = / n1 . C /1 kD0 log k n and kD0 k n are examples to composite finite sums. Glaisher Approximation The Glaisher approximation is an asymptotic expression to the hyperfactorial function. It states that: 2 H.n/ Aen =4 nn .nC1/=2C1=12; with a ratio that goes to unity as n !1. Here, A 1:2824 is often referred to as the Glaisher-Kinkelin constant. Hyperfactorial Function The hyperfactorial function H.n/ is defined for n 2 N by the formula: Yn H.n/ D kk kD1 LindelöfP Summability Method The Lindelöf summability method assigns to a 1 ˛ series kD0 k the value: X1 X1 ı k ˛k , lim k ˛k ı!0 kD0 kD0 It can correctly sum any Taylor series expansion in the Mittag-Leffler star. Nearly Convergent Functions A function f .x/ is called nearly convergent if 0 limx!1 f .x/ D 0 and one of the following two conditions holds: 1. f .x/ is asymptotically non-decreasing and concave. More precisely, there exists 0 .2/ x0 such that for all x > x0,wehavef .x/ 0 and f .x/ Ä 0. 2. f .x/ is asymptotically non-increasing and convex. More precisely, there exists x0 0 .2/ such that for all x > x0,wehavef .x/ Ä 0 and f .x/ 0 p Examples of nearly convergent functions include x, 1=x,andlogx. Polynomial Order For any function f .x/, its polynomial order is the minimum r 0 such that: drC1 lim f .x/ D 0 x!1 d xrC1 p . / D For example,p the function f x x x has a polynomial order of 1 because the first 3 x !1 p3 derivative 2 does not vanish as x whereas its second derivative 4 x does. Glossary 157 Riemann Zeta Function The Riemann zeta function .s/ is defined for R.s/>1 by the series: X1 1 .s/ D ks kD1 For positive even integers, Euler showed that the following equation holds: 2s B2 .2/ .2s/ D .1/sC1 s 2.2s/Š Semi-linear Simple Finite Sums A functionP f .n/ is a semi-linear simple finite sum n1 . / . / if it is a simple finite sum of the form kD0 g k and g k is a nearly-convergent function. Simple Finite Sums A function f .n/ is a simple finite sum if it is of the form: Xn1 f .n/ D g.k/ kD0 Here, theP iterated function g.k/ is independent of n. ForP example, the log-factorial n1 .1 C / n1 1 function kD0 log k and the harmonic number kD0 1Ck are simple finite sums. Stirling Approximation The Stirling approximation is an asymptotic expression for the factorial function. It states that: Á p n n nŠ 2n ; e with a ratio that goes to unity as n !1. Summability Methods A summability method is a method of defining divergent series. One simple summability method is to define a series by the following expression: X1 1 Xn XnC1 Á ˛k , lim ˛k C ˛k n!1 2 kD0 kD0 kD0 1 This definition assigns the value 2 to the Grandi series 11C11C1:::,which agrees with other methods. Two summability methods are called consistent if they always assign the same value to a series whenever the series is well-defined under both methods. A summability method T1 is stronger than a summability method T2 if both are consistent and T1 can sum more series. 158 Glossary Three desirable properties of summability methods are: 1. Regularity: A summability method is called regular if it agrees with ordinary summation whenever a series converges in the classical sense. 2. Linearity: A summability method is linear if we always have: X1 X1 X1 ˛i C ˇi D ˛i C ˇi i i i 3. Stability: A summability method is called stable if we always have: X1 X1 ˛k D ˛0 C ˛1Ck kD0 kD0 Superfactorial Function The superfactorial function S.n/ is defined for n 2 N by the formula: Yn S.n/ D kŠ kD1 P n1 . / Telescoping Sums and Products A simple finite sum of the form kD0 g k is called telescoping if it can be written in the form: Xn f .n/ D h.k/ h.k C 1/ kDa An often-cited example is the finite sum: Xn 1 f .n/ D n .n C 1/ kD1 This finite sum can be rewritten as: Xn 1 Xn 1 1 f .n/ D D k .k C 1/ k k C 1 kD1 kD1 1 1 1 1 1 1 1 D 1 Œ Œ ::: Œ 2 2 3 3 n n n C 1 1 D 1 n C 1 Q . / D n1 . / Hence, the sum is telescoping. A finite product f n kD0 g k is called telescoping if log f .n/ is a telescoping sum. Glossary 159 The Bohr-Mollerup Theorem The Bohr-Mollerup theorem is one possible char- acterization for the uniqueness of the gamma function in generalizing the definition of the discrete factorial function. The theorem is due to Harald Bohr and Johannes Mollerup who proved that .n C 1/ is the only function that satisfies: 1.
