Regulation of Paraxis Expression and Somite Formation by Ectoderm- and Neural Tube-Derived Signals

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Paraxis Expression and Somite Formation by Ectoderm- and Neural Tube-Derived Signals DEVELOPMENTAL BIOLOGY 185, 229±243 (1997) ARTICLE NO. DB978561 Regulation of paraxis Expression and Somite Formation by Ectoderm- and Neural Tube-Derived Signals DrazÏen SÏosÏicÂ,* Beate Brand-Saberi,² Corina Schmidt,² Bodo Christ,² and Eric N. Olson*,1 *Hamon Center for Basic Cancer Research, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9148; and ²Institute of Anatomy, University of Freiburg, P.O. Box 111, 79001 Freiburg i. Brsg., Germany During vertebrate embryogenesis, the paraxial mesoderm becomes segmented into somites, which form as paired epithelial spheres with a periodicity that re¯ects the segmental organization of the embryo. As a somite matures, the ventral region gives rise to a mesenchymal cell population, the sclerotome, that forms the axial skeleton. The dorsal region of the somite remains epithelial and is called dermomyotome. The dermomyotome gives rise to the trunk and limb muscle and to the dermis of the back. Epaxial and hypaxial muscle precursors can be attributed to distinct somitic compartments which are laid down prior to overt somite differentiation. Inductive signals from the neural tube, notochord, and overlying ectoderm have been shown to be required for patterning of the somites into these different compartments. Paraxis is a basic helix± loop±helix transcription factor expressed in the unsegmented paraxial mesoderm and throughout epithelial somites before becoming restricted to epithelial cells of the dermomyotome. To determine whether paraxis might be a target for inductive signals that in¯uence somite patterning, we examined the in¯uence of axial structures and surface ectoderm on paraxis expression by performing microsurgical operations on chick embryos. These studies revealed two distinct phases of paraxis expression, an early phase in the paraxial mesoderm that is dependent on signals from the ectoderm and independent of the neural tube, and a later phase that is supported by redundant signals from the ectoderm and neural tube. Under experimental conditions in which paraxis failed to be expressed, cells from the paraxial mesoderm failed to epithelialize and somites were not formed. We also performed an RT-PCR analysis of combined tissue explants in vitro and con®rmed that surface ectoderm is suf®cient to induce paraxis expression in segmental plate mesoderm. These results demonstrate that somite formation requires signals from adjacent cell types and that the paraxis gene is a target for the signal transduc- tion pathways that regulate somitogenesis. q 1997 Academic Press INTRODUCTION mation have been documented in detail, little is known of the transcriptional mechanisms that control somite forma- Somites are segmental units of the paraxial mesoderm tion and patterning. that form in a rostral-to-caudal progression during verte- Immediately after they bud off from the segmental plate, brate embryogenesis. The reiterative arrangement of so- somites appear as paired epithelial spheres that surround a mites along the rostrocaudal axis re¯ects the segmental or- loose aggregate of mesenchymal cells. As somites mature, ganization of the vertebrate embryo and imposes segmental they undergo a series of morphological and molecular patterning on the axial skeleton, the intrinsic back muscu- changes that culminate with the formation of three somitic lature, the peripheral nervous system, and the vasculature. compartments, the dermatome, myotome, and sclerotome While the morphological events associated with somite for- (reviewed in Keynes and Stern, 1988; Christ and Ordahl, 1995; Brand-Saberi et al., 1996). Initially, the ventral region Sequence data from this article have been deposited with the of the newly formed somite undergoes an epithelial-to-mes- EMBL/GenBank Data Libraries under Accession No. U76665. enchymal transition, giving rise to the sclerotome, the ori- 1 To whom correspondence should be addressed. Fax: (214)648- gin of the axial skeleton. The remaining epithelial sheet in 1196. E-mail: [email protected]. the dorsal somite, referred to as the dermomyotome and 0012-1606/97 $25.00 Copyright q 1997 by Academic Press All rights of reproduction in any form reserved. 