Mixed Integer Evolution Strategies for Parameter Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Mixed Integer Evolution Strategies for Parameter Optimization Mixed Integer Evolution Strategies for Parameter Optimization Rui Li [email protected] Natural Computing Group, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, 2333 CA, The Netherlands Michael T.M. Emmerich [email protected] Natural Computing Group, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, 2333 CA, The Netherlands Jeroen Eggermont [email protected] Division of Image Processing, Department of Radiology C2S, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands Thomas Back¨ [email protected] Natural Computing Group, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, 2333 CA, The Netherlands M. Schutz¨ [email protected] Blumenthalstraße 14, 69120 Heidelberg, Germany J. Dijkstra [email protected] Division of Image Processing, Department of Radiology C2S, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands J.H.C. Reiber [email protected] Division of Image Processing, Department of Radiology C2S, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands Abstract Evolution strategies (ESs) are powerful probabilistic search and optimization algo- rithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the param- eters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed inte- ger optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized muta- tion operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global C 2013 by the Massachusetts Institute of Technology Evolutionary Computation 21(1): 29–64 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00059 by guest on 26 September 2021 R. Li et al. convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. Keywords Evolution strategies, mixed integer evolution strategies, NK landscapes. 1 Introduction The classical problem formulation of continuous parameter optimization reads: min{f (x)|x ∈ M ⊆ Rn}. Aside from this, in integer programming and combinatorial optimization discrete search spaces are considered, such as Zn or Bn.Mostofthere- search in optimization theory is either focused on discrete search spaces or focused on continuous search spaces. However, there are many practical optimization problems from industry in which the set of decision variables involves continuous as well as dis- crete variables. These problems are classically referred to as mixed integer optimization problems (Dakin, 1965; Wolsey and Nemhauser, 1999). Classical techniques from mathematical programming have focused mainly on problems of which the structure is clearly defined by a set of mathematical expressions. For instance, mixed integer nonlinear programming (MINLP; Bussieck and Pruessner, 2003) is a natural approach of formulating problems where continuous and discrete parameters need to be optimized simultaneously. It is based on the assumption that the search space can efficiently be explored using a divide and conquer scheme. As opposed to these white box optimization problems, less attention has been paid to black box optimization problems where the structure of the objective function is not fully known. This type of problem became very apparent in applications where objective functions are based on large-scale simulation models. In this article, we discuss a promising heuristic approach for solving such problems, the so-called mixed integer evolution strategies (MIES). Evolution strategies (ESs; Back,¨ 1996; Rechenberg, 1994; Schwefel, 1995) are robust global optimization strategies that are frequently used for continuous optimization. They belong to the class of randomized search heuristics and are based on principles of biological evolution theory, such as selection, recombination, and mutation. As flexible and robust search techniques, they have been successfully applied to various real- world problems. The dynamic behavior of ESs was subject to thorough theoretical and empirical studies. For instance, Schwefel compared it to traditional direct optimization algorithms and Back¨ to other evolutionary algorithms. Theoretical studies of the conver- gence behavior of the ES were carried out for instance by Beyer (2001), Oyman (Oyman et al., 2000), and Rudolph (1997). The results indicate that the ES is a robust optimization tool that can deal with a large number of practically relevant function classes, including discontinuous and multimodal functions with many variables. This article discusses the MIES, an extension of the ES for the simultaneous opti- mization of continuous, integer, and nominal discrete parameters. It combines muta- tion operators of ESs in the continuous domain (Schwefel, 1995), for integer program- ming (Rudolph, 1994), and for binary search spaces (Back,¨ 1996). These operators have in common that they have certain desirable properties, such as symmetry, scalability, and maximal entropy, the details of which will be