Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers

Total Page:16

File Type:pdf, Size:1020Kb

Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers Microb Ecol (2009) 58:921–929 DOI 10.1007/s00248-009-9531-y PLANT MICROBE INTERACTIONS Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers A. O. Adesemoye & H. A. Torbert & J. W. Kloepper Received: 24 December 2008 / Accepted: 29 April 2009 / Published online: 23 May 2009 # Springer Science + Business Media, LLC 2009 Abstract The search for microorganisms that improve recommended rate, the beneficial effects were usually not soil fertility and enhance plant nutrition has continued to consistent; however, inoculation with the mixture of PGPR attract attention due to the increasing cost of fertilizers and AMF at 70% fertility consistently produced the same and some of their negative environmental impacts. The yield as the full fertility rate without inoculants. Without objectives of this greenhouse study with tomato were to inoculants, use of fertilizer rates lower than the recom­ determine (1) if reduced rates of inorganic fertilizer mended resulted in significantly less plant growth, yield, and coupled with microbial inoculants will produce plant nutrient uptake or inconsistent impacts. The results suggest growth, yield, and nutrient uptake levels equivalent to that PGPR-based inoculants can be used and should be those with full rates of the fertilizer and (2) the minimum further evaluated as components of integrated nutrient level to which fertilizer could be reduced when inocu­ management strategies. lants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizo­ bacteria (PGPR) strains Bacillus amyloliquefaciens Introduction IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Fertilizers are essential components of modern agriculture Glomus intraradices. Results showed that supplementing because they provide essential plant nutrients. However, 75% of the recommended fertilizer rate with inoculants overuse of fertilizers can cause unanticipated environmental produced plant growth, yield, and nutrient (nitrogen and impacts. One example of the negative impacts of fertilizer phosphorus) uptake that were statistically equivalent to the is the “dead zone” in the Gulf of Mexico where nutrients full fertilizer rate without inoculants. When inoculants washing from fertilized farms across the Mississippi Basin were used with rates of fertilizer below 75% of the cause oxygen starvation, leading to an almost lifeless area in the gulf [27]. One potential way to decrease negative environmental impacts resulting from continued use of A. O. Adesemoye (*) : J. W. Kloepper Department of Entomology & Plant Pathology, chemical fertilizers is inoculation with plant growth- Auburn University, promoting rhizobacteria (PGPR). These bacteria exert 209 Life Science Building, beneficial effects on plant growth and development [5], Auburn, AL 36849, USA and many different genera have been commercialized for e-mail: [email protected] use in agriculture. One of the important mechanisms for J. W. Kloepper these beneficial effects is PGPR-elicited enhanced nutrient e-mail: [email protected] availability and nutrient use efficiency. In a recent review, H. A. Torbert Glick et al. [16] observed that some PGPR may influence USDA Agricultural Research Services, plant growth by synthesizing plant hormones or facilitat­ National Soil Dynamics Laboratory, ing uptake of nutrients from the soil through different 411 South Donahue Drive, Auburn, AL 36849, USA direct mechanisms such as atmospheric nitrogen (N) e-mail: [email protected] fixation, solubilization of phosphorus (P), and synthesis 922 A. O. Adesemoye et al. of siderophores for iron sequestration making nutrients Results from some past studies have suggested ineffec­ more available to plants. tiveness of PGPR using single-strain inoculations [14, 25], Chemical fertilizers often have low use efficiency, but mixtures of strains provided more consistency [8, 18, meaning that only a portion of the applied nutrients are 36]. Some levels of interactions have been reported by co­ taken up by plants [17]. For example, P is precipitated after inoculating PGPR with AMF [4, 6, 7, 31, 39]. Some addition to soil, thus becoming less available to plants [17]. studies, mostly with single elements, have suggested that In addition, applied N can be lost through nitrate leaching, PGPR are more effective when nutrients become limiting resulting in contamination of groundwater [9]. Microbial [12, 38]. Reported here are the results of a study that inoculants have shown some promise in increasing nutrient included single elements (N and P) as well as conventional availability. For example, previous reports have suggested water-soluble NPK fertilizer and the interaction of a two- positive impacts of microbes on N uptake involving strain mixture of PGPR with AMF. nonlegume biological fixation [4, 13, 22, 37, 41]. Also, inoculation with some microbes, including arbuscular mycorrhiza fungi (AMF), resulted in P solubilization or enhanced plant uptake of fixed soil P and applied phosphate Materials and Methods resulting in higher crop yield [2–4, 7, 10]. The main mechanism resulting in increased availability of inorganic P Sources of Inoculants appears to be through the action of organic acids synthe­ sized by inoculants [34]. Plant growth-promoting rhizobacteria used included two Because essential plant nutrients are taken up from single strains that have been used in previous studies [26, the soil by roots [29], good root growth is considered a 36, 42]. The two PGPR strains, B. amyloliquefaciens prerequisite for enhanced plant development. Many IN937a and B. pumilus T4, were obtained from the culture PGPR systems cause stimulation of root growth [9, 25], collection of the Department of Entomology and Plant sometimes via production of phytohormones by the plant Pathology, Auburn University, Auburn, AL, USA and used or the bacteria [25, 38]. If promotion of root growth by as spore preparations. Another inoculant used was a PGPR could be achieved with high frequency in the field, commercial PGPR formulation, which consisted of many PGPR may be potential tools for increasing nutrient PGPR Bacillus strains with the trade name Plant Growth uptake. Activator (PGA; Organica, Norristown, PA, USA). In Two key questions arise from some of the past studies: Is addition, the arbuscular mycorrhiza fungi used was Glomus it possible to reverse the current trend of applying large intraradices obtained from Becker Underwood (Ames, IA, amounts of fertilizers by supplementing reduced fertilizer USA). with inoculants? Can the potential benefits of PGPR and/or AMF in plant nutrient uptake be utilized by combining Test for Nitrogen Fixation by PGPR Strains them with reduced levels of fertilizers? The overall hypothesis is that PGPR or combinations of PGPR and The two PGPR strains were tested for their capacity to fix AMF with fertilizers will improve the use efficiency of N using JNFb medium [30]. The strains were streaked onto fertilizers and lead to a reduction in the amount of fertilizer JNFb agar plates and stab-inoculated into JNFb semisolid usage. medium in test tubes. After incubation for 48 h at 28°C, the The objectives in this study were to determine (1) if color of agar and liquid medium was examined in reduced rates of inorganic fertilizer coupled with microbial comparison to a positive control consisting of the N- inoculants (PGPR or PGPR plus AMF) will produce plant fixing strain Azosprillum brasilense obtained from the growth, yield, and nutrient uptake levels equivalent to those bacterial culture collection at Auburn University. with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were Experimental Design and Preliminary Studies used. To achieve these objectives, experiments were designed using single strains as well as formulated PGPR All assays reported in this paper were conducted in the products with or without AMF coupled with different greenhouse at the Plant Science Research Center, Auburn fertilizer regimes. For the PGPR strains, a two-strain University using tomato (Solanum lycopersicum, formerly mixture was used which included Bacillus amyloliquefa­ Lycopersicon esculentum) cultivar Juliet (Park Seed, ciens IN937a and Bacillus pumilus T4. The strains were Anderson, SC, USA). The growth medium was a mixture previously reported to elicit significant effects on root of one part field soil and three parts sand. After seeding, development, plant growth, biocontrol, and/or induced water was applied