A Gesture Based Interface for Human-Robot Interaction

Total Page:16

File Type:pdf, Size:1020Kb

A Gesture Based Interface for Human-Robot Interaction A Gesture Based Interface for Human-Rob ot Interaction Stefan Waldherr Computer Science Department Carnegie Mel lon University Pittsburgh, PA, USA Roseli Romero Instituto de Ci^encias Matem aticas e de Computac~ao UniversidadedeS~ao Paulo S~ao Carlos, SP, Brazil Sebastian Thrun Computer Science Department Carnegie Mel lon University Pittsburgh, PA, USA Abstract. Service rob otics is currently a pivotal research area in rob otics, with enormous so cietal p otential. Since service rob ots directly interact with p eople, nding \natu- ral" and easy-to-use user interfaces is of fundamental imp ortance. While past work has predominately fo cussed on issues suchasnavigation and manipulatio n, relatively few rob otic systems are equipp ed with exible user interfaces that p ermit controlling the rob ot by \natural" means. This pap er describ es a gesture interface for the control of a mobile rob ot equipp ed with a manipulator. The interface uses a camera to track a p erson and recognize gestures involvin g arm motion. A fast, adaptive tracking algorithm enables the rob ot to track and follow a p erson reliably through oce environments with changing lighting conditions. Two alternative metho ds for gesture recognition are compared: a template based approach and a neural network approach. Both are combined with the Viterbi algorithm for the recognition of gestures de ned through arm motion in addition to static arm p oses. Results are rep orted in the context of an interactive clean-up task, where a p erson guides the rob ot to sp eci c lo cations that need to b e cleaned and instructs the rob ot to pick up trash. 1. Intro duction The eld of rob otics is currently undergoing a change. While in the past, rob ots were predominately used in factories for purp oses suchas manufacturing and transp ortation, a new generation of \service rob ots" has recently b egun to emerge Schraft and Schmierer, 1998. Service rob ots co op erate with p eople, and assist them in their everyday tasks. Sp eci c examples of commercial service rob ots include the Helpmate rob ot, which has already b een deployed at numerous hospitals world- wide King and Weiman, 1990, an autonomous cleaning rob ot that has c 2000 Kluwer Academic Publishers. Printed in the Netherlands. 2 successfuly b een deployed in a sup ermarket during op ening hours En- dres et al., 1998, and the Rob o-Caddy www.icady.com/homefr.htm, a rob ot designed to make life easier by carrying around golf clubs. Few of these rob ots can interact with p eople other than byavoiding them. In the near future, similar rob ots are exp ected to app ear in various branches of entertainment, recreation, health-care, nursing, etc., and it is exp ected that they interact closely with p eople. This up coming generation of service rob ots op ens up new research opp ortunities. While the issue of robot navigation has b een researched quite extensively Cox and Wilfong, 1990; Kortenkamp et al., 1998; Borenstein et al., 1996, considerably little attention has b een paid to issues of human-robot interaction see Section 5 for a discussion on related literature. However, many service rob ots will b e op erated by non-exp ert users, who might not even b e capable of op erating a com- puter keyb oard. It is therefore essential that these rob ots b e equipp ed with \natural" interfaces that facilitate the interaction b etween rob ots and p eople. Nevertheless, the need for more e ectivehuman-rob ot interfaces has well b een recognized by the research community.For example, Torrance develop ed in his M.S. thesis a natural language interface for teaching mobile rob ots names of places in an indo or environmentTorrance, 1994. Due to the lack of a sp eech recognition system, his interface still required the user to op erate a keyb oard; nevertheless, the natural language comp onent made instructing the rob ot signi cantly easier. More recently Asoh and colleagues develop ed an interface that inte- grates a sp eech recognition system into a phrase-based natural language interface Asoh et al., 1997. The authors successfully instructed their \oce-conversant" rob ot to navigate to oce do ors and other signif- icant places in their environment through verbal commands. Among p eople, communication often involves more than sp oken language. For example, it is far easier to p oint to an ob ject than to verbally describ e its exact lo cation. Gestures are an easy way to give geometrical informa- tion