In Comet Assay for Comparing with Various Mutagenicity Tests

Total Page:16

File Type:pdf, Size:1020Kb

In Comet Assay for Comparing with Various Mutagenicity Tests 63 [Japanese Journal of Water Treatment Biology Vol.40 No.2 63-70 2004] Normalization of DNA Damage Indices in Comet Assay for Comparing with Various Mutagenicity Tests KEISUKE IWAHORI1*, NAOYUKI MIYATA1, YASUHIRO YAMAMOTO2, DAIJIRO SONE2, and KOTARO AOYAMA3 1Institute for Environmental Sciences ,University of Shizuoka 2Graduate School of Nutritional and Environmental Sciences , University of Shizuoka /52-1, Yada, Shizuoka 422-8526, Japan 3Hitachi Plant Engineering and Construction Co .,Ltd. /537, Kamihongo, Matsudo, Chiba 271-0064, Japan Abstract The comet assay has been widely used in genetic toxicology, environmental biomonitoring and clinicalinvestigations. However, many indicesare typicallyused to evaluate degree of DNA damage in comet assay and various bioassays have also been employed for the mutagenicity test of environmental waters. In this study, the DNA damage evaluation characteristicsof each index were examined and the numerical data obtained were normalized on the basis of untreated controls to compare with data obtained under different experiment conditions. For confirmation of detection characteristicsand sensitivity,comet assay were compared with Ames test,umu test and Rec assay. Among the comet assay indices,tail moment most effectivelyrepresented the sensitivitiesof individual cells and dose-dependent DNA damage was detected. By normalization of tailmoment, comparison of experimental resultsin differentconditions was simplified.The comet assay did not have the capacity to detect DNA cross-linking agent. The comparison of data revealed that mutagenicity detectionsensitivity for comet assay is greater than Ames testand Rec assay and as high as that of umu test. Key words: comet assay; tail moment, normalization, mutagenicity test other mutagens3).Given the ease of culturing INTRODUCTION and handling E.gracilis cells as well as its The alkaline single cell gel electrophoresis sensitivity,comet assay using E. graciliscells assay (comet assay),established by Singh et is undoubtedly useful tool for testing the al.1)isa sensitive,simple and rapid technique genotoxicity of chemicals and for assessing of and widely used for detecting DNA damage genotoxic potential in natural environments. in cellsexposed in vitroor in vivo to a variety We have used tail length and tail moment, of physical and chemical agents.Since it is the most popular indices for evaluating possible to subcultivate and evaluate chronic degree of DNA damage.However,a number influence of mutagens,we examined of indices have been used to evaluate degree conditions for using unicellular green alga of DNA damage in comet assay and the Euglena gracilis as environmental micro- relations between various indices and their organism in comet assay2)and verified that dominance have been investigated.McCarthy this technique can be used to evaluate DNA et al.4)evaluated DNA damage using head damage and repair caused by radiation and diameter,comet length,comet length/head *Corresponding Author 64Japanese J.Wat.Treat.Biol.Vol.40 No.2 diameter,area,%tail DNA,tail length,head Cells were grown at 25℃ under 12h extent/2,tail moment and tail length/head dark/light conditions (0.9 lx) in Hutner radius(IJH)in the image analysis comet medium10).It contained(per liter)20 mg of system,and stated that%tail DNA,tail KH2PO4,25 mg of MgSO4・7H2O,400 mg of moment and L/H are good parameters for sodium acetate,40 mg of potassium citrate, displaying the expected trends and are in 600mg of polypeptone,400 mg of yeast agreement with the results obtained from extract,0.5μg of vitamin B12 and 0.4 mg of manual analysis.Ashby et al.5)used tail thiamine HCl(pH 6.4).Cells were harvested length,%DNA tail and tail moment,and by centrifugation(9000 × g,5min)and reported that they all correlated well.In spite washed once with phosphate-buffered saline of its wide applications and increasing (PBS).Cells were grown to mid-logarithmic popularity,no standard indices have been phase(3days) and late-logarithmic phase(6 developed for detecting and comparing with days). the response of cells to different agents. Besides,in vitro tests such as comet assay, Cell treatment E.gracilis was re- Ames test,umu test and Rec assay,are suspended in PBS at 4×105 cells/ml and widely used for measuring the potential incubated with