Amazing Arthropods! 2016 Study Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural History and Conservation Genetics of the Federally Endangered Mitchell’S Satyr Butterfly, Neonympha Mitchellii Mitchellii
NATURAL HISTORY AND CONSERVATION GENETICS OF THE FEDERALLY ENDANGERED MITCHELL’S SATYR BUTTERFLY, NEONYMPHA MITCHELLII MITCHELLII By Christopher Alan Hamm A DISSRETATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Entomology Ecology, Evolutionary Biology and Behavior – Dual Major 2012 ABSTRACT NATURAL HISTORY AND CONSERVATION GENETICS OF THE FEDERALLY ENDANGERED MITCHELL’S SATYR BUTTERFLY, NEONYMPHA MITCHELLII MITCHELLII By Christopher Alan Hamm The Mitchell’s satyr butterfly, Neonympha mitchellii mitchellii, is a federally endangered species with protected populations found in Michigan, Indiana, and wherever else populations may be discovered. The conservation status of the Mitchell’s satyr began to be called into question when populations of a phenotypically similar butterfly were discovered in the eastern United States. It is unclear if these recently discovered populations are N. m. mitchellii and thus warrant protection. In order to clarify the conservation status of the Mitchell’s satyr I first acquired sample sizes large enough for population genetic analysis I developed a method of non- lethal sampling that has no detectable effect on the survival of the butterfly. I then traveled to all regions in which N. mitchellii is known to be extant and collected genetic samples. Using a variety of population genetic techniques I demonstrated that the federally protected populations in Michigan and Indiana are genetically distinct from the recently discovered populations in the southern US. I also detected the presence of the reproductive endosymbiotic bacterium Wolbachia, and surveyed addition Lepidoptera of conservation concern. This survey revealed that Wolbachia is a real concern for conservation managers and should be addressed in management plans. -
A Beautiful Insect That Buries Dead Bodies Is in the Middle of a Conservation Battle
We use cookies to provide you with a better onsite experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Cookie Policy. SUBSCRIBE CONSERVATION A Beautiful Insect That Buries Dead Bodies Is In the Middle of a Conservation Battle Oil companies want the American burying beetle to be the first recovered insect taken off the U.S. endangered species list. But scientists say comeback claims are wildly exaggerated By Hannah Nordhaus | Scientific American December 2017 Issue Credit: Joel Sartore Getty Images ADVERTISEMENT IN BRIEF On the federal endangered species list since 1989, the American burying beetle needs small animal carcasses to live. Beetle habitat overlaps with oil and gas industry operations, and the industry wants the insect off the protected list. Arguments turn on whether the beetle's current population is robust enough to survive in a habitat that includes more pipelines, drilling rigs and roads. The beetle ranch is lovely: slate tile, a Viking range, knotty oak paneling and a wood stove with a preening taxidermy turkey on the wall above it. The porch is lined with rocking chairs that face out to a massive walnut tree and, beyond it, the pastures and thickets of southern Oklahoma's Lower Canadian Hills. Clover fields glow in the afternoon sun. A phoebe hollers from her nest; a scissortail flits between fence and field. People working at the ranch carry all sorts of weapons. Amy Smith, a biologist who conducts research here, keeps a .38 handgun strapped to her waist. Preston Smith, an owner of the property (and no relation to Amy Smith), is a six-and-a-half-foot-tall Texan who wears a beautiful silver-and-black combination .45 and .410 revolver engraved with his name. -
Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015)
Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015) By Richard Henderson Research Ecologist, WI DNR Bureau of Science Services Summary This is a preliminary list of insects that are either well known, or likely, to be closely associated with Wisconsin’s original native prairie. These species are mostly dependent upon remnants of original prairie, or plantings/restorations of prairie where their hosts have been re-established (see discussion below), and thus are rarely found outside of these settings. The list also includes some species tied to native ecosystems that grade into prairie, such as savannas, sand barrens, fens, sedge meadow, and shallow marsh. The list is annotated with known host(s) of each insect, and the likelihood of its presence in the state (see key