twice daily, and the greenhouse systemic resistance [23, 32, 36, 42]. temperature was maintained at 21–25°C. PGPR Allow Reduced Fertilizers 923 The overall experimental design was a randomized Tests with a Two-Strain Mixture, AMF, and Hoagland complete block with variations in the number of blocks Solution depending on each test. The main blocks were inoculant types, while fertilizer rate was the subfactor. Inoculant type The spore suspension of the two PGPR strains (B. included PGPR alone, PGPR+AMF, AMF alone, and no amyloliquefaciens IN937a and B. pumilus T4) were diluted inoculants. The fertilizer used was water-soluble Peters appropriately and mixed together. The concentration was Professional® 20:10:20 Peat-Lite Special (Buddies Plant adjusted to log 5 cfu/ml and used for inoculation. At Food, Ballinger, TX, USA). The 100% fertilizer rate was planting, 1 ml of the bacterial suspension was applied onto −1 1.25 g L which was the
Recommended publications
  • Microbial Inoculants for Improving Crop Quality and Human Health in Africa
    fmicb-09-02213 September 17, 2018 Time: 16:40 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Covenant University Repository REVIEW published: 19 September 2018 doi: 10.3389/fmicb.2018.02213 Microbial Inoculants for Improving Crop Quality and Human Health in Africa Elizabeth Temitope Alori1 and Olubukola Oluranti Babalola2* 1 Department of Crop and Soil Science, Landmark University, Omu-Aran, Nigeria, 2 Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa Current agricultural practices depend heavily on chemical inputs (such as fertilizers, pesticides, herbicides, etc.) which, all things being equal cause a deleterious effect on the nutritional value of farm product and health of farm workers and consumers. Excessive and indiscriminate use of these chemicals have resulted in food contamination, weed and disease resistance and negative environmental outcomes which together have a significant impact on human health. Application of these chemical inputs promotes the accumulation of toxic compounds in soils. Chemical compounds are absorbed by most crops from soil. Several synthetic fertilizers contain acid radicals, such as hydrochloride and sulfuric radicals, and hence increase the soil acidity and adversely affect soil and plant health. Highly recalcitrant compounds can also be absorbed by some plants. Continuous consumption of such crops can lead to systematic disorders in humans. Quite a number of pesticides and herbicides have carcinogenicity potential. The increasing awareness of health challenges as a result of consumption of poor quality crops has led to a quest for new and improved technologies Edited by: of improving both the quantity and quality of crop without jeopardizing human health.
    [Show full text]
  • Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Wheat
    Hindawi BioMed Research International Volume 2021, Article ID 8835275, 12 pages https://doi.org/10.1155/2021/8835275 Research Article Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Wheat Xiaohui Wang,1,2 Chao Ji,1 Xin Song,1 Zhaoyang Liu,1 Yue Liu,1 Huying Li,1 Qixiong Gao,1 Chaohui Li,1 Rui Zheng,1 Xihong Han,2 and Xunli Liu 1 1College of Forestry, Shandong Agricultural Universities, No. 61, Daizong Street, Taian, Shandong 271018, China 2Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao 266400, China Correspondence should be addressed to Xunli Liu; [email protected] Received 16 September 2020; Revised 4 November 2020; Accepted 26 December 2020; Published 9 January 2021 Academic Editor: Mohamed Salah Abbassi Copyright © 2021 Xiaohui Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Biocontrol by inoculation with beneficial microbes is a proven strategy for reducing the negative effect of soil-borne pathogens. We evaluated the effects of microbial inoculants BIO-1 and BIO-2 in reducing soil-borne wheat diseases and in influencing wheat rhizosphere microbial community composition in a plot test. The experimental design consisted of three treatments: (1) Fusarium graminearum F0609 (CK), (2) F. graminearum + BIO-1 (T1), and (3) F. graminearum F0609 + BIO-2 (T2). The results of the wheat disease investigation showed that the relative efficacies of BIO-1 and BIO-2 were up to 82.5% and 83.9%, respectively.