discussed later. The MIES was originally developed for optical filter optimization (Back;¨ Schutz¨ and Sprave, 1996), and chem- ical engineering plant optimization (Emmerich et al., 2000; Groß, 1999). Recently, as 30 Evolutionary Computation Volume 21, Number 1 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00059 by guest on 26 September 2021 Mixed Integer Evolution Strategies for Parameter Optimization discussed in this contribution, it has been used in the context of medical image analysis (Li, Emmerich, Bovenkamp et al., 2006; Bovenkamp et al., 2006). In the latter work, the MIES convergence behavior on various artificial landscapes was studied empirically, including a collection of single-peak landscapes (Emmerich et al., 2000) and landscapes with multiple peaks (Li, Emmerich, Eggermont, and Bovenkamp, 2006; Li, Emmerich, Eggermont, Bovenkamp, et al., 2006). This article summarizes and extends recent studies of MIES and their applications in various fields of science and technology. It extends the existing work by providing a self-contained detailed description of the algorithm and its motivation. Moreover, we provide theoretical studies on the optimality of the step size adaptation. A theorem on the convergence with probability one to the global optimum is derived for a very general class of functions. In addition, the article surveys existing applications of the MIES in systems design and extends empirical results by assessing the performance of the MIES on a set of classical MINLP benchmark problems. For the latter study, constraint handling methods are introduced into the framework. In Section 2, we provide a mathematical definition of mixed integer parameter op- timization and discuss methodologies applied for solving such problems. In Section 3, the MIES is introduced and we discuss its conceptual design. We study the behav- ior of the algorithm in artificial landscapes in Section 4. In addition, we introduce extensions of landscape models that are used typically either in binary optimization (NK-landscapes) or continuous optimization (barrier model). Furthermore, we apply MIES to the selected MINLP test problems by using constraint handling techniques, more specifically, penalty function methods. In Section 5, we report on the application of MIES to real-world problems. The article concludes with a summary discussion of the obtained results and discusses promising paths for future work. 2 Problem Definition and Related Work Many application problems from industry involve the simultaneous use of continuous, integer, and nominal discrete objective variables. The problem of mixed integer param- eter optimization can be formalized as follows: let r1,...,rnr denote a set of real-valued decision variables, z1,...,znz denote a set of integer decision variables, and d1,...,dnd denote a set of nominal discrete decision variables, each of which is taken from a finite domain. The finite domains for the nominal discrete variables will be denoted with D(1), ...,D(nd ). We do not encode nominal discrete variables as integers, in order to exploit the fact that there is no meaningful a priori ordering given for their domain. Fur- thermore, let f : Rnr × Znz × D(1) ×···×D(nd
Recommended publications
  • Advances in Interior Point Methods and Column Generation
    Advances in Interior Point Methods and Column Generation Pablo Gonz´alezBrevis Doctor of Philosophy University of Edinburgh 2013 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Pablo Gonz´alezBrevis) ii To my endless inspiration and angels on earth: Paulina, Crist´obal and Esteban iii Abstract In this thesis we study how to efficiently combine the column generation technique (CG) and interior point methods (IPMs) for solving the relaxation of a selection of integer programming problems. In order to obtain an efficient method a change in the column generation technique and a new reoptimization strategy for a primal-dual interior point method are proposed. It is well-known that the standard column generation technique suffers from un- stable behaviour due to the use of optimal dual solutions that are extreme points of the restricted master problem (RMP). This unstable behaviour slows down column generation so variations of the standard technique which rely on interior points of the dual feasible set of the RMP have been proposed in the literature. Among these tech- niques, there is the primal-dual column generation method (PDCGM) which relies on sub-optimal and well-centred dual solutions. This technique dynamically adjusts the column generation tolerance as the method approaches optimality. Also, it relies on the notion of the symmetric neighbourhood of the central path so sub-optimal and well-centred solutions are obtained. We provide a thorough theoretical analysis that guarantees the convergence of the primal-dual approach even though sub-optimal solu- tions are used in the course of the algorithm.