at end of list for specifics). This working list is a byproduct of a prairie invertebrate study I coordinated from1995-2005 that covered 6 Midwestern states and included 14 cooperators. The project surveyed insects on prairie remnants and investigated the effects of fire on those insects. It was funded in part by a series of grants from the US Fish and Wildlife Service. So far, the list has 475 species. However, this is a partial list at best, representing approximately only ¼ of the prairie-specialist insects likely present in the region (see discussion below). Significant input to this list is needed, as there are major taxa groups missing or greatly under represented. Such absence is not necessarily due to few or no prairie-specialists in those groups, but due more to lack of knowledge about life histories (at least published knowledge), unsettled taxonomy, and lack of taxonomic specialists currently working in those groups. -
CRP-SAFE for Karner Blue Butterflies Recommendations for Wisconsin Landowners and Conservationists
CRP-SAFE for Karner Blue Butterflies Recommendations for Wisconsin Landowners and Conservationists August 2013 The Xerces Society for Invertebrate Conservation www.xerces.org Acknowledgements We thank Scott Swengel, Scott Hoffman Black, Jane Anklam, Andrew Bourget and John Sippl for helpful comments on earlier versions of this document, and additional USDA FSA and NRCS Altoona Service Center staff, UW-Eau Claire Office of Research and Sponsored Projects and undergraduate researchers for their collaboration and support. We also thank Karner blue CRP- SAFE participants for their participation in the conservation program. Authors Dr. Paula Kleintjes Neff University of Wisconsin – Eau Claire Department of Biology Eric Mader Assistant Pollinator Program Director The Xerces Society for Invertebrate Conservation Editing and layout Kaitlyn Rich, Matthew Shepherd, Hailey Walls, Ashley Minnerath. Photo credits Thank you to the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Cover main: Karner blue butterfly. William Bouton. Cover bottom left: Lupine field. Eric Mader, The Xerces Society. Cover bottom right: CRP-SAFE field. Paula Kleintjes Neff. Copyright © 2013 The Xerces Society for Invertebrate Conservation 628 NE Broadway Suite 200, Portland, OR 97232 855-232-6639 www.xerces.org The Xerces Society is a nonprofit organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection worldwide. The Xerces Society is an equal opportunity employer. 2 Date Last Modified: August 30, 2013 CRP-SAFE for Karner Blue Butterflies Recommendations for Wisconsin Landowners and Conservationists Introduction Nearly 2,000 acres of habitat for the federally endangered Karner blue butterfly Lycaeides( melisssa samuelis) have been established in western Wisconsin through the CRP-SAFE program since 2008. -
List of Insect Species Which May Be Tallgrass Prairie Specialists
Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites -
Amorpha Canescens Pursh Leadplant
leadplant, Page 1 Amorpha canescens Pursh leadplant State Distribution Best Survey Period Photo by Susan R. Crispin Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State special concern the Mississippi valley through Arkansas to Texas and in the western Great Plains from Montana south Global and state rank: G5/S3 through Wyoming and Colorado to New Mexico. It is considered rare in Arkansas and Wyoming and is known Other common names: lead-plant, downy indigobush only from historical records in Montana and Ontario (NatureServe 2006). Family: Fabaceae (pea family); also known as the Leguminosae. State distribution: Of Michigan’s more than 50 occurrences of this prairie species, the vast majority of Synonym: Amorpha brachycarpa E.J. Palmer sites are concentrated in southwest Lower Michigan, with Kalamazoo, St. Joseph, and Cass counties alone Taxonomy: The Fabaceae is divided into three well accounting for more than 40 of these records. Single known and distinct subfamilies, the Mimosoideae, outlying occurrences have been documented in the Caesalpinioideae, and Papilionoideae, which are last two decades from prairie remnants in Oakland and frequently recognized at the rank of family (the Livingston counties in southeast Michigan. Mimosaceae, Caesalpiniaceae, and Papilionaceae or Fabaceae, respectively). Of the three subfamilies, Recognition: Leadplant is an erect, simple to sparsely Amorpha is placed within the Papilionoideae (Voss branching shrub ranging up to ca. 1 m in height, 1985). Sparsely hairy plants of leadplant with greener characterized by its pale to grayish color derived from leaves have been segregated variously as A. canescens a close pubescence of whitish hairs that cover the plant var. -