    [Show full text]
  • Characterization of Nutrient Disorders and Impacts on Chlorophyll and Anthocyanin Concentration of Brassica Rapa Var
    agriculture Article Characterization of Nutrient Disorders and Impacts on Chlorophyll and Anthocyanin Concentration of Brassica rapa var. Chinensis 1 1 1, 2 Patrick Veazie , Paul Cockson , Josh Henry y, Penelope Perkins-Veazie and Brian Whipker 1,* 1 Department of Horticultural Sciences, North Carolina State University, Raleigh, NC 27695, USA; [email protected] (P.V.); [email protected] (P.C.); [email protected] (J.H.) 2 Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; [email protected] * Correspondence: [email protected] Current address is: The Scotts Miracle-Gro Company, Marysville, OH 43040, USA. y Received: 3 September 2020; Accepted: 5 October 2020; Published: 8 October 2020 Abstract: Essential plant nutrients are needed at crop-specific concentrations to obtain optimal growth and yield. Foliar tissue analysis is the standard method for assessing nutrient levels in plants. Symptoms of nutrient deficiency or toxicity occur when the foliar tissue values become too low or high. Diagnostic nutrient deficiency criteria for Brassica rapa var. Chinensis (bok choy) is lacking in the current literature. In this study, green (‘Black Summer’) and purple (‘Red Pac’) bok choy plants were grown in silica sand culture, with control plants receiving a complete modified Hoagland’s all-nitrate solution, and nutrient-deficient plants induced by using a complete nutrient formula withholding a single nutrient. Tissue samples were collected at the first sign of visual disorder symptoms and analyzed for dry weight and nutrient concentrations of all plant essential elements. Six weeks into the experiment, the newest matured leaves were sampled for chlorophyll a, b, and total carotenoids concentrations for both cultivars, and total anthocyanin concentration in ‘Red Pac’.
    [Show full text]
  • Effects of Hoagland's Solution Concentration and Aeration On
    Proc. Fla. State Hort. Soc. 120:337–339. 2007. Effects of Hoagland’s Solution Concentration and Aeration on Hydroponic Pteris vittata Production ROBERT H. STAMPS* University of Florida, Institute of Food and Agricultural Sciences, Environmental Horticulture Department, Mid-Florida Research and Education Center, 2725 South Binion Road, Apopka, FL 32703-8504 ADDITIONAL INDEX WORDS. Chinese brake fern, Chinese ladder brake fern, phytoremediation, arsenic, electrical conductivity, water use, water use effi ciency, fern yield Chinese ladder brake fern (Pteris vittata) has potential for use as a biofi lter for arsenic-contaminated groundwater. However, little research has been conducted on growing ferns hydroponically, especially for months at a time. The purpose of this experiment was to determine the effects of hydroponic nutrient solution concentration and aeration on Pteris vittata growth. Individual fern plugs in net pots were suspended in 10%, 20%, or 30% strength Hoagland’s #1 solution from polystyrene sheets fl oating in 11-L tanks. Half the tanks were aerated and half were not. Solution electrical conductivity increased with increasing Hoagland’s solution strength, and pHs were higher in the aerated than in the non-aerated tanks. Root dry masses were not affected by solution strength, but frond and rhizome dry masses increased linearly with increasing Hoagland’s solution strength. Dry masses of all three plant parts were gen- erally greater in the aerated tanks. Frond water use (mL·cm–2) was reduced by aeration while water use effi ciency (g dry wt·L–1) was increased. Hoagland’s solution strength had no effect on these latter two parameters. Pteris vittata was successfully grown hydroponically in low-strength nutrient solutions selected to reduce the chances of secondary contamination to water sources upon release by fertilizer components.
    [Show full text]
  • Visual Deficiency and Multi-Deficiency Symptoms of Macro and Micro Nutrients Element in Pistachio Seedling (Pistacia Vera)
    Visual deficiency and multi-deficiency symptoms of macro and micro nutrients element in pistachio seedling (Pistacia vera) Afrousheh M., Ardalan M., Hokmabadi H. in Zakynthinos G. (ed.). XIV GREMPA Meeting on Pistachios and Almonds Zaragoza : CIHEAM / FAO / AUA / TEI Kalamatas / NAGREF Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 94 2010 pages 37-52 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=801283 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Afrousheh M., Ardalan M., Hokmabadi H. Visual deficiency and multi-deficiency symptoms of macro and micro nutrients element in pistachio seedling (Pistacia vera). In : Zakynthinos G. (ed.). XIV GREMPA Meeting on Pistachios and Almonds. Zaragoza : CIHEAM / FAO / AUA / TEI Kalamatas / NAGREF, 2010. p. 37-52 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 94) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • Lipoic Acid Combined with Melatonin Mitigates Oxidative Stress and Promotes Root Formation and Growth in Salt-Stressed Canola Seedlings (Brassica Napus L.)