chemicals. The chemicals(1- mutagenicity of water environment.The methyl-3-nitro-1-nitrosoguanidine(MNNG), Ames test is the mutagenicity test that benzo(a)pyrene(BAP,98%pure), mitomycin counts the colonies formed by mutants of C(MMC),actinomycin D(AMD),formal- Salmonella typhimurium selected for dehyde,dichloromethane and chloroform sensitivity and specificity for reversion from a were obtained from Wako Pure Chemical histidine requirement back to prototrophy by Industries(Osaka, Japan).These chemicals a variety of mutagenss6).The umu test were added to the suspension of E. gracilis eValUateS mUtageniCity by meaSUring β- cells to produce a final concentration of 100 galactosidase activity controlled by the umu μ Mor less.A cofactor-supplemented S9 from regulatory region7).The Rec assay examines induced rat liver(S-9/cofactor A set;Oriental the increased lethality of radiation of certain Yeast Co.,Osaka,Japan)was coinjected to chemicals on non-recombining(Rec-)versus metabolically activated BAP,dichloro- recombining(Rec+)bacteria8).However,many methane and chloroform.The cell treatment papers evaluated mutagenicity by only one was conducted under dark conditions to avoid method and few papers have described the activation of the compounds by light,and the data as compared with detection charac- treatment time was 2 to 3 hours.Cells teristics and sensitivity9). viability during this treatment time was Since the results of comet assay are measured by the dye-exclusion test11)and a influenced by the dispersion of control values value over 90%was confirmed. in each experiment unlike mutagenicity test, normalization of DNA damage indices has Comet assay Comet assay with E. been investigated on the basis of the control gracilis was conducted according to the in this study.Detection characteristics and method of Iwahori et al.2). Treated cells were sensitivity of typical mutagenicity tests collected and embedded in a layer of 0.5%low- (Ames test, umu test and Rec assay)have melting agarose sandwiched between a been compared with the normalized comet bottom and top layer of 0.5%normal-melting assay,thereby verifying its availability. agarose on a fully frosted microscopic slide. The slides were placed in a lysis solution containing 300 mM NaOH,30 mM Na2EDTA MATERIALS AND METHODS and 0.01%SDS for 5 min and then in an electrophoresis buffer(300 mM NaOH plus Organism E.gracilis strain NIES-49 1 mM Na2EDTA)for 20 min at 4℃to allow was obtained from the Microbial Culture unwinding of DNA.Electrophoresis was Collection,National Institute for conducted with the same buffer at 4℃ for 20 Environmental Studies (Tsukuba,Japan). min at 25 V and 300 mA.After the gel was Normalization of DNA Damage Indices in Comet Assay 65 neutralized by immersing it twice in 400 mM GraphPad Prism software (GraphPad Tris-HC1(pH 7.5)for 5 min,the DNA Software Inc.,San Diego,CA).When molecules were stained with ethidium significant differences (p <0.05) appeared, bromide. Donnett's multiple comparison test was used The migrated DNA(comet)images were to isolate the group(s)apart from the control observed by epi-fluorescence microscopy group. using Olympus BX60 equipped with a CCD camera,and DNA damage was evaluated RESULTS AND DISCUSSION with an automatic image analyzing system (Keio Electronics Co.,Osaka,Japan).The evaluation indices used in this study are Comparison of DNA damage evaluation shown in Fig.1.Data were obtained from indices The indices we used for about 30 comets per sample and represented comparison in this study are tail moment, by box and whiskers plots as follows: tail length,ratio, DNA migration,nuclear measured values for a tested compound were diameter,shape factor and tail intensity, shown by a box that including 50%of data. which could be measured and evaluated by The top and bottom of the box marked the automatic analysis software.The results for 25th and 75th percentiles, respectively,and DNA damage induced by MNNG treatment the inner line marked the median value;the using mid-logarithmic phase E.gracilis cells whiskers marked the 10th and 90th are shown in Table l and Table 2. Tail percentile value.Average values were moment appeared to dose-dependently represented by closed squares.To determine increase at MNNG and a significant signsficantdifferences among the treatment difference was detected at more than 5μM. groups and control(not treated)group,data Based on the calculations of the tail length were assessed by one-way