Bergmann's Rule in Larval Ant Lions
Ecological Entomology (2003) 28, 645–650 Bergmann’s rule in larval ant lions: testing the starvation resistance hypothesis AMY E. ARNETT andNICHOLAS J. GOTELLI Department of Biology, University of Vermont, U.S.A. Abstract. 1. Body size of the ant lion Myrmeleon immaculatus follows Bergmann’s rule – an increase in body size towards higher latitudes. The hypothesis that ant lion body size is larger in the north as an adaptation for starvation resistance was tested. 2. In a laboratory experiment testing starvation resistance, survivorship curves differed among 10 ant lion populations for both a starved and a fed treatment. 3. The average number of months survived by each population was correlated positively with latitude for both treatments. Across both treatments and all populations, large individuals survived longer than small individuals; however individuals from high latitudes had higher survivorship, even after factoring out variation due to initial body size. 4. These results suggest that starvation resistance may be an adaptation for coping with reduced prey availability in high latitudes. Starvation resistance may contribute to latitudinal gradients in body size of ant lions and other ectotherms. Key words. Ant lion, Bergmann’s rule, body size, latitudinal gradients, Myrmeleon immaculatus, starvation resistance. Introduction body size (Cushman et al., 1993). If food availability decreases at high latitudes, starvation resistance may be Bergmann’s rule – an increase in body size with latitude – is genetically based and promote large body size at high lati- a common geographic pattern that has been described for tudes. Size-dependent resistance to starvation is supported many taxa including birds (James, 1970; Graves, 1991), by many studies of both endotherms and ectotherms mammals (Boyce, 1978; Sand et al., 1995; Sharples et al., (Brodie, 1975; Kondoh, 1977; Boyce, 1978; Lindstedt & 1996), fish (L’Abe´e-Lund et al., 1989; Taylor & Gotelli, Boyce, 1985; Murphy, 1985; Cushman et al., 1993). -
The Effect of Deer Browse on Sundial Lupine: Implications for Frosted Elfi Ns
2012 NORTHEASTERN NATURALIST 19(3):421–430 The Effect of Deer Browse on Sundial Lupine: Implications for Frosted Elfi ns Jennifer A. Frye* Abstract - The effect of Odocoileus virginianus (White-tailed Deer) on Lupinus perennis (Sundial Lupine) was quantifi ed for a site in Worcester County, MD. The reproductive output of Lupine protected by deer exclosures was compared with Lupine that received no protection from deer. Lupine in the exclosures had a higher likelihood of producing seed pods and produced a greater number of seed pods per infl orescence. The implica- tions of these results on Callophrys irus (Frosted Elfi ns) are discussed. Introduction Callophrys irus Godart (Frosted Elfi ns) are considered to be rare, imperiled, or extirpated in every state where they have been known to occur (NatureServe 2011). The primary threats to this butterfl y species are destruction and alteration of their dry upland habitat through development, forest succession, and fi re ex- clusion (NatureServe 2011, Wagner et al. 2003). The few remaining Frosted Elfi n populations persist primarily as highly localized and fragmented populations (Allen 1997, Glassberg 1999, NatureServe 2011, O’Donnell et al. 2007, Pfi tsch and Williams 2009, Wagner et al. 2003). Odocoileus virginianus Zimmermann (White-tailed Deer) can have a major impact on Frosted Elfi ns by consuming the larval host plants, Lupinus perennis (L.) (Sundial Lupine; hereafter also “Lu- pine”) and Baptisia tinctoria (L.) Vent. (Wild Indigo), both of which are browsed by deer (Golden and Pettigrew 2005, NatureServe 2011, Schweitzer 2003, St. Mary 2007). Deer may also affect Frosted Elfi ns through the direct consumption of the butterfl y’s eggs and larvae. -
CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties. -
New Records of Carrion Beetles in Nebraska Reveal Increased
