Resin Collection and Use in Tropical Stingless Bees

Total Page:16

File Type:pdf, Size:1020Kb

Resin Collection and Use in Tropical Stingless Bees Resin collection and use in stingless bees Wie stachellose Bienen Pflanzenharze sammeln und nutzen Doctoral Thesis for a doctoral degree at the Graduate School of Life Sciences, Julius-Maximilians-Universität Würzburg Section: Integrative Biology Sara Diana Leonhardt born in Stuttgart Würzburg 2010 The Bee His labor is a chant, His idleness a tune; Oh, for the bee’s experience Of clovers and of noon! Emily Dickinson – Poems XV Submitted on/ eingereicht am: ……………………………………………………………... Members of PhD student’s committee/ Promotionskomitee: Chairperson: ……………………….................. Primary Supervisor: PD Dr. Nico Blüthgen (Würzburg) Supervisor (second): Prof. Dr. James Nieh (San Diego) Supervisor (third): Prof. Dr. Jürgen Tautz (Würzburg) Date of Public Defense/Verteidigung am: …………………………………….. Date of Receipt of Certificates/ Zeugnis erhalten am: …………………….. 2 Affidavit/Eidesstattliche Erklärung according §4 Abs. 3 Ziff. 3, 5 und 8 of the „Promotionsordnung der Julius-Maximilians-Universität Würzburg“ I hereby declare that my thesis entitled “Resin collection and use in stingless bees” is the result of my own work. I did not receive any help or support from commercial consultants. All sources and / or materials applied are listed and specified in the thesis. Furthermore, I verify that this thesis has not yet been submitted as part of another examination process neither in identical nor in similar form. Würzburg ……………………………………………………………………………... 3 Acknowledgements/ Danksagung So long, and thanks for all the bees… About ten years ago, while still being a scholar at the “Gymnasium”, I was, for the first time, faced with the analysis of mass-spectra, in my chemistry class. At that precise moment, I was hoping for never having to do something like this again in my whole life. It is, however, due to my great and very motivating chemistry-teacher, Frank Pahnke, that I discovered my passion for chemical ecology and that, years later, I spent a huge part of my PhD research with “Pikologie”, to say: analyzing and interpreting mass spectra. For sure, I would not have had such a fabulous time of tropical bee research without a great number of very special people: Nico Blüthgen once saved me from studying frogs and got me intrigued by the tiny smelly stingless bees. Moreover, on one of our many downpour-walks in the beautiful rainforest of Borneo, he started to support my crazy idea of studying resin collection in these bees. He has since then been a fabulous and incredibly encouraging advisor who was always there and open for discussing new as well as old ideas, for sharing a class of wine when (once again) a paper got rejected and for listening no matter what the subject was. Thomas Schmitt helped me not only to survive endless hours of data analysis, but also one of the most horrible thunderstorm flights in Borneo. His optimism was always contagious and encouraging, his knowledge on chemical ecology and his willingness to fight the self-doubt of a young scientist apparently endless. He is not listed as a formal advisor of my PhD thesis, but he is the officially missing one I would never want to miss. Jürgen Tautz and James Nieh both agreed to supervise my PhD project. They strongly encouraged my often ambitious plans and contributed with fruitful ideas, long discussions and very helpful comments. Linda-Maria Jung, Sonja Zeilhöfer and Sven Form all had their load of stingless bee research. They strongly contributed to the overall success of this project and were great company in Borneo, Würzburg and Freiburg. Gunnar Knobloch, Sonja Zeilhöfer and Sven Kurz were the ones working behind the curtain by spending endless hours analyzing mass-spectra. Without their help, I would most likely have needed an additional year to finish the bee “Pikologie”. Florian Menzel is a little bit of everything: the best lab-made I could think of, the one person who knew statistic solutions when I had longtime given up, co-founder of “Thunderstorm” and a fabulous Tiong-made, a co-fighter against the dark sides of Danum, more than a colleague and a really good friend. 