ANOVA using and DNA migration (Fig.1),the results o btained for the two indices ,were equivalent and a significant difference from the control was detected at more than 1μM.However, since tail length and DNA migration evaluated only length of nuclear diameter and tail,the DNA-chemical interaction is not adequately represented.When the DNA damage was evaluated using the ratio, a significant difference was detected at more than 0.5μM appeared to dose-dependently increase at MNNG.With other indices, a significant difference was detected only at high concentrations,or no concentration- dependent DNA damage was detected(data not shown).Among the four indices,tail moment showed the largest coefficient of Centroid of nuclear Centroid of tail variation(C.V.)at each treatment concen-
Recommended publications
  • Principles and Methods for the Risk Assessment of Chemicals in Food
    WORLD HEALTH ORGANIZATION ORGANISATION MONDIALE DE LA SANTE EHC240: Principles and Methods for the Risk Assessment of Chemicals in Food SUBCHAPTER 4.5. Genotoxicity Draft 12/12/2019 Deadline for comments 31/01/2020 The contents of this restricted document may not be divulged to persons other than those to whom it has been originally addressed. It may not be further distributed nor reproduced in any manner and should not be referenced in bibliographical matter or cited. Le contenu du présent document à distribution restreinte ne doit pas être divulgué à des personnes autres que celles à qui il était initialement destiné. Il ne saurait faire l’objet d’une redistribution ou d’une reproduction quelconque et ne doit pas figurer dans une bibliographie ou être cité. Hazard Identification and Characterization 4.5 Genotoxicity ................................................................................. 3 4.5.1 Introduction ........................................................................ 3 4.5.1.1 Risk Analysis Context and Problem Formulation .. 5 4.5.2 Tests for genetic toxicity ............................................... 14 4.5.2.2 Bacterial mutagenicity ............................................. 18 4.5.2.2 In vitro mammalian cell mutagenicity .................... 18 4.5.2.3 In vivo mammalian cell mutagenicity ..................... 20 4.5.2.4 In vitro chromosomal damage assays .................. 22 4.5.2.5 In vivo chromosomal damage assays ................... 23 4.5.2.6 In vitro DNA damage/repair assays ....................... 24 4.5.2.7 In vivo DNA damage/repair assays ....................... 25 4.5.3 Interpretation of test results ......................................... 26 4.5.3.1 Identification of relevant studies............................. 27 4.5.3.2 Presentation and categorization of results ........... 30 4.5.3.3 Weighting and integration of results .....................
    [Show full text]
  • Protocol 4253-096-K
    IFU0132 Rev 1 Status: RELEASED printed 12/8/2016 2:11:21 PM by Trevigen Document Control Instructions For Research Use Only. Not For Use In Diagnostic Procedures ® CometAssay 96 Reagent Kit for Higher Throughput Single Cell Gel Electrophoresis Assay (96-well) Catalog # 4253-096-K IFU0132 Rev 1 Status: RELEASED printed 12/8/2016 2:11:21 PM by Trevigen Document Control ® CometAssay 96 Reagent Kit for Higher Throughput Single Cell Gel Electrophoresis Assay (96-well) Catalog # 4253-096-K Table of Contents Page Number I. Background 1 II. Precautions and Limitations 1 III. Materials Supplied 2 IV. Materials Required But Not Supplied 2 V. Reagent Preparation 2 VI. Sample Preparation and Storage 4 VII. Assay Protocol 6 VIII. Data Analysis 7 IX. References 9 X. Related Products Available From Trevigen 10 XI. Appendices 12 XII. Troubleshooting Guide 13 © 2012 Trevigen, Inc. All rights reserved. Trevigen and CometAssay are registered trademarks, and CometSlide and FLARE are trademarks of Trevigen, Inc. i IFU0132 Rev 1 Status: RELEASED printed 12/8/2016 2:11:21 PM by Trevigen Document Control I. Background Trevigen’s CometAssay®, or single cell gel electrophoresis assay, provides a simple and effective method for evaluating DNA damage in cells. The principle of the assay is based upon the ability of denatured, cleaved DNA fragments to migrate out of the nucleoid under the influence of an electric field, whereas undamaged DNA migrates slower and remains within the confines of the nucleoid when a current is applied. Evaluation of the DNA “comet” tail shape and migration pattern allows for assessment of DNA damage.