    molecules Article Lipoic Acid Combined with Melatonin Mitigates Oxidative Stress and Promotes Root Formation and Growth in Salt-Stressed Canola Seedlings (Brassica napus L.) Hafiz Muhammad Rashad Javeed 1 , Mazhar Ali 1 , Milan Skalicky 2 , Fahim Nawaz 3 , Rafi Qamar 4, Atique ur Rehman 5, Maooz Faheem 1, Muhammad Mubeen 1, Muhammad Mohsin Iqbal 1 , Muhammad Habib ur Rahman 6 , Pavla Vachova 2 , Marian Brestic 7 , Alaa Baazeem 8 and Ayman EL Sabagh 9,* 1 Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; [email protected] (H.M.R.J.); [email protected] (M.A.); [email protected] (M.F.); [email protected] (M.M.); [email protected] (M.M.I.) 2 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; [email protected] (M.S.); [email protected] (P.V.) 3 Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan; [email protected] 4 Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; drrafi[email protected] 5 Citation: Javeed, H.M.R.; Ali, M.; Department of Agronomy, Bahauddin Zakariya University, Multan 60000, Pakistan; [email protected] 6 Skalicky, M.; Nawaz, F.; Qamar, R.; Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, 53113 Bonn, Germany; [email protected] Rehman, A.u.; Faheem, M.; Mubeen, 7 Department of Plant Physiology, Slovak University of Agriculture, 94901 Nitra, Slovakia; M.; Iqbal, M.M.; Rahman, M.H.u.; [email protected] et al.
    [Show full text]
  • Trends in Soil Microbial Inoculants Research: a Science Mapping Approach to Unravel Strengths and Weaknesses of Their Application
    agriculture Article Trends in Soil Microbial Inoculants Research: A Science Mapping Approach to Unravel Strengths and Weaknesses of Their Application Loredana Canfora 1 , Corrado Costa 2 , Federico Pallottino 2 and Stefano Mocali 3,* 1 Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Agriculture and Environment, 00182 Roma, Italy; [email protected] 2 Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Engineering and Agro-Food Processing, 00015 Monterotondo, Italy; [email protected] (C.C.); [email protected] (F.P.) 3 Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Agriculture and Environment, 50125 Cascine del Riccio, Italy * Correspondence: [email protected] Abstract: Microbial inoculants are widely accepted as potential alternatives or complements to chemical fertilizers and pesticides in agriculture. However, there remains a lack of knowledge regarding their application and effects under field conditions. Thus, a quantitative description of the scientific literature related to soil microbial inoculants was conducted, adopting a science mapping approach to observe trends, strengths, and weaknesses of their application during the period of 2000–2020 and providing useful insights for future research. Overall, the study retrieved 682 publications with an increasing number during the 2015–2020 period, confirming China, India, and the U.S. as leading countries in microbial inoculants research. Over the last decade, the research Citation: Canfora, L.; Costa, C.; field emphasized the use of microbial consortia rather than single strains, with increasing attention Pallottino, F.; Mocali, S. Trends in Soil Microbial Inoculants Research: A paid to sustainability and environmental purposes by means of multidisciplinary approaches.