to the rob ot. Hence, other researchers have prop osed vision-based interfaces that allow p eople to instruct mobile rob ots via arm gestures see Section 5. For example, b oth Kortenkamp and colleagues Ko- rtenkamp et al., 1996 and Kahn Kahn, 1996 have develop ed mobile rob ot systems instructed through arm p oses. Most previous mobile rob ot approaches only recognize static arm p oses as gestures, and they cannot recognize gestures that are de ned through sp eci c temp oral patterns, suchaswaving. Motion gestures, which are commonly used for communication among p eople, provide additional freedom in the design of gestures. In addition, they reduce the chances of accidentally classifying arm p oses as gestures that were not intended as such. Thus, 3 they app ear b etter suited for human rob ot interaction than static p ose gestures alone. Mobile rob ot applications of gesture recognition imp ose several re- quirements on the system. First of all, the gesture recognition system needs to b e small enough to \ t" on the rob ot, as pro cessing p ower is generally limited. Since b oth the human and the rob ot maybemoving while a gesture is shown, the system may not assume a static back- ground or a xed lo cation of the camera or the human who p erforms a gesture. In fact, some tasks mayinvolve following a p erson around, in which case the rob ot must b e able to recognize gestures while it tracks a p erson and adapt to p ossibly drastic changes in lighting con- ditions. Additionally, the system must work at an acceptable sp eed. Naturally, one would want that a `Stop' gesture would immediately halt the rob ot|and not ve seconds later. These requirements must b e taken into consideration when designing the system. This pap er presents a vision-based interface that has b een designed to instruct a mobile rob ot through b oth p ose and motion gestures Waldherr et al., 1998. At the lowest level, an adaptive dual-color tracking algorithm enables the rob ot to track and, follow a p erson around at sp eeds of up to 30 cm p er second while avoiding collisions with obstacles. This tracking algorithm quickly adapts to di erent lighting conditions, while segmenting the image to nd the p erson's p osition relative to the center of the image, and using a pan/tilt unit to keep the p erson centered. Gestures are recognized in two phases: In the rst, individual camera images are mapp ed into a vector that sp eci es likeliho o d for individual p oses. We compare two di erent ap- proaches, one based on neural networks, and one that uses a graphical correlation-based template matcher. In the second phase, the Viterbi algorithm is employed to dynamically match the stream of image data with pre-de ned temp oral gesture templates. The work rep orted here go es b eyond the design of the gesture in- terface. One of the goals of this researchistoinvestigate the usability of gesture interface in the context of a realistic service rob ot appli- cation. The interface was therefore integrated into our existing rob ot navigation and control software. The task of the rob ot is motivated by the \clean-up-the-oce" task at the 1994 mobile rob ot comp etition Simmons, 1995. There, a rob ot had to autonomously search an oce for ob jects scattered at the o or, and to dep osit them in nearby trash bins. Our task di ers in that wewanta human to guide the rob ot to the trash, instructed with gestures. The rob ot should than pick up the trash and carry it and dump it into a trash bin. The remainder of the pap er is organized as follows. Section 2 de- scrib es our approach to visual servoing, followed by the main gesture 4 recognition algorithm describ ed in Section 3. Exp erimental results are discussed in Section 4. Finally, the pap er is concluded by a discussion of related work Section 5 and a general discussion Section 6. 2. Finding and Tracking People Finding and tracking p eople is the core of any vision-based gesture recognition system. After all, the rob ot must know where in the image the p erson is. Visual tracking of p eople has b een studied extensively over the past few years Darrel et al., 1996, Crowley, 1997, and Wren et al., 1997. However, the vast ma jority of existing approaches as- sumes that the camera is mounted at a xed lo cation. Such approaches typically rely on a static background, so that human motion can b e detected, e.g., through image di erencing. In the case of rob ot-based gesture recognition, one cannot assume that the background is static. While the rob ot tracks and follows p eople, background and lighting conditions often change considerably.