4 Robert Junker brought me to terms when I started complaining about things that were hardly worth complaining. He was always up for a bottle of wine, long lasting discussions, helpful comments or just a disarming laughter (Aloha). Mareike Wurdak, Jan Buellesbach and all the people from the Freiburg Lab were great company and help whenever I came to the Breisgau to do some lab work in Freiburg. In Freiburg, Wolf and Renate Lindner provided me with the coziest place to stay I could think of – as well as with great discussions, open fires and extremely tasteful wines. My time in Borneo would not have been as great and successful as it was without a whole lot of people: the company of Martin Stenflo, Kerstin Poltz, Florian Menzel, Wong Siew Te and Waipak Ng made life in Danum and Sepilok an unforgettable event and long lasting memory. Arthur Chung, Robert Ong, Rory Walsh, Glen Reynolds and particularly Chey Vun Khen supported me and my project in every possible way. Mike (Bernadus Bala Ola) was the best research assistant, Bahasa Melayu teacher, Karaoke singer, badminton player, birder and forest companion I could have wished for. Meeting Jonathan Tan and his family was a special event and gave me insight not only into the life of a fascinating Chinese Malaysian family, but also into the unknown and distrusted world of oil palm plantations. Shoko Sakai, Takao Itioka and all researchers from the Japanese Lab in LHN enabled me to expand my work from Sabah to Sarawak and meet even more incredibly helpful and interesting people. I finally have to thank the British Royal Society as well as the Economic Planning Unit (EPU) in Kuala Lumpur for giving me permission to do fieldwork in Malaysia. Terima kasih banya. When I expanded my studies to Australia, I would not have gone far without the help of Tim Heard who knew not only every stingless bee species, but also every stingless bee keeper and provided me with a place to stay, bee specimens en masse, the first stingless bee honey I ever tasted and lots of advice. Janine and Russell Zabel, Peter Davenport, Ben Oldroyd, Bob Lawn as well as Lewis and Charly Roberts kindly allowed me to collect bees from their backyard hives and assisted me in every possible way. Helen Wallace did not only provide funding for part of the trip, but also knew where to find bees and trees, how to cook a great green Curry and how to find the Roberts brothers, rendering my work in Australia above all a great adventure. Including stingless bees from the New World into my work was only possible thanks to Stefan Jarau and Christian Reichle who shared their connections and knowledge on Costa Rican stingless bees and stingless bee people (“abajeros”) with me. In Costa Rica, Eduardo 5 Herrera and his family provided me with a second home, a second family, a bike, easy accessible bee hives, great company and even more people I am glad to have met. Back in Würzburg, Dieter Mahsberg is one of the first people to mention, because I would not have started this dissertation without his help and encouragement! Funding for my dissertation was provided by the Graduate School of Life Sciences (GSLS) of Würzburg. Here, Gabriele Blum-Oehler, Liane Lichtlein, Stefan Schröder-Köhne, Susanne Fischer and Rose Liebert helped me finding a way through the maze of German Academic red tape. Xaver Kober was always there for me, tolerated all my moods, supported all my ideas, waited for me when I spent months away in the field, and, most of all, gave me his unconditional support and his love! Ulrike Kober immediately accepted me in her family and supported me with food, clothes and shelter, encouraging words, open arms and an always open ear. There is no one else like my Mama – Ursula Leonhardt! A best friend, a great women and a foothold I could always and ever count on. Ich habe Dich wahnsinnig lieb! My Papa, Hans-Jörg Leonhardt, is a biologist himself and without doubt one of my earliest reasons to become one as well. He enthusiastically taught me the name of all kind of birds and bees and – together with my Mama – got me intrigued by the beauty of nature at a time where I could barely walk or talk. ‘Blessed’ with two occasionally stubborn daughters, he might not always have been the luckiest man, but he is the best father I can imagine! My sister and best friend, Lena Leonhardt, was the one who accompanied me on my trip to Australia. She managed to be a great field assistant and companion, while holding a film camera on her right arm in plaster. Thanks to her, this trip and life in general became even more special. And there is no one else I’d rather call. Ganz besonders möchte ich meiner Oma, Ilse Meyreiß, danken, die trotz der zahlreichen Krisen in ihrem Leben und ihren nun 84 Jahren immer für mich da war. Brauchte ich Ruhe, gab und gibt es keinen schöneren Platz auf dieser Erde, als das Aulatal! Thanks to Katharina Schwarz, Steffen Wick, Claudia Blüm, Elizabeth Derryberry, Dylan Burge and Lena Leonhardt I have learned that true friends are rare, but one of the most wonderful things in this world. And… last but not least I have to thank my for-legged antidote, Miko, just for seeing the world the way he does. 6 Thesis is based on the following manuscripts: (1) Leonhardt SD, Zeilhofer S, Blüthgen N, Schmitt T (under review, Chemical Senses) Stingless bees use terpenes as olfactory cues to find resin sources.