Recommended publications
  • The Digamma Function and Explicit Permutations of the Alternating Harmonic Series
    The digamma function and explicit permutations of the alternating harmonic series. Maxim Gilula February 20, 2015 Abstract The main goal is to present a countable family of permutations of the natural numbers that provide explicit rearrangements of the alternating harmonic series and that we can easily define by some closed expression. The digamma function presents its ubiquity in mathematics once more by being the key tool in computing explicitly the simple rearrangements presented in this paper. The permutations are simple in the sense that composing one with itself will give the identity. We show that the count- able set of rearrangements presented are dense in the reals. Then, slight generalizations are presented. Finally, we reprove a result given originally by J.H. Smith in 1975 that for any conditionally convergent real series guarantees permutations of infinite cycle type give all rearrangements of the series [4]. This result provides a refinement of the well known theorem by Riemann (see e.g. Rudin [3] Theorem 3.54). 1 Introduction A permutation of order n of a conditionally convergent series is a bijection φ of the positive integers N with the property that φn = φ ◦ · · · ◦ φ is the identity on N and n is the least such. Given a conditionally convergent series, a nat- ural question to ask is whether for any real number L there is a permutation of order 2 (or n > 1) such that the rearrangement induced by the permutation equals L. This turns out to be an easy corollary of [4], and is reproved below with elementary methods. Other \simple"rearrangements have been considered elsewhere, such as in Stout [5] and the comprehensive references therein.
    [Show full text]
  • A Note on Some Constants Related to the Zeta–Function and Their Relationship with the Gregory Coefficients
    A note on some constants related to the zeta–function and their relationship with the Gregory coefficients Iaroslav V. Blagouchine∗ Steklov Institute of Mathematics at St.-Petersburg, Russia. Marc–Antoine Coppo Université Côte d’Azur, CNRS, LJAD (UMR 7351), France. Abstract In this article, new series for the first and second Stieltjes constants (also known as generalized Eu- ler’s constant), as well as for some closely related constants are obtained. These series contain rational terms only and involve the so–called Gregory coefficients, which are also known as (reciprocal) log- arithmic numbers, Cauchy numbers of the first kind and Bernoulli numbers of the second kind. In addition, two interesting series with rational terms for Euler’s constant g and the constant ln 2p are given, and yet another generalization of Euler’s constant is proposed and various formulas for the cal- culation of these constants are obtained. Finally, we mention in the paper that almost all the constants considered in this work admit simple representations via the Ramanujan summation. Keywords: Stieltjes constants, Generalized Euler’s constants, Series expansions, Ramanujan summation, Harmonic product of sequences, Gregory’s coefficients, Logarithmic numbers, Cauchy numbers, Bernoulli numbers of the second kind, Stirling numbers of the first kind, Harmonic numbers. I. Introduction and definitions The zeta-function ¥ z(s) := ∑ n−s , Re s > 1, n=1 is of fundamental and long-standing importance in analytic number theory, modern analysis, theory of L–functions, prime number theory and in a variety of other fields. The z–function is a meromorphic function on the entire complex plane, except at the point s = 1 at which it has one simple pole with residue 1.
    [Show full text]
  • The Riemann and Hurwitz Zeta Functions, Apery's Constant and New
    The Riemann and Hurwitz zeta functions, Apery’s constant and new rational series representations involving ζ(2k) Cezar Lupu1 1Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra, Combinatorics and Geometry Graduate Student Research Seminar, February 2, 2017, Pittsburgh, PA A quick overview of the Riemann zeta function. The Riemann zeta function is defined by 1 X 1 ζ(s) = ; Re s > 1: ns n=1 Originally, Riemann zeta function was defined for real arguments. Also, Euler found another formula which relates the Riemann zeta function with prime numbrs, namely Y 1 ζ(s) = ; 1 p 1 − ps where p runs through all primes p = 2; 3; 5;:::. A quick overview of the Riemann zeta function. Moreover, Riemann proved that the following ζ(s) satisfies the following integral representation formula: 1 Z 1 us−1 ζ(s) = u du; Re s > 1; Γ(s) 0 e − 1 Z 1 where Γ(s) = ts−1e−t dt, Re s > 0 is the Euler gamma 0 function. Also, another important fact is that one can extend ζ(s) from Re s > 1 to Re s > 0. By an easy computation one has 1 X 1 (1 − 21−s )ζ(s) = (−1)n−1 ; ns n=1 and therefore we have A quick overview of the Riemann function. 1 1 X 1 ζ(s) = (−1)n−1 ; Re s > 0; s 6= 1: 1 − 21−s ns n=1 It is well-known that ζ is analytic and it has an analytic continuation at s = 1. At s = 1 it has a simple pole with residue 1.