    [Show full text]
  • Microbial-Assisted Wheat Iron Biofortification Using Endophytic
    ORIGINAL RESEARCH published: 03 August 2021 doi: 10.3389/fnut.2021.704030 Microbial-Assisted Wheat Iron Biofortification Using Endophytic Bacillus altitudinis WR10 Zhongke Sun 1,2*, Zonghao Yue 1, Hongzhan Liu 1, Keshi Ma 1 and Chengwei Li 2* 1 College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China, 2 College of Biological Engineering, Henan University of Technology, Zhengzhou, China Microbial-assisted biofortification attracted much attention recently due to its sustainable and eco-friendly nature for improving nutrient content in wheat. An endophytic strain Bacillus altitudinis WR10, which showed sophistical regulation of iron (Fe) homeostasis in wheat seedlings, inspired us to test its potential for enhancing Fe biofortification in wheat grain. In this study, assays in vitro indicated that WR10 has versatile plant growth-promoting (PGP) traits and bioinformatic analysis predicted its non-pathogenicity. Two inoculation methods, namely, seed soaking and soil spraying, with 107 cfu/ml WR10 Edited by: Om Prakash Gupta, cells were applied once before sowing of wheat (Triticum aestivum L. cv. Zhoumai 36) in Indian Institute of Wheat and Barley the field. After wheat maturation, evaluation of yield and nutrients showed a significant Research (ICAR), India increase in the mean number of kernels per spike (KPS) and the content of total nitrogen Reviewed by: (N), potassium (K), and Fe in grains. At the grain filling stage, the abundance of Bacillus Radha Prasanna, Indian Agricultural Research Institute spp. and the content of N, K, and Fe in the root, the stem, and the leaf were also increased (ICAR), India in nearly all tissues, except Fe in the stem and the leaf.
    [Show full text]
  • Rapid Mass Multiplication of Glomus Mosseae Inoculum As Influenced by Some Biotic and Abiotic Factors
    Bangladesh J. Bot. 44(2): 209-214, 2015 (June) RAPID MASS MULTIPLICATION OF GLOMUS MOSSEAE INOCULUM AS INFLUENCED BY SOME BIOTIC AND ABIOTIC FACTORS SUBRATA NATH BHOWMIK*, GULAB SINGH YADAV AND MRINMAY DATTA Division of Natural Resource Management, ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra 799210, Tripura, India Key words: Rapid mass multiplication, Glomus mosseae, Biotic, Abiotic factors, Root colonization Abstract Rhodes grasses (Chloris gayana Kunth) inoculated with Glomus mosseae were grown under the influence of Azospirillum (biotic factor), IAA (abiotic factor) and Hoagland’s solution (abiotic factor). The effectiveness of each factor was evaluated by measuring mycorrhizal root colonization and spore numbers. The pot culture experiment was carried out under polyhouse condition and observations were recorded at 45, 90 and 120 days of plant growth. The harvest date finely influenced the size of mycorrhizal inoculum. But, all biotic and abiotic factors had a greater influence on root colonization and spore multiplication than harvest time. The agents on application in conjunction favourably enhanced root infection and spore multiplication as compared to their solo treatments, with Azospirillum + Hoagland’s solution application posing to be the best. This not only stimulated mycorrhizal development, but also accelerated the root growth. Introduction Arbuscular mycorrhizae (AM) are obligate biotrophic fungi forming symbiotic relationship with the roots of many plants. Despite immense potential of AM fungus to increase crop yield, the obligate biotrophic nature of AM fungus has complicated the development of cost-efficient large scale production methods to obtain high-quality AM fungal inoculum (IJdo et al. 2010). AM fungal propagules comprising mycelium or infected root pieces, and soil borne spores are termed as inoculum (Daniels and Skipper 1982).