    [Show full text]
  • Chapter 8 Constrained Optimization 2: Sequential Quadratic Programming, Interior Point and Generalized Reduced Gradient Methods
    Chapter 8: Constrained Optimization 2 CHAPTER 8 CONSTRAINED OPTIMIZATION 2: SEQUENTIAL QUADRATIC PROGRAMMING, INTERIOR POINT AND GENERALIZED REDUCED GRADIENT METHODS 8.1 Introduction In the previous chapter we examined the necessary and sufficient conditions for a constrained optimum. We did not, however, discuss any algorithms for constrained optimization. That is the purpose of this chapter. The three algorithms we will study are three of the most common. Sequential Quadratic Programming (SQP) is a very popular algorithm because of its fast convergence properties. It is available in MATLAB and is widely used. The Interior Point (IP) algorithm has grown in popularity the past 15 years and recently became the default algorithm in MATLAB. It is particularly useful for solving large-scale problems. The Generalized Reduced Gradient method (GRG) has been shown to be effective on highly nonlinear engineering problems and is the algorithm used in Excel. SQP and IP share a common background. Both of these algorithms apply the Newton- Raphson (NR) technique for solving nonlinear equations to the KKT equations for a modified version of the problem. Thus we will begin with a review of the NR method. 8.2 The Newton-Raphson Method for Solving Nonlinear Equations Before we get to the algorithms, there is some background we need to cover first. This includes reviewing the Newton-Raphson (NR) method for solving sets of nonlinear equations. 8.2.1 One equation with One Unknown The NR method is used to find the solution to sets of nonlinear equations. For example, suppose we wish to find the solution to the equation: xe+=2 x We cannot solve for x directly.
    [Show full text]
  • A Branch-And-Price Approach with Milp Formulation to Modularity Density Maximization on Graphs
    A BRANCH-AND-PRICE APPROACH WITH MILP FORMULATION TO MODULARITY DENSITY MAXIMIZATION ON GRAPHS KEISUKE SATO Signalling and Transport Information Technology Division, Railway Technical Research Institute. 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan YOICHI IZUNAGA Information Systems Research Division, The Institute of Behavioral Sciences. 2-9 Ichigayahonmura-cho, Shinjyuku-ku, Tokyo 162-0845, Japan Abstract. For clustering of an undirected graph, this paper presents an exact algorithm for the maximization of modularity density, a more complicated criterion to overcome drawbacks of the well-known modularity. The problem can be interpreted as the set-partitioning problem, which reminds us of its integer linear programming (ILP) formulation. We provide a branch-and-price framework for solving this ILP, or column generation combined with branch-and-bound. Above all, we formulate the column gen- eration subproblem to be solved repeatedly as a simpler mixed integer linear programming (MILP) problem. Acceleration tech- niques called the set-packing relaxation and the multiple-cutting- planes-at-a-time combined with the MILP formulation enable us to optimize the modularity density for famous test instances in- cluding ones with over 100 vertices in around four minutes by a PC. Our solution method is deterministic and the computation time is not affected by any stochastic behavior. For one of them, column generation at the root node of the branch-and-bound tree arXiv:1705.02961v3 [cs.SI] 27 Jun 2017 provides a fractional upper bound solution and our algorithm finds an integral optimal solution after branching. E-mail addresses: (Keisuke Sato) [email protected], (Yoichi Izunaga) [email protected].
    [Show full text]
  • Cancer Treatment Optimization
    CANCER TREATMENT OPTIMIZATION A Thesis Presented to The Academic Faculty by Kyungduck Cha In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology April 2008 CANCER TREATMENT OPTIMIZATION Approved by: Professor Eva K. Lee, Advisor Professor Renato D.C. Monteiro H. Milton Stewart School of Industrial H. Milton Stewart School of Industrial and Systems Engineering and Systems Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Earl R. Barnes Professor Nolan E. Hertel H. Milton Stewart School of Industrial G. W. Woodruff School of Mechanical and Systems Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Ellis L. Johnson Date Approved: March 28, 2008 H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology To my parents, wife, and son. iii ACKNOWLEDGEMENTS First of all, I would like to express my sincere appreciation to my advisor, Dr. Eva Lee for her invaluable guidance, financial support, and understanding throughout my Ph.D program of study. Her inspiration provided me many ideas in tackling with my thesis problems and her enthusiasm encouraged me to produce better works. I would also like to thank Dr. Earl Barnes, Dr. Ellis Johnson, Dr. Renato D.C. Monteiro, and Dr. Nolan Hertel for their willingness to serve on my dissertation committee and for their valuable feedbacks. I also thank my friends, faculty, and staff, at Georgia Tech, who have contributed to this thesis in various ways. Specially, thank you to the members at the Center for Operations Research in Medicine and HealthCare for their friendship.