    [Show full text]
  • COMPLETE MONOTONICITY for a NEW RATIO of FINITE MANY GAMMA FUNCTIONS Feng Qi
    COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITE MANY GAMMA FUNCTIONS Feng Qi To cite this version: Feng Qi. COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITE MANY GAMMA FUNCTIONS. 2020. hal-02511909 HAL Id: hal-02511909 https://hal.archives-ouvertes.fr/hal-02511909 Preprint submitted on 19 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITE MANY GAMMA FUNCTIONS FENG QI Dedicated to people facing and fighting COVID-19 Abstract. In the paper, by deriving an inequality involving the generating function of the Bernoulli numbers, the author introduces a new ratio of finite many gamma functions, finds complete monotonicity of the second logarithmic derivative of the ratio, and simply reviews complete monotonicity of several linear combinations of finite many digamma or trigamma functions. Contents 1. Preliminaries and motivations 1 2. A lemma 3 3. Complete monotonicity 4 4. A simple review 5 References 7 1. Preliminaries and motivations Let f(x) be an infinite differentiable function on (0; 1). If (−1)kf (k)(x) ≥ 0 for all k ≥ 0 and x 2 (0; 1), then we call f(x) a completely monotonic function on (0; 1).
    [Show full text]
  • Two Series Expansions for the Logarithm of the Gamma Function Involving Stirling Numbers and Containing Only Rational −1 Coefficients for Certain Arguments Related to Π
    J. Math. Anal. Appl. 442 (2016) 404–434 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational −1 coefficients for certain arguments related to π Iaroslav V. Blagouchine ∗ University of Toulon, France a r t i c l e i n f o a b s t r a c t Article history: In this paper, two new series for the logarithm of the Γ-function are presented and Received 10 September 2015 studied. Their polygamma analogs are also obtained and discussed. These series Available online 21 April 2016 involve the Stirling numbers of the first kind and have the property to contain only Submitted by S. Tikhonov − rational coefficients for certain arguments related to π 1. In particular, for any value of the form ln Γ( 1 n ± απ−1)andΨ ( 1 n ± απ−1), where Ψ stands for the Keywords: 2 k 2 k 1 Gamma function kth polygamma function, α is positive rational greater than 6 π, n is integer and k Polygamma functions is non-negative integer, these series have rational terms only. In the specified zones m −2 Stirling numbers of convergence, derived series converge uniformly at the same rate as (n ln n) , Factorial coefficients where m =1, 2, 3, ..., depending on the order of the polygamma function. Explicit Gregory’s coefficients expansions into the series with rational coefficients are given for the most attracting Cauchy numbers −1 −1 1 −1 −1 1 −1 values, such as ln Γ(π ), ln Γ(2π ), ln Γ( 2 + π ), Ψ(π ), Ψ( 2 + π )and −1 Ψk(π ).
    [Show full text]
  • Expansions of Generalized Euler's Constants Into the Series Of
    Journal of Number Theory 158 (2016) 365–396 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt Expansions of generalized Euler’s constants into −2 the series of polynomials in π and into the formal enveloping series with rational coefficients only Iaroslav V. Blagouchine 1 University of Toulon, France a r t i c l e i n f o a b s t r a c t Article history: In this work, two new series expansions for generalized Received 1 January 2015 Euler’s constants (Stieltjes constants) γm are obtained. The Received in revised form 26 June first expansion involves Stirling numbers of the first kind, 2015 − contains polynomials in π 2 with rational coefficients and Accepted 29 June 2015 converges slightly better than Euler’s series n−2. The Available online 18 August 2015 Communicated by David Goss second expansion is a semi-convergent series with rational coefficients only. This expansion is particularly simple and Keywords: involves Bernoulli numbers with a non-linear combination of Generalized Euler’s constants generalized harmonic numbers. It also permits to derive an Stieltjes constants interesting estimation for generalized Euler’s constants, which Stirling numbers is more accurate than several well-known estimations. Finally, Factorial coefficients in Appendix A, the reader will also find two simple integral Series expansion definitions for the Stirling numbers of the first kind, as well Divergent series Semi-convergent series an upper bound for them. Formal series © 2015 Elsevier Inc. All rights reserved. Enveloping series Asymptotic expansions Approximations Bernoulli numbers Harmonic numbers Rational coefficients Inverse pi E-mail address: [email protected].