Recommended publications
  • Sociobiology 67(2): 268-280 (June, 2020) DOI: 10.13102/Sociobiology.V67i2.4617
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portal de Periódicos Eletrônicos da Universidade Estadual de Feira de Santana (UEFS) Sociobiology 67(2): 268-280 (June, 2020) DOI: 10.13102/sociobiology.v67i2.4617 Sociobiology An international journal on social insects RESEARCH ARTICLE - BEES Resources Collected by two Melipona Illiger, 1806 (Apidae: Meliponini) Species Based on Pollen Spectrum of Honeys from the Amazon Basin RR Souza1, ADA Pimentel2, LL Nogueira1, VHR Abreu1, JS Novais3 1 - Universidade Federal do Oeste do Pará, Santarém-PA, Brazil 2 - Instituto Nacional de Pesquisas da Amazônia, Manaus-AM, Brazil 3 - Universidade Federal do Sul da Bahia, Porto Seguro-BA, Brazil Article History Abstract This study aimed to identify the pollen grains found in honeys ofMelipona (Michmelia) Edited by seminigra pernigra Moure & Kerr and Melipona (Melikerria) interrupta Latreille in Cândida Aguiar, UEFS, Brazil Received 24 July 2019 two communities of the Tapajós-Arapiuns Extractive Reserve, Lower Amazon (Pará, Initial acceptance 13 November 2019 Brazil) between December 2016 and November 2017. Twenty-four samples of honey Final acceptance 11 March 2020 were processed, 12 samples from M. seminigra pernigra collected in the Suruacá Publication date 30 June 2020 community and 12 samples from M. interrupta in the Vila Franca community. After acetolysis, 103 pollen types were identified, distributed across 22 families, plus eight Keywords indeterminate types. Fifty-nine types were exclusive to M. seminigra pernigra, 29 Stingless bees, trophic resources,Melipona (Michmelia) seminigra pernigra, Melipona types were exclusive to M. interrupta and 15 pollen types were shared between (Melikerria) interrupta, meliponiculture, both species.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Cameroon: Nest Architecture, Behaviour and Labour Calendar
    Institut für Nutzpflanzenwissenschaften und Ressourcenschutz Rheinische Friedrich-Wilhelms-Universität Bonn Diversity of Stingless Bees in Bamenda Afromontane Forests – Cameroon: Nest architecture, Behaviour and Labour calendar Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. Agr.) der Hohen Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn vorgelegt am 04. November 2009 von Moses Tita Mogho Njoya aus Lobe Estate, Kamerun Referent: Prof. Dr. D. Wittmann Korreferent: Prof. Dr. A. Skowronek Tag der mündlichen Prüfung: 22. Dezember 2009 Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert Erscheinungsjahr: 2010 Dedication To my parent who are of blessed memory: Chui George Ntobukeu NJOYA and Tohjeuh Elizabeth Bah. ABSTRACT Until now almost nothing was known of invertebrates such as wild bees in the Bamenda highland forest region in Cameroon. This study focuses on honey producing bee species which do not possess functional stings. The diversity of the stingless bees in this area as well as their nest biology and behaviour was studied. In all, Six species of stingless bees grouped into four genera exist in the Bamenda afro-montane forests. The four genera are: Meliponula (3 species), Dactylurina (1species), Hypotrigona (1 species) and Liotrigona (1species). The most represented of the species in Bamenda was Liotrigona. Stingless bees were found to have huge variations in habitat preferences and in nest architectures. Nest designs differ with species as well as the habitats. Nest were found in tree trunks, mud walls, traditional hives, in soils or even just attached to tree branches. Brood cells and storage pots differ from species to species.