    [Show full text]
  • AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
    AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies.
    [Show full text]
  • PENALTY METHODS for the SOLUTION of GENERALIZED NASH EQUILIBRIUM PROBLEMS (WITH COMPLETE TEST PROBLEMS) Francisco Facchinei1
    PENALTY METHODS FOR THE SOLUTION OF GENERALIZED NASH EQUILIBRIUM PROBLEMS (WITH COMPLETE TEST PROBLEMS) Francisco Facchinei1 and Christian Kanzow2 1 Sapienza University of Rome Department of Computer and System Sciences “A. Ruberti” Via Ariosto 25, 00185 Roma, Italy e-mail: [email protected] 2 University of W¨urzburg Institute of Mathematics Am Hubland, 97074 W¨urzburg, Germany e-mail: [email protected] February 11, 2009 Abstract The generalized Nash equilibrium problem (GNEP) is an extension of the classical Nash equilibrium problem where both the objective functions and the constraints of each player may depend on the rivals’ strategies. This class of problems has a multitude of important engineering applications and yet solution algorithms are extremely scarce. In this paper, we analyze in detail a globally convergent penalty method that has favorable theoretical properties. We also consider strengthened results for a particular subclass of problems very often considered in the literature. Basically our method reduces the GNEP to a single penalized (and nonsmooth) Nash equilibrium problem. We suggest a suitable method for the solution of the latter penalized problem and present extensive numerical results. Key Words: Nash equilibrium problem, Generalized Nash equilibrium problem, Jointly convex problem, Exact penalty function, Global convergence. 1 Introduction In this paper, we consider the Generalized Nash Equilibrium Problem (GNEP) and describe new globally convergent methods for its solution. The GNEP is an extension of the classical Nash Equilibrium Problem (NEP) where the feasible sets of each player may depend on ν n the rivals’ strategies. We assume there are N players and denote by x ∈ R ν the vector representing the ν-th player’s strategy.
    [Show full text]
  • Heuristic Search Viewed As Path Finding in a Graph
    ARTIFICIAL INTELLIGENCE 193 Heuristic Search Viewed as Path Finding in a Graph Ira Pohl IBM Thomas J. Watson Research Center, Yorktown Heights, New York Recommended by E. J. Sandewall ABSTRACT This paper presents a particular model of heuristic search as a path-finding problem in a directed graph. A class of graph-searching procedures is described which uses a heuristic function to guide search. Heuristic functions are estimates of the number of edges that remain to be traversed in reaching a goal node. A number of theoretical results for this model, and the intuition for these results, are presented. They relate the e])~ciency of search to the accuracy of the heuristic function. The results also explore efficiency as a consequence of the reliance or weight placed on the heuristics used. I. Introduction Heuristic search has been one of the important ideas to grow out of artificial intelligence research. It is an ill-defined concept, and has been used as an umbrella for many computational techniques which are hard to classify or analyze. This is beneficial in that it leaves the imagination unfettered to try any technique that works on a complex problem. However, leaving the con. cept vague has meant that the same ideas are rediscovered, often cloaked in other terminology rather than abstracting their essence and understanding the procedure more deeply. Often, analytical results lead to more emcient procedures. Such has been the case in sorting [I] and matrix multiplication [2], and the same is hoped for this development of heuristic search. This paper attempts to present an overview of recent developments in formally characterizing heuristic search.