    [Show full text]
  • Euler-Maclaurin and Euler-Boole Formulas
    Appendix A Euler-MacLaurin and Euler-Boole Formulas A.1 A Taylor Formula The classical Taylor formula Z Xm xk x .x t/m f .x/ D @kf .0/ C @mC1f .t/dt kŠ 0 mŠ kD0 xk can be generalized if we replace the polynomial kŠ by other polynomials (Viskov 1988; Bourbaki 1959). Definition If is a linear form on C0.R/ such that .1/ D 1,wedefinethe polynomials .Pn/ by: P0 D 1 @Pn D Pn1 , .Pn/ D 0 for n 1 P . / k The Generating Function k0 Pk x z We have formally X X X k k k @x. Pk.x/z / D Pk1.x/z D z. Pk.x/z / k0 k1 k0 © Springer International Publishing AG 2017 175 B. Candelpergher, Ramanujan Summation of Divergent Series, Lecture Notes in Mathematics 2185, DOI 10.1007/978-3-319-63630-6 176 A Euler-MacLaurin and Euler-Boole Formulas thus X k xz Pk.x/z D C.z/e k0 To evaluate C.z/ we use the notation x for and by definition of .Pn/ we can write X X k k x. Pk.x/z / D x.Pk.x//z D 1 k0 k0 X k xz xz x. Pk.x/z / D x.C.z/e / D C.z/x.e / k0 1 this gives C.z/ D xz . Thus the generating function of the sequence .Pn/ is x.e / X n xz Pn.x/z D e =M.z/ n xz where the function M is defined by M.z/ D x.e /: Examples P xn n xz .
    [Show full text]
  • On Some Series Representations of the Hurwitz Zeta Function Mark W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 216 (2008) 297–305 www.elsevier.com/locate/cam On some series representations of the Hurwitz zeta function Mark W. Coffey Department of Physics, Colorado School of Mines, Golden, CO 80401, USA Received 21 November 2006; received in revised form 3 May 2007 Abstract A variety of infinite series representations for the Hurwitz zeta function are obtained. Particular cases recover known results, while others are new. Specialization of the series representations apply to the Riemann zeta function, leading to additional results. The method is briefly extended to the Lerch zeta function. Most of the series representations exhibit fast convergence, making them attractive for the computation of special functions and fundamental constants. © 2007 Elsevier B.V. All rights reserved. MSC: 11M06; 11M35; 33B15 Keywords: Hurwitz zeta function; Riemann zeta function; Polygamma function; Lerch zeta function; Series representation; Integral representation; Generalized harmonic numbers 1. Introduction (s, a)= ∞ (n+a)−s s> a> The Hurwitz zeta function, defined by n=0 for Re 1 and Re 0, extends to a meromorphic function in the entire complex s-plane. This analytic continuation to C has a simple pole of residue one. This is reflected in the Laurent expansion ∞ n 1 (−1) n (s, a) = + n(a)(s − 1) , (1) s − 1 n! n=0 (a) (a)=−(a) =/ wherein k are designated the Stieltjes constants [3,4,9,13,18,20] and 0 , where is the digamma a a= 1 function.
    [Show full text]
  • A New Entire Factorial Function
    A new entire factorial function Matthew D. Klimek Laboratory for Elementary Particle Physics, Cornell University, Ithaca, NY, 14853, USA Department of Physics, Korea University, Seoul 02841, Republic of Korea Abstract We introduce a new factorial function which agrees with the usual Euler gamma function at both the positive integers and at all half-integers, but which is also entire. We describe the basic features of this function. The canonical extension of the factorial to the complex plane is given by Euler's gamma function Γ(z). It is the only such extension that satisfies the recurrence relation zΓ(z) = Γ(z + 1) and is logarithmically convex for all positive real z [1, 2]. (For an alternative function theoretic characterization of Γ(z), see [3].) As a consequence of the recurrence relation, Γ(z) is a meromorphic function when continued onto − the complex plane. It has poles at all non-positive integer values of z 2 Z0 . However, dropping the two conditions above, there are infinitely many other extensions of the factorial that could be constructed. Perhaps the second best known factorial function after Euler's is that of Hadamard [4] which can be expressed as sin πz z z + 1 H(z) = Γ(z) 1 + − ≡ Γ(z)[1 + Q(z)] (1) 2π 2 2 where (z) is the digamma function d Γ0(z) (z) = log Γ(z) = : (2) dz Γ(z) The second term in brackets is given the name Q(z) for later convenience. We see that the Hadamard gamma is a certain multiplicative modification to the Euler gamma.