Recommended publications
  • Gesture Recognition for Human-Robot Collaboration: a Review
    International Journal of Industrial Ergonomics xxx (2017) 1e13 Contents lists available at ScienceDirect International Journal of Industrial Ergonomics journal homepage: www.elsevier.com/locate/ergon Gesture recognition for human-robot collaboration: A review * Hongyi Liu, Lihui Wang KTH Royal Institute of Technology, Department of Production Engineering, Stockholm, Sweden article info abstract Article history: Recently, the concept of human-robot collaboration has raised many research interests. Instead of robots Received 20 July 2016 replacing human workers in workplaces, human-robot collaboration allows human workers and robots Received in revised form working together in a shared manufacturing environment. Human-robot collaboration can release hu- 15 November 2016 man workers from heavy tasks with assistive robots if effective communication channels between Accepted 15 February 2017 humans and robots are established. Although the communication channels between human workers and Available online xxx robots are still limited, gesture recognition has been effectively applied as the interface between humans and computers for long time. Covering some of the most important technologies and algorithms of Keywords: Human-robot collaboration gesture recognition, this paper is intended to provide an overview of the gesture recognition research Gesture and explore the possibility to apply gesture recognition in human-robot collaborative manufacturing. In Gesture recognition this paper, an overall model of gesture recognition for human-robot collaboration is also proposed. There are four essential technical components in the model of gesture recognition for human-robot collabo- ration: sensor technologies, gesture identification, gesture tracking and gesture classification. Reviewed approaches are classified according to the four essential technical components. Statistical analysis is also presented after technical analysis.
    [Show full text]
  • Study of Gesture Recognition Methods and Augmented Reality
    Study of Gesture Recognition methods and augmented reality Amol Palve ,Sandeep Vasave Department of Computer Engineering MIT COLLEGE OF ENGINEERING ( [email protected] ,[email protected]) Abstract: However recognizing the gestures in the noisy background has always been a With the growing technology, we difficult task to achieve. In the proposed humans always need something that stands system, we are going to use one such out from the other thing. Gestures are most technique called Augmentation in Image desirable source to Communicate with the processing to control Media Player. We will Machines. Human Computer Interaction recognize Gestures using which we are going finds its importance when it comes to to control the operations on Media player. working with the Human gestures to control Augmentation usually is one step ahead when the computer applications. Usually we control it comes to virtual reality. It has no the applications using mouse, keyboard, laser restrictions on the background. Moreover it pointers etc. but , with the recent advent in also doesn’t rely on certain things like gloves, the technology it has even left behind their color pointers etc. for recognizing the gesture. usage by introducing more efficient This system mainly appeals to those users techniques to control applications. There are who always looks out for a better option that many Gesture Recognition techniques that makes their interaction with computer more have been implemented using image simpler or easier. processing in the past. Keywords: Gesture Recognition, Human Computer Interaction, Augmentation I.INTRODUCTION: Augmentation in controlling the media player operations. Media player always In Human Computer interaction, the first requires mouse or keyboard to control it.
    [Show full text]
  • Hand Interface Using Deep Learning in Immersive Virtual Reality
    electronics Article DeepHandsVR: Hand Interface Using Deep Learning in Immersive Virtual Reality Taeseok Kang 1, Minsu Chae 1, Eunbin Seo 1, Mingyu Kim 2 and Jinmo Kim 1,* 1 Division of Computer Engineering, Hansung University, Seoul 02876, Korea; [email protected] (T.K.); [email protected] (M.C.); [email protected] (E.S.) 2 Program in Visual Information Processing, Korea University, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-760-4046 Received: 28 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: This paper proposes a hand interface through a novel deep learning that provides easy and realistic interactions with hands in immersive virtual reality. The proposed interface is designed to provide a real-to-virtual direct hand interface using a controller to map a real hand gesture to a virtual hand in an easy and simple structure. In addition, a gesture-to-action interface that expresses the process of gesture to action in real-time without the necessity of a graphical user interface (GUI) used in existing interactive applications is proposed. This interface uses the method of applying image classification training process of capturing a 3D virtual hand gesture model as a 2D image using a deep learning model, convolutional neural network (CNN). The key objective of this process is to provide users with intuitive and realistic interactions that feature convenient operation in immersive virtual reality. To achieve this, an application that can compare and analyze the proposed interface and the existing GUI was developed. Next, a survey experiment was conducted to statistically analyze and evaluate the positive effects on the sense of presence through user satisfaction with the interface experience.