    [Show full text]
  • First-Order Methods for Semidefinite Programming
    FIRST-ORDER METHODS FOR SEMIDEFINITE PROGRAMMING Zaiwen Wen Advisor: Professor Donald Goldfarb Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2009 c 2009 Zaiwen Wen All Rights Reserved ABSTRACT First-order Methods For Semidefinite Programming Zaiwen Wen Semidefinite programming (SDP) problems are concerned with minimizing a linear function of a symmetric positive definite matrix subject to linear equality constraints. These convex problems are solvable in polynomial time by interior point methods. However, if the number of constraints m in an SDP is of order O(n2) when the unknown positive semidefinite matrix is n n, interior point methods become impractical both in terms of the × time (O(n6)) and the amount of memory (O(m2)) required at each iteration to form the m × m positive definite Schur complement matrix M and compute the search direction by finding the Cholesky factorization of M. This significantly limits the application of interior-point methods. In comparison, the computational cost of each iteration of first-order optimization approaches is much cheaper, particularly, if any sparsity in the SDP constraints or other special structure is exploited. This dissertation is devoted to the development, analysis and evaluation of two first-order approaches that are able to solve large SDP problems which have been challenging for interior point methods. In chapter 2, we present a row-by-row (RBR) method based on solving a sequence of problems obtained by restricting the n-dimensional positive semidefinite constraint on the matrix X. By fixing any (n 1)-dimensional principal submatrix of X and using its − (generalized) Schur complement, the positive semidefinite constraint is reduced to a sim- ple second-order cone constraint.
    [Show full text]
  • The Central Curve in Linear Programming
    THE CENTRAL CURVE IN LINEAR PROGRAMMING JESUS´ A. DE LOERA, BERND STURMFELS, AND CYNTHIA VINZANT Abstract. The central curve of a linear program is an algebraic curve specified by linear and quadratic constraints arising from complementary slackness. It is the union of the various central paths for minimizing or maximizing the cost function over any region in the associated hyperplane arrangement. We determine the degree, arithmetic genus and defining prime ideal of the central curve, thereby answering a question of Bayer and Lagarias. These invariants, along with the degree of the Gauss image of the curve, are expressed in terms of the matroid of the input matrix. Extending work of Dedieu, Malajovich and Shub, this yields an instance-specific bound on the total curvature of the central path, a quantity relevant for interior point methods. The global geometry of central curves is studied in detail. 1. Introduction We consider the standard linear programming problem in its primal and dual formulation: (1) Maximize cT x subject to Ax = b and x ≥ 0; (2) Minimize bT y subject to AT y − s = c and s ≥ 0: Here A is a fixed matrix of rank d having n columns. The vectors c 2 Rn and b 2 image(A) may vary. In most of our results we assume that b and c are generic. This implies that both the primal optimal solution and the dual optimal solution are unique. We also assume that the problem (1) is bounded and both problems (1) and (2) are strictly feasible. Before describing our contributions, we review some basics from the theory of linear pro- gramming [26,33].
    [Show full text]
  • Cooperative and Adaptive Algorithms Lecture 6 Allaa (Ella) Hilal, Spring 2017 May, 2017 1 Minute Quiz (Ungraded)
    Cooperative and Adaptive Algorithms Lecture 6 Allaa (Ella) Hilal, Spring 2017 May, 2017 1 Minute Quiz (Ungraded) • Select if these statement are true (T) or false (F): Statement T/F Reason Uniform-cost search is a special case of Breadth- first search Breadth-first search, depth- first search and uniform- cost search are special cases of best- first search. A* is a special case of uniform-cost search. ECE457A, Dr. Allaa Hilal, Spring 2017 2 1 Minute Quiz (Ungraded) • Select if these statement are true (T) or false (F): Statement T/F Reason Uniform-cost search is a special case of Breadth- first F • Breadth- first search is a special case of Uniform- search cost search when all step costs are equal. Breadth-first search, depth- first search and uniform- T • Breadth-first search is best-first search with f(n) = cost search are special cases of best- first search. depth(n); • depth-first search is best-first search with f(n) = - depth(n); • uniform-cost search is best-first search with • f(n) = g(n). A* is a special case of uniform-cost search. F • Uniform-cost search is A* search with h(n) = 0. ECE457A, Dr. Allaa Hilal, Spring 2017 3 Informed Search Strategies Hill Climbing Search ECE457A, Dr. Allaa Hilal, Spring 2017 4 Hill Climbing Search • Tries to improve the efficiency of depth-first. • Informed depth-first algorithm. • An iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by incrementally changing a single element of the solution. • It sorts the successors of a node (according to their heuristic values) before adding them to the list to be expanded.