    [Show full text]
  • Transcendence of Various Infinite Series Applications of Baker's
    Transcendence of Various Infinite Series and Applications of Baker's Theorem by Chester Jay Weatherby A thesis submitted to the Department of Mathematics and Statistics in conformity with the requirements for the degree of Doctor of Philosophy Queen's University Kingston, Ontario, Canada April 2009 Copyright c Chester Jay Weatherby, 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-65340-1 Our file Notre référence ISBN: 978-0-494-65340-1 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • POCKETBOOKOF MATHEMATICAL FUNCTIONS Abridged Edition of Handbook of Mathematical Functions Milton Abramowitz and Irene A
    POCKETBOOKOF MATHEMATICAL FUNCTIONS Abridged edition of Handbook of Mathematical Functions Milton Abramowitz and Irene A. Stegun (eds.) Material selected by Michael Danos and Johann Rafelski 1984 Verlag Harri Deutsch - Thun - Frankfurt/Main CONTENTS Forewordtothe Original NBS Handbook 5 Pref ace 6 2. PHYSICAL CONSTANTS AND CONVERSION FACTORS 17 A.G. McNish, revised by the editors Table 2.1. Common Units and Conversion Factors 17 Table 2.2. Names and Conversion Factors for Electric and Magnetic Units 17 Table 2.3. AdjustedValuesof Constants 18 Table 2.4. Miscellaneous Conversion Factors 19 Table 2.5. FactorsforConvertingCustomaryU.S. UnitstoSIUnits 19 Table 2.6. Geodetic Constants 19 Table 2.7. Physical andNumericalConstants 20 Table 2.8. Periodic Table of the Elements 21 Table 2.9. Electromagnetic Relations 22 Table 2.10. Radioactivity and Radiation Protection 22 3. ELEMENTARY ANALYTICAL METHODS 23 Milton Abramowitz 3.1. Binomial Theorem and Binomial Coefficients; Arithmetic and Geometrie Progressions; Arithmetic, Geometrie, Harmonie and Generalized Means 23 3.2. Inequalities 23 3.3. Rules for Differentiation and Integration 24 3.4. Limits, Maxima and Minima 26 3.5. Absolute and Relative Errors 27 3.6. Infinite Series 27 3.7. Complex Numbers and Functions 29 3.8. Algebraic Equations 30 3.9. Successive Approximation Methods 31 3.10. TheoremsonContinuedFractions 32 4. ELEMENTARY TRANSCENDENTAL FUNCTIONS 33 Logarithmic, Exponential, Circular and Hyperbolic Functions Ruth Zucker 4.1. Logarithmic Function 33 4.2. Exponential Function 35 4.3. Circular Functions 37 4.4. Inverse Circular Functions 45 4.5. Hyperbolic Functions 49 4.6. InverseHyberbolicFunctions 52 5. EXPONENTIAL INTEGRAL AND RELATED FUNCTIONS .... 56 Walter Gautschi and William F.
    [Show full text]
  • A Note on the Zeros and Local Extrema of Digamma Related Functions
    A note on the zeros and local extrema of Digamma related functions Istv´an Mez˝o 1 School of Mathematics and Statistics, Nanjing University of Information Science and Technology, No.219 Ningliu Rd, Pukou, Nanjing, Jiangsu, P. R. China Abstract Little is known about the zeros of the Digamma function. Establishing some Weier- strassian infinite product representations for a given regularization of the Digamma function we find interesting sums of its zeros. In addition, we study the same ques- tions for the zeros of the logarithmic derivative of the Barnes G function. At the end of the paper we provide rather accurate approximations of the hyperfactorial where, rather interestingly, the Lambert function appears. Key words: Euler Gamma function; Digamma function; Barnes G function; zeros; Weierstrass Product Theorem 1991 MSC: 33B15, 30C15, 30D99 arXiv:1409.2971v2 [math.CV] 9 Feb 2016 1 Introduction The Euler gamma function is defined by the improper integral ∞ Γ(z)= e−ztz−1dt (ℜ(z) > 0). Z0 The logarithmic derivative of Γ is the Digamma function Γ′(z) ψ(z)= (z ∈ C \{0, −1, −2,... }). Γ(z) Email address: [email protected] (Istv´an Mez˝o). 1 The research of Istv´an Mez˝owas supported by the Scientific Research Foundation of Nanjing University of Information Science & Technology, the Startup Foundation for Introducing Talent of NUIST. Project no.: S8113062001, and the National Natural Science Foundation for China. Grant no. 11501299. Preprint submitted to 10 February 2016 This function is analytic everywhere except the non positive integers, and it has first order poles in these points. It is known that the Digamma function has only real and simple zeros, and all of them except only one are negative.
    [Show full text]