    [Show full text]
  • Inoculants of Plant Growth-Promoting Bacteria for Use in Agriculture
    Biotechnology Advances, Vol. 16, No. 4, pp. 729-770, 1998 Pll S0734-9750(98)00003-2 Copyright ® 1998 Elsevier Science Inc. Printed in the USA. All rights reserved 0734-9750/98 $19.00 + .00 ELSEVIER INOCULANTS OF PLANT GROWTH-PROMOTING BACTERIA FOR USE IN AGRICULTURE YOAV BASHAN Department of Microbiology, Division of Experimental Biology, The Center forBiological Research of the Northwest (CIB), La Paz, A.P.128, B.C.S., 23000, Mexico Fax: 52 (112) 54710 or 53625. e-mail: bashan@cibnormx Key Words: Benefical bacteria; inoculant; plant growth-promoting bacteria; sustainable agriculture ABSTRACT An assessment of the current state of bacterial inoculants for contemporary agriculture in developed and developing countries is critically evaluated from the point of view of their actual status and future use. Special emphasis is given to two new concepts of inoculation, as yet unavailable commercially: (i) synthetic inoculants under development for plant-growth promoting bacteria (PGPB) (Bashan and Holguin, 1998), and (ii) inoculation by groups of associated bacteria. This review contains: A brief historical overview of bacterial inoculants; the rationale for plant inoculation with emphasis on developing countries and semiarid agriculture, and the concept and application of mixed inoculant; discussion of microbial formulation including optimization of carrier-compound characteristics, types of existing carriers for inoculants, traditional formulations, future trends in formulations using unconventional materials, encapsulated synthetic formulations, macro and micro formulations of alginate, encapsulation of beneficial bacteria using other materials, regulation and contamination of commercial inoculants, and examples of modem commercial bacterial inoculants; and a consideration of time constraints and application methods for bacterial inoculants, commercial production, marketing, and the prospects of inoculants in modern agriculture.
    [Show full text]
  • Plant Growth-Promoting Bacteria As Biofertilizer Fauzia Y
    Plant growth-promoting bacteria as biofertilizer Fauzia Y. Hafeez, Sumera Yasmin, Dini Ariani, Non Renseigné, Yusuf Zafar, Kauser A. Malik To cite this version: Fauzia Y. Hafeez, Sumera Yasmin, Dini Ariani, Non Renseigné, Yusuf Zafar, et al.. Plant growth- promoting bacteria as biofertilizer. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2006, 26 (2), pp.143-150. hal-00886338 HAL Id: hal-00886338 https://hal.archives-ouvertes.fr/hal-00886338 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agron. Sustain. Dev. 26 (2006) 143–150 143 © INRA, EDP Sciences, 2006 DOI: 10.1051/agro:2006007 Research article Plant growth-promoting bacteria as biofertilizer Fauzia Y. HAFEEZa*, Sumera YASMINa, Dini ARIANIb, Mehboob-ur-RAHMANa, Yusuf ZAFARa, Kauser A. MALIKa a National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang Road, Faisalabad 38000, Pakistan b R&D Centre for Biotechnology, The Indonesian Institute of Sciences, JI. Raya Bogor Km 46, Cibinong 16911, Indonesia (Accepted 18 May 2006) Abstract – Seventeen rhizobacteria isolated from different ecological regions, i.e. Brazil, Indonesia, Mongolia and Pakistan were studied to develop inoculants for wheat, maize and rice.
    [Show full text]
  • Effect of Potassium Deficiency on Uptake and Partitioning in the Cotton
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Effect of Potassium Deficiency on Uptake and Partitioning in the Cotton (Gossypium hirsutum L.) Plant and Detection by a Crop Reflectance Sensor Taylor Dayne Coomer University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Agronomy and Crop Sciences Commons, Botany Commons, and the Plant Biology Commons Recommended Citation Coomer, Taylor Dayne, "Effect of Potassium Deficiency on Uptake and Partitioning in the Cotton (Gossypium hirsutum L.) Plant and Detection by a Crop Reflectance Sensor" (2016). Theses and Dissertations. 1572. http://scholarworks.uark.edu/etd/1572 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Effect of Potassium Deficiency on Uptake and Partitioning in the Cotton (Gossypium hirsutum L.) Plant and Detection by a Crop Reflectance Sensor A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Crop, Soil, and Environmental Sciences by Taylor Dayne Coomer University of Arkansas Bachelor of Science in Crop, Soil, and Environmental Sciences, 2013 May 2016 University of Arkansas This thesis is approved for recommendation to the Graduate Council. __________________________________ Dr. Derrick Oosterhuis Thesis Director __________________________________ Dr. Curt Rom Committee Member __________________________________ ___________________________________ Dr. Leo Espinoza Dr. Fred Bourland Committee Member Committee Member Abstract For cotton (Gossypium hirsutum L.) to grow and develop normally, plants need to uptake the necessary amount of nutrients and use those nutrients in a beneficial fashion.
    [Show full text]