    [Show full text]
  • Improving Gesture Recognition Accuracy on Touch Screens for Users with Low Vision
    Improving Touch Interfaces CHI 2017, May 6–11, 2017, Denver, CO, USA Improving Gesture Recognition Accuracy on Touch Screens for Users with Low Vision Radu-Daniel Vatavu MintViz Lab MANSiD Research Center University Stefan cel Mare of Suceava Suceava 720229, Romania [email protected] Figure 1. Gesture articulations produced by people with low vision present more variation than gestures produced by people without visual impairments, which negatively affects recognizers’ accuracy rates. Ten (10) superimposed executions of a “star” gesture are shown for six people: a person without visual impairments (a); three people with congenital nystagmus and high myopia (b), (c), (d); and two people with chorioretinal degeneration (e), (f). ABSTRACT INTRODUCTION We contribute in this work on gesture recognition to improve Today’s touch screen devices are little accessible to people the accessibility of touch screens for people with low vision. with visual impairments, who need to employ workaround We examine the accuracy of popular recognizers for gestures strategies to be able to use them effectively and indepen- produced by people with and without visual impairments, and dently [17,18,42]. Because smart devices expose touch screens we show that the user-independent accuracy of $P, the best not adapted to non-visual input, touch and gesture inter- recognizer among those evaluated, is small for people with action pose many challenges to people with visual impair- low vision (83.8%), despite $P being very effective for ges- ments [11,12,20,30], which can only be addressed with a thor- tures produced by people without visual impairments (95.9%).
    [Show full text]
  • Controlling Robots with Wii Gestures
    WiiRobot: Controlling Robots with Wii Gestures Aysun Bas¸c¸etinc¸elik Department of Computer Science Brown University Providence, RI, 02906 [email protected] May 15, 2009 Abstract In this project, we introduce WiiRobot, a sim- ple and reproducable gesture based robot con- troller. Our proposed system uses the Nintendo Wii Remote Controller to interact with a robot. The user first trains the system using Wii Re- mote in order to recognize future gestures. For the recognition process, we implemented two simple algorithms; K-Nearest Neighbour and sum of square differences. Our results show that using only a few number of repetitions per gesture is enough for recognition. 1 Introduction Finding a natural and effective way of communication with robots is important in order to enhance their contribution in our daily lives. For this purpose, there have been various developments in the area of Human- Figure 1: User controlling the robot with Wii Remote Robot Interaction. It is known that using a computer, a gamepad or a keyboard can be teleoperative but it is still unnatural and difficult to control. Hence, it is our fingers or with a mouse. We use gestures while we still one of the major research directions to design ease- are doing work with our laptops and phones. Moreoever, of-use and intuitive modes of communication with robots. after the introduction of Nintendo Wii Console, we were introduced to a new hardware, Wii Remote Controller, Another form of communication is gestures. Currently, which has the capability of creating gestures and using it gestures are not just limited to face, hand and body for a different intuitive control of video games.
    [Show full text]
  • A Wii-Based Gestural Interface for Computer Conducting Systems
    A Wii-based gestural interface for computer conducting systems Lijuan Peng David Gerhard Computer Science Department Computer Science Department University of Regina University of Regina SK, Canada, S4S 0A2 SK, Canada, S4S 0A2 [email protected] [email protected] Abstract This system is developed using Max/MSP/Jitter 1 and Java. With the increase of sales of Wii game consoles, it is be- The user stands in front of the computer and the Wii remote coming commonplace for the Wii remote to be used as an is mounted with the camera pointing toward the user. The alternative input device for other computer systems. In this accelerometer functionality and buttons on the Wii remote paper, we present a system which makes use of the infrared are ignored. Unlike other video-camera-based infrared sys- camera within the Wii remote to capture the gestures of a tems, no positional configuration is required. The infrared conductor using a baton with an infrared LED and battery. baton is held in the user’s right hand. It should be noted that Our system then performs data analysis with gesture classi- as long as the camera in the Wii remote can ”see” the entire fication and following, and finally displays the gestures us- conducting window, the specific location of the Wii remote ing visual baton trajectories and audio feedback. Gesture is irrelevant. The setup should be configured so that the user trajectories are displayed in real time and can be compared has full range of conducting motion and is comfortable dur- to the corresponding diagram shown in a textbook.