    [Show full text]
  • Application of the Comet Assay in Erythrocytes of Oreochromis Niloticus (Pisces): a Methodological Comparison
    Genetics and Molecular Biology, 32, 1, 155-158 (2009) Copyright © 2009, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Short Communication Application of the comet assay in erythrocytes of Oreochromis niloticus (Pisces): A methodological comparison Cintya A. Christofoletti1, José Augusto O. David2 and Carmem S. Fontanetti1 1Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, SP, Brazil. 2Departamento de Genética, Instituto de Biociências, Universidade Federal do Pará, Belém, PA, Brazil. Abstract The present study applied the comet assay to erythrocytes of Oreochromis niloticus with the aim of improving proto- cols to detect DNA damage in these cells, by using two distinct pHs (pH = 12.1 and pH > 13) and evaluating whether there is a correspondence between silver and ethidium bromide staining. Comets were visually examined and, the frequency of cells with and without damage was obtained, as well as the distribution of classes and scores. By using the Kruskal-Wallis test, our results revealed that pH 12.1 is more effective, although both pHs can be used. Our find- ings also suggest that silver staining can substitute ethidium bromide, an expensive and highly toxic stain that re- quires specific equipment for examination. Key words: comet assay, ethidium bromide, silver staining, tilapia. Received: April 2, 2008; Accepted: September 5, 2008. The development of new methodologies and the ap- sensitivity of the blood cells of these animals to genotoxic plication of more sensitive assays to detect genotoxicity in effects (Padrangi et al., 1995; Belpaeme et al., 1998; Gon- different samples have been the subject of several scientific tijo et al., 2003).
    [Show full text]
  • DRAFT OECD GUIDELINE for the TESTING of CHEMICALS in Vivo
    DRAFT OECD GUIDELINE FOR THE TESTING OF CHEMICALS In vivo Mammalian Alkaline Comet Assay INTRODUCTION 1. The alkaline Comet (single cell gel electrophoresis) assay is used for the detection of primary DNA damage induced in isolated cells or nuclei from multiple tissues of animals, usually rodents. 2. The purpose of the Comet assay is to identify substances that cause DNA damage. Under alkaline conditions, the Comet assay can detect single and double stranded breaks, resulting, for example, from direct interactions with DNA, alkali labile sites or as a consequence of incomplete excision repair. Under certain modified conditions the assay can detect DNA-DNA and DNA-protein crosslinking, and oxidized bases. The Comet assay has been reviewed and recommendations have been published by various expert groups (1) (2) (3) (4) (5) (6) (7) (8) (9) (10). 3. A formal validation of the in vivo rodent Comet assay was recently (2006-2012) coordinated by the Japanese Center for the Validation of Alternative Methods (JaCVAM), in conjunction with the European Centre for the Validation of Alternative Methods (ECVAM) and the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM)(11). This Test Guideline includes the recommended use and limitations of the Comet assay, and is based on the Comet assay method protocol version 14.2, which w a s ultimately developed during this validation study, and on additional relevant published and in-house data. 4. Definitions of key terms are set out in Annex 1. 1 INITIAL CONSIDERATIONS 5. The Comet assay is a method for measuring primary DNA strand breaks in eukaryotic cells.