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Research: A Journal of Natural and Great Plains Studies, Center for Social Sciences Fall 2011 NEW RECORDS OF CARRION BEETLES IN NEBRASKA REVEAL INCREASED PRESENCE OF THE AMERICAN BURYING BEETLE, NICROPHORUS AMERICANUS OLIVIER (COLEOPTERA: SILPHIDAE) Jessica Jurzenski University of Nebraska-Lincoln, [email protected] Daniel G. Snethen Little Wound High School, Kyle, SD Mathew L. Brust Chadron State College, [email protected] W. Wyatt obH ack University of Nebraska at Kearney, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsresearch Part of the American Studies Commons, Animal Sciences Commons, and the Entomology Commons Jurzenski, Jessica; Snethen, Daniel G.; Brust, Mathew L.; and Hoback, W. Wyatt, "NEW RECORDS OF CARRION BEETLES IN NEBRASKA REVEAL INCREASED PRESENCE OF THE AMERICAN BURYING BEETLE, NICROPHORUS AMERICANUS OLIVIER (COLEOPTERA: SILPHIDAE)" (2011). Great Plains Research: A Journal of Natural and Social Sciences. 1188. https://digitalcommons.unl.edu/greatplainsresearch/1188 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Research: A Journal of Natural and Social Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Great Plains Research 21 (Fall 2011):131-43 © 2011 Copyright by the Center for Great Plains Studies, University of Nebraska- Lincoln NEW RECORDS OF CARRION BEETLES IN NEBRASKA REVEAL INCREASED PRESENCE OF THE AMERICAN BURYING BEETLE, NICROPHORUS AMERICANUS OLIVIER (COLEOPTERA: SILPHIDAE) Jessica Jurzenski Department 0/ Entomology 202 Entomology Hall University o/Nebraska- Lincoln Lincoln, NE 68583-0816 [email protected] Daniel G. -
Karner Blue Butterfly (Lycaeides Melissa Samuelis) 5-Year Review
FINAL Karner Blue Butterfly (Lycaeides melissa samuelis) 5-Year Review: Summary and Evaluation U.S. Fish and Wildlife Service Ecological Services Field Office New Franken, Wisconsin 2012 TABLE OF CONTENTS 1. GENERAL INFORMATION 1.1 Reviewers……………………………………………………………………………. 1 1.2 Methodology used to complete the review …………………………………………. 1 1.3 Background …………………………………………………………………………. 1 2. REVIEW ANALYSIS 2.1 Application of the 1996 Distinct Population Segment (DPS) policy……………….. 2 2.2 Recovery Criteria…………………………………………………………………… 2 2.3 Updated Information and Current Species Status…………………………………..10 2.3.1 Biology and Habitat………………………………………………………….. 10 2.3.1.1 New information on the species’ biology and life history…………….10 KBB Eggs………………………………………………………….... 10 Larval and Pupal Growth……………………………………………..10 Larval Behavior………………………………………………………10 Oviposition Behavior and Patterns…………………………………...11 Effect of Habitat Management on Oviposition…………………….…12 Ovipositioning Rates of Wild and Captive Bred KBBs…………...…12 Effect of Subhabitat on Adult Production……………………………12 Wild Lupine (Host Plant)……………………………………………. 13 Nectar Plants and Adult Foraging Behavior………………………… 18 Habitat Characteristics Considered for Reintroductions in Ontario……………………………………………………… 21 Dispersal…………………………………………………………….. 22 KBB – a Flagship Species………………………………………..…...23 2.3.1.2 Abundance, population trends, demographic features or trends……. 23 Lifespan……………………………………………………………… 23 KBB Metapopulation Dynamics and Population Growth Rates…….. 24 Brood Size, Brood Number and Growth Rates……………………… -
Modulation in the Feeding Prey Capture of the Antlion, Myrmeleon Crudelis
RESEARCH ARTICLE Modulation in the Feeding Prey CaptureoftheAnt-lion, Myrmeleon crudelis à ERIC PATTEN LAMBERT , PHILIP JAY MOTTA, AND DAYV LOWRY Department of Integrative Biology, University of South Florida, Tampa, Florida ABSTRACT Ant-lions are pit-building larvae (Neuroptera: Myrmeleontidae), which possess relatively large mandibles used for catching and consuming prey. Few studies involving terrestrial arthropod larva have investigated prey capture behavior and kinematics and no study has shown modulation of strike kinematics. We examined feeding kinematics of the ant-lion, Myrmeleon crudelis,using high-speed video to investigate whether larvae modulate strike behavior based on prey location relative to the mandible. Based on seven capture events from five M. crudelis,thestriketook 17.6072.92 msec and was characterized by near-simultaneous contact of both mandibles with the prey. Modulation of the angular velocity of the mandibles based on prey location was clearly demonstrated. M. crudelis larvae attempted to simultaneously contact prey with both mandibles by increasing mean angular velocity of the far mandible (65721 rad secÀ1) compared with the near mandible (35714 rad secÀ1). Furthermore, kinematic results showed a significant difference for mean angular velocity between the two mandibles (Po0.005). Given the lengthy strike duration compared with other fast-striking arthropods, these data suggest that there is a tradeoff between the ability to modulate strike behavior for accurate simultaneous mandible contact and the overall velocity of the strike. The ability to modulate prey capture behavior may increase dietary breadth and capture success rate in these predatory larvae by allowing responsive adjustment to small-scale variations in prey size, presentation, and escape response.