    [Show full text]
  • Halcroft Etal 2015 Delimiting the Species of Austroplebeia
    Apidologie Original article * INRA, DIB and Springer-Verlag France, 2015 DOI: 10.1007/s13592-015-0377-7 Delimiting the species within the genus Austroplebeia , an Australian stingless bee, using multiple methodologies 1,2 3 4 Megan Therese HALCROFT , Anne DOLLIN , Tiago Mauricio FRANCOY , 5 6 1 Jocelyn Ellen KING , Markus RIEGLER , Anthony Mark HAIGH , 1 Robert Neil SPOONER-HART 1School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia 2Bees Business, PO Box 474, Lithgow, NSW 2790, Australia 3Australian Native Bee Research Centre, PO Box 74, North Richmond, NSW 2754, Australia 4Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP 03828-000, Brazil 5Office of the Deputy Vice Chancellor, Research & Development, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia 6Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia Received 18 January 2015 – Revised 17 May 2015 – Accepted 26 June 2015 Abstract – Austroplebeia Moure is an Australian stingless bee genus. The current descriptions for the species within this genus are inadequate for the identification of specimens in either the field or the laboratory. Here, using multiple diagnostic methodologies, we attempted to better delimit morphologically identified groups within Austroplebeia . First, morphological data, based on worker bee colour, size and pilosity, were analysed. Then, males collected from nests representing morphologically similar groups were dissected, and their genitalia were imaged using light microscopy and scanning electron microscopy. Next, data for the geometric morphometric analysis of worker wing venations were obtained.
    [Show full text]
  • (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro
    Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro To cite this version: Marília Silva, Mauro Ramalho, Daniela Monteiro. Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest. Apidologie, Springer Verlag, 2013, 44 (6), pp.699-707. 10.1007/s13592-013-0218-5. hal-01201339 HAL Id: hal-01201339 https://hal.archives-ouvertes.fr/hal-01201339 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:699–707 Original article * INRA, DIB and Springer-Verlag France, 2013 DOI: 10.1007/s13592-013-0218-5 Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest 1,2 1 1 Marília Dantas E. SILVA , Mauro RAMALHO , Daniela MONTEIRO 1Laboratório de Ecologia da Polinização, ECOPOL, Instituto de Biologia, Departamento de Botânica, Universidade Federal da Bahia, Campus Universitário de Ondina, Rua Barão do Jeremoabo s/n, Ondina, CEP 40170-115, Salvador, Bahia, Brazil 2Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Governador Mangabeira, Rua Waldemar Mascarenhas, s/n—Portão, CEP 44350000, Governador Mangabeira, Bahia, Brazil Received 28 August 2012 – Revised 16 May 2013 – Accepted 27 May 2013 Abstract – The present study discusses spatial variations in the community structure of stingless bees as well as associated ecological factors by comparing the nest densities in two stages of forest regeneration in a Brazilian Tropical Atlantic rainforest.