    [Show full text]
  • FDA Genetic Toxicology Workshop How Many Doses of an Ames
    FDA Genetic Toxicology Workshop How many doses of an Ames- Positive/Mutagenic (DNA Reactive) Drug can be safely administered to Healthy Subjects? November 4, 2019 Enrollment of Healthy Subjects into First-In-Human phase 1 clinical trials • Healthy subjects are commonly enrolled into First-In-Human (FIH) phase 1 clinical trials of new drug candidates. • Studies are typically short (few days up to 2 weeks) • Treatment may be continuous or intermittent (e.g., washout period of 5 half- lives between doses) • Receive no benefits and potentially exposed to significant health risks • Patients will be enrolled in longer phase 2 and 3 trials • Advantages of conducting trials with healthy subjects include: • investigation of pharmacokinetics (PK)/bioavailability in the absence of other potentially confounding drugs • data not confounded by disease • Identification of maximum tolerated dose • reduction in patient exposure to ineffective drugs or doses • rapid subject accrual into a study 2 Supporting Nonclinical Pharmacology and Toxicology Studies • The supporting nonclinical data package for a new IND includes • pharmacology studies (in vitro and in vivo) • safety pharmacology studies (hERG, ECG, cardiovascular, and respiratory) • secondary pharmacology studies • TK/ADME studies (in vitro and in vivo) • 14- to 28-day toxicology studies in a rodent and non-rodent • standard battery of genetic toxicity studies (Ames bacterial reverse mutation assay, in vitro mammalian cell assay, and an in vivo micronucleus assay) • Toxicology studies are used to • select clinical doses that are adequately supported by the data • assist with clinical monitoring • Genetic toxicity studies are used for hazard identification • Cancer drugs are often presumed to be genotoxic and genetic toxicity studies are generally not required for clinical trials in cancer patients.
    [Show full text]
  • S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use
    Guidance for Industry S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) June 2012 ICH Guidance for Industry S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use Additional copies are available from: Office of Communications Division of Drug Information, WO51, Room 2201 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Silver Spring, MD 20993-0002 Phone: 301-796-3400; Fax: 301-847-8714 [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm and/or Office of Communication, Outreach and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (Tel) 800-835-4709 or 301-827-1800 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) June 2012 ICH Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION (1)....................................................................................................... 1 A. Objectives of the Guidance (1.1)...................................................................................................1
    [Show full text]
  • Flow Micronucleus, Ames II, Greenscreen and Comet June 28, 2012 EPA Computational Toxicology Communities of Practice
    State of the Art High-throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet June 28, 2012 EPA Computational Toxicology Communities of Practice Dr. Marilyn J. Aardema Chief Scientific Advisor, Toxicology Dr. Leon Stankowski Principal Scientist/Program Consultant Ms. Kamala Pant Principal Scientist Helping to bring your products from discovery to market Agenda 11am-12 pm 1. Introduction Marilyn Aardema 5 min 2. In Vitro Flow Micronucleus Assay - 96 well Leon Stankowski, 10 min 3. Ames II Assay Kamala Pant 10 min 4. GreenScreen Assay Kamala Pant 10 min 5. In Vitro Comet Assay - 96 well TK6 assay Kamala Pant 10 min 6. Questions/Discussion 15 min 2 Genetic Toxicology Testing in Product Development Discovery/Prioritization Structure activity relationship analyses useful in very early lead identification High throughput early screening assays Lead Optimization Screening versions of standard assays to predict results of GLP assays GLP Gate Perform assays for regulatory GLP Gene Tox Battery submission according to regulatory guidelines Follow-up assays Additional supplemental tests to to solve problems investigate mechanism and to help characterize human risk 3 High Throughput Genotoxicity Assays • Faster • Cheaper • Uses Less Chemical/Drug • Non-GLP • Predictive of GLP assay/endpoint • Mechanistic Studies (large number of conc./replicates) • Automation 4 Example of Use of Genotoxicity Screening Assays: EPA ToxCast™ Problem: Tens of thousands of poorly characterized environmental chemicals Solution: ToxCast™– US EPA program intended to use: – High throughput screening – Genomics – Computational chemistry and computational toxicology To permit: – Prediction of potential human toxicity – Prioritization of limited testing resources www.epa.gov/ncct/toxcast 5 5 BioReliance EPA ToxCast Award July 15, 2011 • Assays – In vitro flow MN – In vitro Comet – Ames II – GreenScreen • 25 chemicals of known genotoxicity to evaluate the process/assays (April-June 2012) – In vitro flow MN – In vitro Comet – Ames II 6 6 Agenda 11am-12 pm 1.