229 AID DB 8561 / 6x23$$$181 05-07-97 11:44:50 dba 230 SÏ osÏic et al. FIG. 1. Deduced primary amino acid sequence of chicken paraxis protein and its homology with mouse paraxis. (A) Nucleotide sequence of chicken paraxis cDNA and deduced amino acid sequence of paraxis protein. The bHLH region is indicated in bold. (B) Homology between chicken and mouse paraxis proteins. The bHLH region is underlined. later the dermotome, gives rise to the myotome at its crani- the ventrolateral body wall (Christ et al., 1974, 1977, 1983; omedial edge (Kaehn et al., 1988; Christ and Ordahl, 1995). Chevallier et al., 1977; Ordahl and Le Douarin, 1992). The myotome consists of a layer of postmitotic, differenti- Cells surrounding the somites play important roles in ated skeletal muscle cells that form the back muscles (for speci®ying and patterning of different somitic cell lineages. a review, see Christ et al., 1990). The lateral part of the Sclerotome differentiation occurs in response to the se- dermomyotome gives rise to the muscles of the limb and creted morphogen sonic hedgehog, which is produced by FIG. 2. Expression of paraxis transcripts during chick embryogenesis. Paraxis mRNA was detected by whole-mount in situ hybridization. (A) HH stage 5 chick gastrula. Paraxis mRNA is present in prospective segmental plate mesoderm (arrows). (B) Stage 7 embryo. Paraxis is expressed in the rostral end of the segmental plate and in newly formed somites. (C) HH stage 11 embryo (12 somites), ventral view. Paraxis transcripts are found in the segmental plate and somites. (D) Higher magni®cation of the embryo shown in (C). The rostrocaudal gradient of paraxis expression can be observed with highest expression in the segmental plate and lowest in the rostral-most somites. (E) HH stage 19 chick embryo. Paraxis is expressed in all somites and in the segmental plate. (F) Higher magni®cation of the embryo shown in (E). The most recently formed somites show uniform expression of paraxis. More mature somites show highest expression in the mediocaudal quadrant, while the rostral-most somites express paraxis predominantly at their rostral and caudal edges. Arrows in (F) indicate paraxis expression at the rostral and caudal edges of the somite. The arrowhead in (F) points to precursors of tongue muscle. Staining in the head in (E) and (F) is background. Abbreviations: ps, primitive streak; s, somite; sp, segmental plate; nt, neural tube. Copyright q 1997 by Academic Press. All rights of reproduction in any form reserved. AID DB 8561 / 6x23$$$181 05-07-97 11:44:50 dba Regulation of paraxis Expression and Somite Formation 231 Copyright q 1997 by Academic Press. All rights of reproduction in any form reserved. AID DB 8561 / 6x23$$8561 05-07-97 11:44:50 dba 232 SÏ osÏic et al. hybridization. (A) Schematic in situ Transverse sections of HH stages 11 and 16 chick embryos showing paraxis expression detected by FIG. 3. illustration of cross-sections throughshown HH in stage (B), 11 (C), andparaxial and 16 mesoderm. (D), embryos. (C) respectively. As The (B)an lines somites Section anterior designated through mature, paraxis the B, somite rostral expression Cmyotome. that end Abbreviations: is and has nt, of lost D neural differentiated the in in tube; segmental themyotome; into this no, s, sclerotome, plate. panel notochord; dermatome, Paraxis sclerotome; but i, indicate d, myotome, intermediate mRNA persists the is mesoderm; dermatome; in and planes so, found m, the sclerotome. of somatic throughout myotome. dermomyotome. mesoderm; section the Paraxis (D) sp, entire Section expression splanchnic mesoderm; through is dm, dermo- restricted to the dermatome and Copyright q 1997 by Academic Press. All rights of reproduction in any form reserved. AID DB 8561 / 6x23$$8561 05-07-97 11:44:50 dba Regulation of paraxis Expression and Somite Formation 233 the notochord and ventral neural tube (Brand-Saberi et al., expression of paraxis during chick embryogenesis. We show 1993; Pourquie et al., 1993; Fan and Tessier-Lavigne, 1994; that there are two distinct phases of paraxis expression in Johnson et al., 1994; Fan et al., 1995; Ebensperger et al., paraxial mesoderm and developing somites. The initial ex- 1995). Induction of muscle gene expression in the myotome pression of paraxis in unsegmented paraxial mesoderm is has also been shown to be in¯uenced by signals from the dependent on the surface ectoderm and independent of the notochord and the dorsal neural tube (Rong et al., 1990, neural tube, whereas the later expression of paraxis in the 1992; Buf®nger and Stockdale, 1994, 1995; MuÈnsterberg and dermomyotome appears to be dependent on redundant sig- Lassar, 1995; Stern and Hauschka, 1995; Pownall et al., nals from the neural tube and surface ectoderm. In regions 1996; Spense et al., 1996; Amthor et al., 1996). Members of of manipulated chick embryos in which paraxis was not the wingless family of growth factors (Wnts), which are expressed, the paraxial mesoderm failed to epithelialize, re- secreted by the dorsal neural tube, and sonic hedgehog ap- sulting in the absence