    [Show full text]
  • Tetragonula Carbonaria and Disease: Behavioural and Antimicrobial Defences Used by Colonies to Limit Brood Pathogens
    Tetragonula carbonaria and disease: Behavioural and antimicrobial defences used by colonies to limit brood pathogens Jenny Lee Shanks BHort, BSc (Hons) Submitted in fulfilment of requirements for the degree Doctor of Philosophy Submitted to the School of Science and Health University of Western Sydney, Hawkesbury Campus July, 2015 Our treasure lies in the beehive of our knowledge. We are perpetually on the way thither, being by nature winged insects and honey gatherers of the mind. Friedrich Nietzsche (1844 – 1900) i Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, whether in full or in part, for a degree at this or any other institution ……………………………………………………………………. Jenny Shanks July 2015 ii Acknowledgements First and foremost, I am extremely indebted to my supervisors, Associate Professor Robert Spooner-Hart, Dr Tony Haigh and Associate Professor Markus Riegler. Their guidance, support and encouragement throughout this entire journey, has provided me with many wonderful and unique opportunities to learn and develop as a person and a researcher. I thank you all for having an open door, lending an ear, and having a stack of tissues handy. I am truly grateful and appreciate Roberts’s time and commitment into my thesis and me. I am privileged I had the opportunity to work alongside someone with a wealth of knowledge and experience. Robert’s passion and enthusiasm has created some lasting memories, and certainly has encouraged me to continue pursuing my own desires.
    [Show full text]
  • Nestmate Recognition in the Stingless Bee Frieseomelitta Varia (Hymenoptera, Apidae, Meliponini): Sources of Chemical Signals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Animal Behaviour 81 (2011) 463e467 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Nestmate recognition in the stingless bee Frieseomelitta varia (Hymenoptera, Apidae, Meliponini): sources of chemical signals Túlio M. Nunes a,*, Sidnei Mateus a, Izabel C. Turatti b, E. David Morgan c, Ronaldo Zucchi a a Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo b Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo c Chemical Ecology Group, Lennard-Jones Laboratory, Keele University article info Social insects use cuticular lipids for nestmate recognition. These lipids are chiefly hydrocarbons that can Article history: be endogenously produced or acquired from the environment. Although these compounds are already Received 14 April 2010 described as coming from different sources for different groups of social insects, nothing is known about Initial acceptance 31 May 2010 the source of cuticular hydrocarbons in stingless bees. We used behavioural recognition tests and cuticle Final acceptance 15 November 2010 chemical investigation to elucidate the role of endogenous and environmentally based cues for nestmate Available online 24 December 2010 recognition in the stingless bee Frieseomelitta varia. We found that although newly emerged workers MS. number: A10-00258R present specific cuticle patterns according to their nest origin, these compounds are not used for nest- mate recognition, since newly emerged workers are broadly accepted in different colonies. The cerumen Keywords: used in nest construction played an important role in recognition behaviour.
    [Show full text]
  • Diversity and Nesting Substrates of Stingless Bees (Hymenoptera, Meliponina) in a Forest Remnant
    Hindawi Publishing Corporation Psyche Volume 2012, Article ID 370895, 9 pages doi:10.1155/2012/370895 Research Article Diversity and Nesting Substrates of Stingless Bees (Hymenoptera, Meliponina) in a Forest Remnant Estefane Nascimento Leoncini Siqueira, Bruno Ferreira Bartelli, Andre´ Rosalvo Terra Nascimento, and Fernanda Helena Nogueira-Ferreira Instituto de Biologia, Pos-graduac´ ¸ao˜ em Ecologia e Conservac¸ao˜ de Recursos Naturais, Universidade Federal de Uberlandia,ˆ 38400-902 Uberlandia,ˆ MG, Brazil Correspondence should be addressed to Fernanda Helena Nogueira-Ferreira, [email protected] Received 15 August 2012; Accepted 12 September 2012 Academic Editor: Kleber Del-Claro Copyright © 2012 Estefane Nascimento Leoncini Siqueira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Stingless bees are abundant and diverse key actors in several plant-pollinator networks in the neotropics, but little is known about their natural history and ecology. This study aims to contribute to knowledge about the diversity and dispersion of stingless bees and discusses the importance of nesting substrates. It was carried out in the Araguari river valley in Minas Gerais, Brazil, where a nest site survey was conducted in an area of 100 ha during 11 alternate months from 2006 to 2008, for a total of 1,200 observation hours. Sixty-nine nests were found, belonging to 12 genera and 20 different species. Nests of Melipona rufiventris were by far the most abundant. Stingless bees nested more frequently in hollows of live trees (64%), and 11 different substrates were identified.