    [Show full text]
  • The Ames Test
    The Ames Test * Note: You will be writing up this experiment as Scientific Research Paper #1 for the laboratory portion of Biology 222. Be sure you fully understand the background and fundamental biological principles of this experiment as well as why you are performing each step of the procedure. Take careful notes on your materials and methods and results as you will need these to prepare the paper. Schedule This week we will prepare the media and reagents needed for this experiment. Next week you will do a trial run of the experiment using control substances and you will design an independent investigation using this technique. The following two weeks will be used to carry out your investigation. Please complete the questions at the end of this handout before class time next week. You should also do some preliminary research on substances you may wish to test for your independent investigation and bring those ideas to class next week. Background Humans and other animals are surrounded by a variety of chemical substances, both naturally occurring as well as synthetic, that have the potential to act as mutagens. Some of these substances are in the food we eat, others in the air we breathe, and still others can be absorbed through the skin or via other contact. Mutagens act in a variety of ways but they all have the ability to alter the DNA base sequence (e.g. recall point mutations, frameshift mutations, etc.) within the genome. Cancer researchers and clinical oncologists would likely agree that most (though not all) mutagens have the potential to act as carcinogens and can play a role in the induction of neoplastic cell growth seen in many cancers.
    [Show full text]
  • Enhanced Mutagenesis of <I>Salmonella</I> Tester Strains
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Environmental Protection Agency Papers U.S. Environmental Protection Agency 2007 Enhanced Mutagenesis of Salmonella Tester Strains Due to Deletion of Genes Other Than uvrB Carol D. Swartz University of North Carolina at Chapel Hill Nick Parks Environmental Careers Organization David M. Umbach National Institutes of Health William O. Ward U.S. EPA Roel M. Schaaper National Institutes of Health See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usepapapers Swartz, Carol D.; Parks, Nick; Umbach, David M.; Ward, William O.; Schaaper, Roel M.; and DeMarini, David M., "Enhanced Mutagenesis of Salmonella Tester Strains Due to Deletion of Genes Other Than uvrB" (2007). U.S. Environmental Protection Agency Papers. 156. https://digitalcommons.unl.edu/usepapapers/156 This Article is brought to you for free and open access by the U.S. Environmental Protection Agency at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Environmental Protection Agency Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Carol D. Swartz, Nick Parks, David M. Umbach, William O. Ward, Roel M. Schaaper, and David M. DeMarini This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usepapapers/156 Environmental and Molecular Mutagenesis 48:694^705 (2007) Research Article Enhanced Mutagenesis of Salmonella Tester Strains Due to Deletion of Genes Other Than uvrB Carol D. Swartz,1 Nick Parks,2 David M.Umbach,3 William O.Ward,4 Roel M. Schaaper,5 and David M.
    [Show full text]
  • In Vitro Mutagenic and Genotoxic Assessment of a Mixture of the Cyanotoxins Microcystin-LR and Cylindrospermopsin
    CORE Metadata, citation and similar papers at core.ac.uk Provided by idUS. Depósito de Investigación Universidad de Sevilla toxins Article In Vitro Mutagenic and Genotoxic Assessment of a Mixture of the Cyanotoxins Microcystin-LR and Cylindrospermopsin Leticia Díez-Quijada, Ana I. Prieto, María Puerto, Ángeles Jos * and Ana M. Cameán Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain; [email protected] (L.D.-Q.); [email protected] (A.I.P.); [email protected] (M.P.); [email protected] (A.M.C.) * Correspondence: [email protected]; Tel.: +34-954-556-762 Received: 10 April 2019; Accepted: 31 May 2019; Published: 4 June 2019 Abstract: The co-occurrence of various cyanobacterial toxins can potentially induce toxic effects different than those observed for single cyanotoxins, as interaction phenomena cannot be discarded. Moreover, mixtures are a more probable exposure scenario. However, toxicological information on the topic is still scarce. Taking into account the important role of mutagenicity and genotoxicity in the risk evaluation framework, the objective of this study was to assess the mutagenic and genotoxic potential of mixtures of two of the most relevant cyanotoxins, Microcystin-LR (MC-LR) and Cylindrospermopsin (CYN), using the battery of in vitro tests recommended by the European Food Safety Authority (EFSA) for food contaminants. Mixtures of 1:10 CYN/MC-LR (CYN concentration in the range 0.04–2.5 µg/mL) were used to perform the bacterial reverse-mutation assay (Ames test) in Salmonella typhimurium, the mammalian cell micronucleus (MN) test and the mouse lymphoma thymidine-kinase assay (MLA) on L5178YTk± cells, while Caco-2 cells were used for the standard and enzyme-modified comet assays.