    [Show full text]
  • IMPROVED PARTICLE SWARM OPTIMIZATION for NON-LINEAR PROGRAMMING PROBLEM with BARRIER METHOD Raju Prajapati1 1University of Engineering & Management, Kolkata, W.B
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Gyandhara International Academic Publication (GIAP): Journals International Journal of Students’ Research in Technology & Management eISSN: 2321-2543, Vol 5, No 4, 2017, pp 72-80 https://doi.org/10.18510/ijsrtm.2017.5410 IMPROVED PARTICLE SWARM OPTIMIZATION FOR NON-LINEAR PROGRAMMING PROBLEM WITH BARRIER METHOD Raju Prajapati1 1University Of Engineering & Management, Kolkata, W.B. India Om Prakash Dubey2, Randhir Kumar3 2,3Bengal College Of Engineering & Technology, Durgapur, W.B. India email: [email protected] Article History: Submitted on 10th September, Revised on 07th November, Published on 30th November 2017 Abstract: The Non-Linear Programming Problems (NLPP) are computationally hard to solve as compared to the Linear Programming Problems (LPP). To solve NLPP, the available methods are Lagrangian Multipliers, Sub gradient method, Karush-Kuhn-Tucker conditions, Penalty and Barrier method etc. In this paper, we are applying Barrier method to convert the NLPP with equality constraint to an NLPP without constraint. We use the improved version of famous Particle Swarm Optimization (PSO) method to obtain the solution of NLPP without constraint. SCILAB programming language is used to evaluate the solution on sample problems. The results of sample problems are compared on Improved PSO and general PSO. Keywords. Non-Linear Programming Problem, Barrier Method, Particle Swarm Optimization, Equality and Inequality Constraints. INTRODUCTION A large number of algorithms are available to solve optimization problems, inspired by evolutionary process in nature. e.g. Genetic Algorithm, Particle Swarm Optimization, Ant Colony Optimization, Bee Colony Optimization, Memetic Algorithm, etc.
    [Show full text]
  • Backtracking / Branch-And-Bound
    Backtracking / Branch-and-Bound Optimisation problems are problems that have several valid solutions; the challenge is to find an optimal solution. How optimal is defined, depends on the particular problem. Examples of optimisation problems are: Traveling Salesman Problem (TSP). We are given a set of n cities, with the distances between all cities. A traveling salesman, who is currently staying in one of the cities, wants to visit all other cities and then return to his starting point, and he is wondering how to do this. Any tour of all cities would be a valid solution to his problem, but our traveling salesman does not want to waste time: he wants to find a tour that visits all cities and has the smallest possible length of all such tours. So in this case, optimal means: having the smallest possible length. 1-Dimensional Clustering. We are given a sorted list x1; : : : ; xn of n numbers, and an integer k between 1 and n. The problem is to divide the numbers into k subsets of consecutive numbers (clusters) in the best possible way. A valid solution is now a division into k clusters, and an optimal solution is one that has the nicest clusters. We will define this problem more precisely later. Set Partition. We are given a set V of n objects, each having a certain cost, and we want to divide these objects among two people in the fairest possible way. In other words, we are looking for a subdivision of V into two subsets V1 and V2 such that X X cost(v) − cost(v) v2V1 v2V2 is as small as possible.
    [Show full text]