of epithelial somites and the dermo- pear to mediate the effects of axial organs on myotome myotome. These results demonstrate the importance of cel- development (Stern et al., 1995; MuÈ nsterberg et al., 1995). lular signaling for somitogenesis and are consistent with Myogenic cells of the ventrolateral portion of the dermomy- the notion that the paraxis gene is a target for redundant otome, which form the lateral muscle cell lineage, appear signaling pathways from the ectoderm and neural tube that to be in¯uenced by different signals than the medial lineage control somite formation and epithelialization of the para- (Gamel et al., 1995; Pourquie et al., 1995). Bone morphogen- xial mesoderm. etic protein-4 (BMP-4), which is expressed in the lateral mesoderm, inhibits differentiation of the lateral myogenic lineage (Pourquie et al., 1996).
Recommended publications
  • Development and Maintenance of Epidermal Stem Cells in Skin Adnexa
    International Journal of Molecular Sciences Review Development and Maintenance of Epidermal Stem Cells in Skin Adnexa Jaroslav Mokry * and Rishikaysh Pisal Medical Faculty, Charles University, 500 03 Hradec Kralove, Czech Republic; [email protected] * Correspondence: [email protected] Received: 30 October 2020; Accepted: 18 December 2020; Published: 20 December 2020 Abstract: The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs. Keywords: stem cell; epidermal placode; skin adnexa; signalling; hair pigmentation; markers; keratins 1. Epidermal Stem Cells as Units of Development 1.1. Development of the Epidermis and Placode Formation The embryonic skin at very early stages of development is covered by a surface ectoderm that is a precursor to the epidermis and its multiple derivatives.
    [Show full text]
  • AP-2Α and AP-2Β Cooperatively Function in the Craniofacial Surface Ectoderm to Regulate
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447717; this version posted June 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. AP-2α and AP-2β cooperatively function in the craniofacial surface ectoderm to regulate 2 chromatin and gene expression dynamics during facial development. 4 Eric Van Otterloo1,2,3,4,*, Isaac Milanda4, Hamish Pike4, Hong Li4, Kenneth L Jones5#, Trevor Williams4,6,7,* 6 1 Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA 8 2 Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA 10 3 Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA 12 4 Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA 14 5 Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, 16 USA 6 Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, 18 Aurora, CO, 80045, USA 7 Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital 20 Colorado, Aurora, CO 80045, USA * Corresponding Authors 22 #Present Address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA 24 Keywords: Tfap2, AP-2, transcription factor, ectoderm, craniofacial, neural crest, Wnt signaling 26 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447717; this version posted June 10, 2021.
    [Show full text]
  • The Migration of Neural Crest Cells and the Growth of Motor Axons Through the Rostral Half of the Chick Somite
    /. Embryol. exp. Morph. 90, 437-455 (1985) 437 Printed in Great Britain © The Company of Biologists Limited 1985 The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite M. RICKMANN, J. W. FAWCETT The Salk Institute and The Clayton Foundation for Research, California division, P.O. Box 85800, San Diego, CA 92138, U.S.A. AND R. J. KEYNES Department of Anatomy, University of Cambridge, Downing St, Cambridge, CB2 3DY, U.K. SUMMARY We have studied the pathway of migration of neural crest cells through the somites of the developing chick embryo, using the monoclonal antibodies NC-1 and HNK-1 to stain them. Crest cells, as they migrate ventrally from the dorsal aspect of the neural tube, pass through the lateral part of the sclerotome, but only through that part of the sclerotome which lies in the rostral half of each somite. This migration pathway is almost identical to the path which pre- sumptive motor axons take when they grow out from the neural tube shortly after the onset of neural crest migration. In order to see whether the ventral root axons are guided along this pathway by neural crest cells, we surgically excised the neural crest from a series of embryos, and examined the pattern of axon outgrowth approximately 24 h later. In somites which contained no neural crest cells, ventral root axons were still found only in the rostral half of the somite, although axonal growth was slightly delayed. These axons were surrounded by sheath cells, which had presumably migrated out of the neural tube, to a point about 50 jan proximal to the growth cones.