    [Show full text]
  • Testing the Mutagenicity Potential of Chemicals Geert R Verheyen*, Koen Van Deun and Sabine Van Miert
    ISSN: 2378-3648 Verheyen et al. J Genet Genome Res 2017, 4:029 DOI: 10.23937/2378-3648/1410029 Volume 4 | Issue 1 Journal of Open Access Genetics and Genome Research ORIGINAL RESEARCH Testing the Mutagenicity Potential of Chemicals Geert R Verheyen*, Koen Van Deun and Sabine Van Miert Thomas More University College, Belgium *Corresponding author: Geert R Verheyen, Radius, Thomas More University College Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium, Tel: +32-0-14-562310, E-mail: [email protected] Abstract fully replicated DNA molecules to the 2 daughter cells occurs accurately. However, DNA replication is not a All information for the proper development, functioning faultless process and mutations, which can be defined and reproduction of organisms is coded in the sequence of matched base-pairs of DNA. DNA mutations can result as various types of permanent changes in DNA, do oc- in harmful effects and play a role in genetic disorders and cur in all organisms. Mechanisms underlying mutations cancer. As mutations can arise through exposure to chem- have been well studied and are described in many text- ical substances, testing needs to be done on substances books [1]. Whether mutations will affect gene function that humans and animals can be exposed to. This review depends on where they occur within a gene or whether focuses on the different testing strategies for risk assess- ment of chemicals for genotoxicity and carcinogenicity. This they affect levels of gene expression, mRNA splicing or review is not meant to cover all testing methodologies, but protein composition. About 70% of the mutations that rather to give an overview of the main methodologies that result in an amino acid change in a protein is estimated are used in a regulatory context.
    [Show full text]
  • Ab238544 Comet Assay Kit (3- Well Slides)
    Version 1 Last updated 2 November 2018 ab238544 Comet Assay Kit (3- well slides) For the measurement of cellular DNA damage. This product is for research use only and is not intended for diagnostic use. Copyright © 2018 Abcam. All rights reserved Table of Contents 1. Overview 3 2. Protocol Summary 4 3. General guidelines, precautions, and troubleshooting 6 4. Materials Supplied, and Storage and Stability 6 5. Materials Required, Not Supplied 6 6. Reagent Preparation 8 7. Sample and Slide Preparation 10 8. Assay Procedure 12 9. Data Analysis 14 10. Typical Data 15 11. Notes 16 Copyright © 2018 Abcam. All rights reserved 1. Overview Comet Assay Kit (3-well slides) (ab238544) is a fast and sensitive kit for the measurement of cellular DNA damage. The Assay is a single cell gel electrophoresis assay (SCGE) for simple evaluation of cellular DNA damage. It is a convenient way to screen for general DNA damage, regardless of the source or nature of the damage. Kits include Comet Slides, reagents, and a fluorescent dye to visualize cells under an epifluorescence microscope. ab238544 Comet Assay Kit (3-well slides) 2. Protocol Summary Figure 1: Comet Assay Principle ab238544 Comet Assay Kit (3-well slides) Pipette Comet Agarose onto the Comet Slide to form a Base Layer Combine cells with Comet Agarose at 37 ºC Pipette Agarose/cell mixture onto the top of the base layer Treat cells with lysis buffer and alkaline solution Perform electrophoresis under alkaline or neutral conditions Stain cells with DNA dye ab238544 Comet Assay Kit (3-well slides) 3. General guidelines, precautions, and troubleshooting Please observe safe laboratory practice and consult the safety datasheet.
    [Show full text]