    [Show full text]
  • “GLEB WATAGHIN” Programa De Pós-Graduação Multiunidade Do Ensino De Ciências E Matemática (PECIM)
    UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física “GLEB WATAGHIN” Programa de Pós-Graduação Multiunidade do ensino de Ciências e Matemática (PECIM) ARCANJO MIGUEL JAMA ANTÓNIO A CITIZEN SCIENCE COM FOCO NAS ABELHAS: O QUE NOS DIZEM AS PESQUISAS REALIZADAS ENTRE 1994 A 2019 CITIZEN SCIENCE WITH A FOCUS ON BEES: WHAT RESEARCH CARRIED OUT BETWEEN 1994 TO 2019 TELL US CAMPINAS 2021 ARCANJO MIGUEL JAMA ANTÓNIO A CITIZEN SCIENCE COM FOCO NAS ABELHAS: O QUE NOS DIZEM AS PESQUISAS REALIZADAS ENTRE 1994 A 2019 Dissertação apresentada ao Programa de Pós-Graduação Multiunidade do Ensino de Ciências e Matemática Instituto de Física “GLEB WATAGHIN” da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Ensino de Ciências e Matemática, Área de concentração Ensino de Ciências e Matemática. Orientador: Prof. Dr. Roberto Greco CAMPINAS 2021 COMISSÃO EXAMINADORA Data: 25/02/2021 Prof. Dr. Roberto Greco (presidente e Orientador) Prof(a). Dr(a). Juliana Rink - Universidade Estadual de Campinas (UNICAMP) Prof. Dr. Fábio Santos do Nascimento - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto -USP (FFCLRP) A Ata de defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade. DEDICATÓRIA Dedico esta dissertação a essa senhora que muito batalhou para que seus filhos pudessem superar-se a cada instante “JUVENTINA SALOMÉ JOB CHILEMBO”. Ao Senhor JESUS CRISTO, filho de Deus, companheiro de todos os momentos e inspiração da minha vida. AGRADECIMENTO Agradeço a todos que possibilitaram a continuidade dos meus estudos, especialmente para a realização deste trabalho de conclusão de curso.
    [Show full text]
  • Kiatoko N..Pdf
    DISTRIBUTION, BEHAVIOURAL BIOLOGY, REARING AND POLLINATION EFFICIENCY OF FIVE STINGLESS BEE SPECIES (APIDAE: MELIPONINAE) IN KAKAMEGA FOREST, KENYA BY KIATOKO NKOBA Reg No. I84F/11631/08 A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D) in Agricultural Entomology in the School of Pure and Applied Sciences of Kenyatta University AUGUST 2012 i DECLARATION This thesis is my original work and has not been presented for a degree in any other University or any other award. Kiatoko Nkoba Department of Zoological Science Signature:…………………… Date:……………… We confirm that the work reported in this thesis was carried out by the candidate under our supervision. We have read and approved this thesis for examination. Professor J. M. Mueke Department of Zoological Sciences Kenyatta University Signature:…………………… Date:……………… Professor K. Suresh Raina Commercial Insects Programme, icipe African Insect Science for Food and Health Signature:…………………… Date:……………… Dr. Elliud Muli Department of Biological Sciences South Eastern University College (A Constituent College of the University of Nairobi) Signature:…………………… Date:……………… ii DEDICATION This thesis is dedicated to The All Mighty God, My parents Prefessor Kiatoko Mangeye Honore and Madame Kialungila Mundengi Cecile, My lovely daughters Kiatoko Makuzayi Emile and Kiatoko Mangeye Pongelle and to my wife Luntonda Buyakala Nicole. Thank you for your love and support. iii ACKNOWLEDGEMENTS I am grateful to Prof Jones Mueke for having accepted to be my University supervisor and for providing me high quality scientific assistance. The pleasure and a great honour are for me having you as my supervisor. You have always motivated me throughout the study period and will always remember the patience you had in reading my writing expressed in French.