    [Show full text]
  • The Genetic Basis of Mammalian Neurulation
    REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm.
    [Show full text]
  • Neural Crest Cells Organize the Eye Via TGF-Β and Canonical Wnt Signalling
    ARTICLE Received 18 Oct 2010 | Accepted 9 Mar 2011 | Published 5 Apr 2011 DOI: 10.1038/ncomms1269 Neural crest cells organize the eye via TGF-β and canonical Wnt signalling Timothy Grocott1, Samuel Johnson1, Andrew P. Bailey1,† & Andrea Streit1 In vertebrates, the lens and retina arise from different embryonic tissues raising the question of how they are aligned to form a functional eye. Neural crest cells are crucial for this process: in their absence, ectopic lenses develop far from the retina. Here we show, using the chick as a model system, that neural crest-derived transforming growth factor-βs activate both Smad3 and canonical Wnt signalling in the adjacent ectoderm to position the lens next to the retina. They do so by controlling Pax6 activity: although Smad3 may inhibit Pax6 protein function, its sustained downregulation requires transcriptional repression by Wnt-initiated β-catenin. We propose that the same neural crest-dependent signalling mechanism is used repeatedly to integrate different components of the eye and suggest a general role for the neural crest in coordinating central and peripheral parts of the sensory nervous system. 1 Department of Craniofacial Development, King’s College London, Guy’s Campus, London SE1 9RT, UK. †Present address: NIMR, Developmental Neurobiology, Mill Hill, London NW7 1AA, UK. Correspondence and requests for materials should be addressed to A.S. (email: [email protected]). NatURE COMMUNicatiONS | 2:265 | DOI: 10.1038/ncomms1269 | www.nature.com/naturecommunications © 2011 Macmillan Publishers Limited. All rights reserved. ARTICLE NatUre cOMMUNicatiONS | DOI: 10.1038/ncomms1269 n the vertebrate head, different components of the sensory nerv- ous system develop from different embryonic tissues.
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • Understanding Paraxial Mesoderm Development and Sclerotome Specification for Skeletal Repair Shoichiro Tani 1,2, Ung-Il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3
    Tani et al. Experimental & Molecular Medicine (2020) 52:1166–1177 https://doi.org/10.1038/s12276-020-0482-1 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Understanding paraxial mesoderm development and sclerotome specification for skeletal repair Shoichiro Tani 1,2, Ung-il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3 Abstract Pluripotent stem cells (PSCs) are attractive regenerative therapy tools for skeletal tissues. However, a deep understanding of skeletal development is required in order to model this development with PSCs, and for the application of PSCs in clinical settings. Skeletal tissues originate from three types of cell populations: the paraxial mesoderm, lateral plate mesoderm, and neural crest. The paraxial mesoderm gives rise to the sclerotome mainly through somitogenesis. In this process, key developmental processes, including initiation of the segmentation clock, formation of the determination front, and the mesenchymal–epithelial transition, are sequentially coordinated. The sclerotome further forms vertebral columns and contributes to various other tissues, such as tendons, vessels (including the dorsal aorta), and even meninges. To understand the molecular mechanisms underlying these developmental processes, extensive studies have been conducted. These studies have demonstrated that a gradient of activities involving multiple signaling pathways specify the embryonic axis and induce cell-type-specific master transcription factors in a spatiotemporal manner. Moreover, applying the knowledge of mesoderm development, researchers have attempted to recapitulate the in vivo development processes in in vitro settings, using mouse and human PSCs. In this review, we summarize the state-of-the-art understanding of mesoderm development and in vitro modeling of mesoderm development using PSCs. We also discuss future perspectives on the use of PSCs to generate skeletal tissues for basic research and clinical applications.