    [Show full text]
  • Analysis and Categorization of 2D Multi-Touch Gesture Recognition Techniques THESIS Presented in Partial Fulfillment of the Requ
    Analysis and Categorization of 2D Multi-Touch Gesture Recognition Techniques THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Aditi Singhal Graduate Program in Computer Science and Engineering The Ohio State University 2013 Master's Examination Committee: Dr. Rajiv Ramnath, Adviser Dr. Jay Ramanathan, Co-Adviser Copyright by Aditi Singhal 2013 Abstract Various techniques have been implemented for wide variety of gesture recognition applications. However, discerning the best technique to adopt for a specific gesture application is still a challenge. Wide variety, complexity in the gesture and the need for complex algorithms make implementation of recognition difficult even for basic gesture applications. In this thesis, different techniques for two dimensional (2D) touch gestures are reviewed, compared and categorized based on user requirements of the gesture applications. This work introduces two main paradigms for gesture applications: a) gestures for direct manipulation and navigation, b) gesture-based languages. These two paradigms have specific and separate roles in 2D touch gesture systems. To provide the clear distinction between two paradigms, three different algorithms are implemented for basic to complex 2D gestures using simple sometimes, as well as complex techniques such as linear regression and Hidden Markov Models. Thereafter, these algorithms are analyzed based on their performance and their fit with application requirements. ii Dedication I lovingly dedicate this thesis to my husband Shashnk Agrawal, who supported me each step of the way, my son Aryan Agrawal who in his 3 year old wisdom knew that mommy should not be disturbed while studying, and my late father Dr.
    [Show full text]
  • Gesture Recognition Using 3D Appearance and Motion Features
    Gesture Recognition Using 3D Appearance and Motion Features Guangqi Ye, Jason J. Corso, Gregory D. Hager Computational Interaction and Robotics Laboratory The Johns Hopkins University [email protected] Abstract Alternatively, methods that attempt to capture the 3D infor- mation of the hand [11] have been proposed. However, it is We present a novel 3D gesture recognition scheme that com- well-known that, in general circumstances, the stereo prob- bines the 3D appearance of the hand and the motion dynam- lem is difficult to solve reliably and efficiently. ics of the gesture to classify manipulative and controlling Human hands and arms are highly articulate and de- gestures. Our method does not directly track the hand. In- formable objects and hand gestures normally consist of 3D stead, we take an object-centered approach that efficiently global and local motion of the hands and the arms. Manip- computes the 3D appearance using a region-based coarse ulative and interaction gestures [14] have a temporal nature stereo matching algorithm in a volume around the hand. that involve complex changes of hand configurations. The The motion cue is captured via differentiating the appear- complex spatial properties and dynamics of such gestures ance feature. An unsupervised learning scheme is carried render the problem too difficult for pure 2D (e.g. template out to capture the cluster structure of these feature-volumes. matching) methods. Ideally we would capture the full 3D Then, the image sequence of a gesture is converted to a se- information of the hands to model the gestures [11]. How- ries of symbols that indicate the cluster identities of each ever, the difficulty and computational complexity of visual image pair.
    [Show full text]
  • Augmented Reality by Using Hand Gesture
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 4, April - 2014 Augmented Reality by using Hand Gesture Jyoti Gupta Amruta Bankar Mrunmayi Warankar Anisha Shelke Computer Department Computer Department Computer Department Computer Department Dr. D.Y. Patil COE Pune, Dr. D.Y. Patil COE Pune, Dr. D.Y. Patil COE Pune, Dr. D.Y. Patil COE Pune, India India India India Abstract — In this paper we have discussed a human-computer mixed scene can then be displayed on different devices. interaction interface (HCI) based on Hand gesture recognition. It Between the two prominent AR methods, video-based AR has is a challenging problem in its general form. We consider a set of attracted the most attention from researchers. manual commands and a reasonably structured environment, From study of Augmented Reality we are developing an and develop a simple, yet effective, procedure for gesture application in which we can navigate a virtual 3D model using recognition. Our approach contains steps for segmenting the hand region, locating the fingers, and finally classifying the hand gesture. In this the user interact with webcam and gesture. The algorithm is invariant to translation, rotation, and different virtual symbols on screen are provided for navigating scale of the hand. We demonstrate the effectiveness of the 3D object, user will select a particular button from screen by technique on real imagery. placing his hand in front of that particular virtual key. We use However, technology is progressing. In particular, Augmented Image Processing algorithms like Grayscaling [9], Blurring Reality (AR), an emerging Human-Computer Interaction [6], Thresholding [7], HSV model [15], Blob Detection [8] for technology, which aims to mix or overlap computer generated 2D recognition of hand.