    [Show full text]
  • Behavioral Suites Mediate Group-Level Foraging Dynamics in Communities of Tropical Stingless Bees
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Insect. Soc. (2010) 57:105–113 DOI 10.1007/s00040-009-0055-8 Insectes Sociaux RESEARCH ARTICLE Behavioral suites mediate group-level foraging dynamics in communities of tropical stingless bees E. M. Lichtenberg • V. L. Imperatriz-Fonseca • J. C. Nieh Received: 6 June 2009 / Revised: 23 October 2009 / Accepted: 24 November 2009 / Published online: 18 December 2009 Ó The Author(s) 2009. This article is published with open access at Springerlink.com Abstract Competition for floral resources is a key force Species that recruit larger numbers of nestmates (Scapto- shaping pollinator communities, particularly among social trigona aff. depilis, Trigona hyalinata, Trigona spinipes) bees. The ability of social bees to recruit nestmates for dominated both numerically (high local abundance) and group foraging is hypothesized to be a major factor in their behaviorally (controlling feeders). Removal of group- ability to dominate rich resources such as mass-flowering foraging species increased feeding opportunities for solitary trees. We tested the role of group foraging in attaining foragers (Frieseomelitta varia, Melipona quadrifasciata dominance by stingless bees, eusocial tropical pollinators and Nannotrigona testaceicornis). Trigona hyalinata that exhibit high diversity in foraging strategies. We provide always dominated under unrestricted conditions. When this the first experimental evidence that meliponine group species was removed, T. spinipes or S. aff. depilis controlled foraging strategies, large colony sizes and aggressive feeders and limited visitation by solitary-foraging species. behavior form a suite of traits that enable colonies to Because bee foraging patterns determine plant pollination improve dominance of rich resources.
    [Show full text]
  • Differential Environmental Effects on Caste Allocation in Two Amazonian
    Differential environmental effects on caste allocation in two Amazonian Melipona bees Diana Brito, Raquel Nunes, Pedro Pequeno, Carlos Nunes-Silva, Gislene Carvalho-Zilse To cite this version: Diana Brito, Raquel Nunes, Pedro Pequeno, Carlos Nunes-Silva, Gislene Carvalho-Zilse. Differential environmental effects on caste allocation in two Amazonian Melipona bees. Apidologie, Springer Verlag, 2013, 44 (6), pp.666-672. 10.1007/s13592-013-0215-8. hal-01201335 HAL Id: hal-01201335 https://hal.archives-ouvertes.fr/hal-01201335 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:666–672 Original article * INRA, DIB and Springer-Verlag France, 2013 DOI: 10.1007/s13592-013-0215-8 Differential environmental effects on caste allocation in two Amazonian Melipona bees 1 1 Diana Vieira BRITO , Raquel Amazonas da Silva NUNES , 1 2 Pedro Aurélio Costa Lima PEQUENO , Carlos Gustavo NUNES-SILVA , 1 Gislene Almeida CARVALHO-ZILSE 1Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, Amazonas, Brasil 2Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Av. General Rodrigo Otávio, 6200, Coroado, Manaus 69077-000, Amazonas, Brasil Received 5 October 2012 – Revised 23 April 2013 – Accepted 13 May 2013 Abstract – In Melipona bees, gyne proportion is exceptionally high in relation to other genera of eusocial bees.
    [Show full text]