    [Show full text]
  • Sonic Hedgehog a Neural Tube Anti-Apoptotic Factor 4013 Other Side of the Neural Plate, Remaining in Contact with Midline Cells, RESULTS Was Used As a Control
    Development 128, 4011-4020 (2001) 4011 Printed in Great Britain © The Company of Biologists Limited 2001 DEV2740 Anti-apoptotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis Jean-Baptiste Charrier, Françoise Lapointe, Nicole M. Le Douarin and Marie-Aimée Teillet* Institut d’Embryologie Cellulaire et Moléculaire, CNRS FRE2160, 49bis Avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France *Author for correspondence (e-mail: [email protected]) Accepted 19 July 2001 SUMMARY In vertebrates the neural tube, like most of the embryonic notochord or a floor plate fragment in its vicinity. The organs, shows discreet areas of programmed cell death at neural tube can also be recovered by transplanting it into several stages during development. In the chick embryo, a stage-matched chick embryo having one of these cell death is dramatically increased in the developing structures. In addition, cells engineered to produce Sonic nervous system and other tissues when the midline cells, hedgehog protein (SHH) can mimic the effect of the notochord and floor plate, are prevented from forming by notochord and floor plate cells in in situ grafts and excision of the axial-paraxial hinge (APH), i.e. caudal transplantation experiments. SHH can thus counteract a Hensen’s node and rostral primitive streak, at the 6-somite built-in cell death program and thereby contribute to organ stage (Charrier, J. B., Teillet, M.-A., Lapointe, F. and Le morphogenesis, in particular in the central nervous system. Douarin, N. M. (1999). Development 126, 4771-4783). In this paper we demonstrate that one day after APH excision, Key words: Apoptosis, Avian embryo, Cell death, Cell survival, when dramatic apoptosis is already present in the neural Floor plate, Notochord, Quail/chick, Shh, Somite, Neural tube, tube, the latter can be rescued from death by grafting a Spinal cord INTRODUCTION generally induces an inflammatory response.
    [Show full text]
  • The Derivatives of Three-Layered Embryo (Germ Layers)
    HUMANHUMAN EMBRYOLOGYEMBRYOLOGY Department of Histology and Embryology Jilin University ChapterChapter 22 GeneralGeneral EmbryologyEmbryology FourthFourth week:week: TheThe derivativesderivatives ofof trilaminartrilaminar germgerm discdisc Dorsal side of the germ disc. At the beginning of the third week of development, the ectodermal germ layer has the shape of a disc that is broader in the cephalic than the caudal region. Cross section shows formation of trilaminar germ disc Primitive pit Drawing of a sagittal section through a 17-day embryo. The most cranial portion of the definitive notochord has formed. ectoderm Schematic view showing the definitive notochord. horizon =ectoderm hillside fields =neural plate mountain peaks =neural folds Cave sinks into mountain =neural tube valley =neural groove 7.1 Derivatives of the Ectodermal Germ Layer 1) Formation of neural tube Notochord induces the overlying ectoderm to thicken and form the neural plate. Cross section Animation of formation of neural plate When notochord is forming, primitive streak is shorten. At meanwhile, neural plate is induced to form cephalic to caudal end, following formation of notochord. By the end of 3rd week, neural folds and neural groove are formed. Neural folds fuse in the midline, beginning in cervical region and Cross section proceeding cranially and caudally. Neural tube is formed & invade into the embryo body. A. Dorsal view of a human embryo at approximately day 22. B. Dorsal view of a human embryo at approximately day 23. The nervous system is in connection with the amniotic cavity through the cranial and caudal neuropores. Cranial/anterior neuropore Neural fold heart Neural groove endoderm caudal/posterior neuropore A.
    [Show full text]
  • Programmed Cell Death in the Developing Limb
    Int. J. Dev. Biol. 46: 871-876 (2002) Programmed cell death in the developing limb VANESSA ZUZARTE-LUÍS and JUAN M. HURLÉ* Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain ABSTRACT The sculpturing of shape in the developing limb together with the regression of the tail in anuran tadpoles constitute, perhaps, the most paradigmatic processes of programmed cell death. The study of these model systems has been of fundamental importance to support the idea that cell death is a physiological behavior of cells in multicellular organisms. Furthermore, different experimental approaches, including comparative analyses of the pattern of cell death in different avian species (i.e. chick interdigits versus duck interdigital webs) and in chick mutants with different limb phenotypes, provided the first evidence for the occurrence of a genetic program underlying the control of cell death. Two well known research groups in the field of limb development, the USA group headed first by John Saunders and next by John Fallon and the group of Donald Ede and Richard Hinchliffe in the U.K. provided a remarkable contribution to this topic. In spite of the historical importance of the developing limb in establishing the concept of programmed cell death, this model system of tissue regression has been largely neglected in recent studies devoted to the analysis of the molecular control of self-induced cell death (apoptosis). However, a considerable amount of information concerning this topic has been obtained in the last few years. Here we will review current information on the control of limb programmed cell death in an attempt to stimulate further molecular studies of this process of tissue regression.