    [Show full text]
  • Chapter 10. Gesture Recognition Matthew Turk 1. Introduction
    Chapter 10. Gesture Recognition Matthew Turk 1. Introduction .................................................................................................................................................................. 1 2. The Nature of Gesture ................................................................................................................................................. 3 3. Representations of Gesture ........................................................................................................................................ 6 3.1 Pen-based gesture recognition............................................................................................................................ 8 3.2 Tracker-based gesture recognition ..................................................................................................................... 9 3.2.1 Instrumented gloves ...................................................................................................................................... 9 3.2.2 Body suits ..................................................................................................................................................... 11 3.3 Passive vision-based gesture recognition....................................................................................................... 12 3.3.1 Head and face gestures ............................................................................................................................... 15 3.3.2 Hand and arm gestures...............................................................................................................................
    [Show full text]
  • Gesture Recognition on Few Training Data Using Slow Feature Analysis and Parametric Bootstrap
    Gesture Recognition on Few Training Data using Slow Feature Analysis and Parametric Bootstrap Patrick Koch, Wolfgang Konen, and Kristine Hein Abstract— Slow Feature Analysis (SFA) has been established clearly differs from traditional game controllers. But even as a robust and versatile technique from the neurosciences to though there exist a large number of games for the Nintendo learn slowly varying functions from quickly changing signals. Wii, recognition of complex gestures is still a challenging Recently, the method has been also applied to classification tasks. Here we apply SFA for the first time to a time series task. In spite of the large number of classification approaches classification problem originating from gesture recognition. The using the Wiimote controller with the infrared device, e.g. the gestures used in our experiments are based on acceleration work from Lee [Lee08], we focus here on approaches where signals of the Bluetooth Wiimote controller (Nintendo). We no infrared device is used. Although the task becomes more show that SFA achieves results comparable to the well-known difficult then, we are not so dependent on the Wii structure Random Forest predictor in shorter computation time, given a sufficient number of training patterns. However – and this and can easily transfer our approach to other applications. is a novelty to SFA classification – we discovered that SFA This can be of high importance when the use of infrared requires the number of training patterns to be strictly greater is not possible for any reason and only acceleration based than the dimension of the nonlinear function space. If too few sensors are available.
    [Show full text]
  • AUTOMATIC RECOGNITION of CHILDREN's TOUCHSCREEN STROKE GESTURES by ALEX SHAW a DISSERTATION PRESENTED to the GRADUATE SCHOOL O
    AUTOMATIC RECOGNITION OF CHILDREN'S TOUCHSCREEN STROKE GESTURES By ALEX SHAW A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2020 c 2020 Alex Shaw ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Lisa Anthony, for her continued support, encouragement, and advice throughout my PhD. I thank my co-advisor, Dr. Jaime Ruiz, as well as the rest of my committee, for their invaluable support through the process. Finally, I thank my labmates for being excellent coworkers and I thank my parents for their support through the long journey that obtaining a PhD has been. 3 TABLE OF CONTENTS page ACKNOWLEDGMENTS..................................3 LIST OF TABLES......................................7 LIST OF FIGURES.....................................8 ABSTRACT......................................... 13 CHAPTER 1 INTRODUCTION................................... 15 1.1 Contributions................................... 17 2 RELATED WORK................................... 19 2.1 Developmentally Appropriate Prompts and Feedback.............. 20 2.2 Selection of Gestures............................... 21 2.3 Recognition and Classification of Children's Gestures.............. 23 2.3.1 Challenges in Studying Children's Gestures............... 24 2.3.2 Summary................................. 26 3 RECOGNITION METHODS.............................. 27 3.1 Template Matchers............................... 27 3.2 Feature-based Statistical
    [Show full text]