    [Show full text]
  • Development of the Skin and Its Derivatives
    Development of the skin and its derivatives Resources: http://php.med.unsw.edu.au/embryology/ Larsen’s Human Embryology – Chapter 7 The Developing Human: Clinically Oriented Embryology Dr Annemiek Beverdam – School of Medical Sciences, UNSW Wallace Wurth Building Room 234 – [email protected] Lecture overview Skin function and anatomy Skin origins Development of the overlying epidermis Development of epidermal appendages: Hair follicles Glands Nails Teeth Development of melanocytes Development of the Dermis Resources: http://php.med.unsw.edu.au/embryology/ Larsen’s Human Embryology – Chapter 7 The Developing Human: Clinically Oriented Embryology Dr Annemiek Beverdam – School of Medical Sciences, UNSW Wallace Wurth Building Room 234 – [email protected] Skin Function and Anatomy Largest organ of our body Protects inner body from outside world (pathogens, water, sun) Thermoregulation Diverse: thick vs thin skin, scalp skin vs face skin, etc Consists of: - Overlying epidermis - Epidermal appendages: - Hair follicles, - Glands: sebaceous, sweat, apocrine, mammary - Nails - Teeth - Melanocytes - (Merkel Cells - Langerhans cells) - Dermis - Hypodermis Skin origins Trilaminar embryo Ectoderm (Neural crest) brain, spinal cord, eyes, peripheral nervous system epidermis of skin and associated structures, melanocytes, cranial connective tissues (dermis) Mesoderm musculo-skeletal system, limbs connective tissue of skin and organs urogenital system, heart, blood cells Endoderm epithelial linings of gastrointestinal and respiratory tracts Ectoderm
    [Show full text]
  • Macrophage-Derived Tumor Necrosis Factorα, an Early Developmental Signal for Motoneuron Death
    2236 • The Journal of Neuroscience, March 3, 2004 • 24(9):2236–2246 Development/Plasticity/Repair Macrophage-Derived Tumor Necrosis Factor ␣, an Early Developmental Signal for Motoneuron Death Fre´de´ric Sedel, Catherine Be´chade, Sheela Vyas, and Antoine Triller Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Sante´ et de la Recherche Me´dicale Unite´ 497, Ecole Normale Supe´rieure, 75005 Paris, France Mechanisms inducing neuronal death at defined times during embryogenesis remain enigmatic. We show in explants that a develop- mental switch occurs between embryonic day 12 (E12) and E13 in rats that is 72–48 hr before programmed cell death. Half the motoneu- rons isolated from peripheral tissues at E12 escape programmed cell death, whereas 90% of motoneurons isolated at E13 enter a death program. The surrounding somite commits E12 motoneurons to death. This effect requires macrophage cells, is mimicked by tumor necrosis factor ␣ (TNF␣), and is inhibited by anti-TNF␣ antibodies. In vivo, TNF␣ is detected within somite macrophages, and TNF receptor 1 (TNFR1) is detected within motoneurons precisely between E12 and E13. Although motoneuron cell death occurs normally in Ϫ Ϫ Ϫ Ϫ Ϫ Ϫ TNF␣ / mice, this process is significantly reduced in explants from TNF␣ / and TNFR1 / mice. Thus, embryonic motoneurons acquire the competence to die, before the onset of programmed cell death, from extrinsic signals such as macrophage-derived TNF␣. Key words: motoneuron; macrophages; somite; TNF␣; apoptosis; developmental death Introduction stream processes that instruct newly differentiated neurons to During development of the vertebrate nervous system, more neu- undergo cell death are poorly understood.
    [Show full text]