Globular Clusters

Total Page:16

File Type:pdf, Size:1020Kb

Globular Clusters The Dynamic Lives Globularof Clusters These ancient stellar systems continue to surprise astronomers with a host of fascinating phenomena. By S. George Djorgovski 38 October 1998 Sky & Telescope ©1998 Sky Publishing Corp. All rights reserved. lobular star clusters are the delight of amateur and professional astronomers alike. The oldest star systems known, globulars witnessed the birth of our These models were spectacularly galaxy. They now serve as laboratories successful. They predicted cluster for theories of stellar dynamics and structures in excellent agreement with evolution. Extensively studied since the the observations available at the time, G and they still provide good fits with the birth of modern astronomy, globulars roughly like those between molecules in continue to yield surprising results and greatly superior data we have today. a uniform-temperature gas. The stars However, cluster models developed by challenge our understanding. are not physically colliding in this celes- The simple beauty of globular clusters Hénon at about the same time did tial pinball game, just deflecting each something entirely different: his simulat- is that they combine an elegant spherical other gravitationally. This energy ex- symmetry with the glittering richness of ed clusters didn’t stay in a slowly chang- change eventually leads to thermal equi- ing equilibrium. Instead, the models pre- thousands of individual stars. This ap- librium. In a typical cluster this takes parent simplicity has enticed astrono- dicted that globulars would fall in upon about a hundred million years, during themselves in a process called the gravo- mers to construct mathematical mod- which an individual star may cross the els of them. Early attempts arrived at a thermal catastrophe, or core collapse. cluster a hundred times. Thus there has Hénon reasoned like this: at any basically correct picture: collections of been plenty of time for globular clusters stars held together by their aggregate given moment the random motions of to reach relaxed equilibrium states, since stars in a cluster’s core can be consid- gravity, with members that move ran- they formed at least 10 billion years ago. domly like molecules of gas, interacting ered to balance the gravitational poten- The King-Michie simulations pro- tial of the stars’ mutual attractions. with Newtonian gravity. In simple sys- duced globular clusters with cores of tems with a limited number of essen- When a fast-moving star escapes the nearly uniform stellar density. The con- gravitational pull of the cluster core, tially pointlike masses (such as our centration of stars then gradually de- solar system or a widely separated bi- taking with it some kinetic energy, the clines out to an invisible boundary core must shrink a little. The remain- nary) the dynamics are mostly regular, called the cluster’s tidal radius. Here the predictable, and even boring. However, ing stars have to move a bit faster to gravitational attraction of the Milky compensate for the increase in the putamillionorsostars together in sev- Way is stronger than that of the cluster eral cubic light-years of space, let them gravitational binding energy of a itself, and stars become unbound and denser core. More of them can then es- orbit a sizable disk galaxy, and many join the galaxy’s stellar halo. Globular interesting new phenomena result. clusters were thus predicted to evapo- rate slowly, with galactic tides constant- Competing Theories for ly stripping away their stars. Collapsing Clusters The first successful dynamical models of globular clusters were developed in the Facing page: One of the southern sky’s showpieces, 47 Tucanae (NGC 104) glimmers from early 1960s by Richard Michie, Ivan 15,000 light-years away with the combined light of perhaps a million stars. Courtesy the Eu- King, and Michel Hénon, each working ropean Southern Observatory. Above: An easily located jewel in Pegasus, M15 is a prime ex- independently. The starting point for ample of a highly evolved cluster that has undergone core collapse. This color-composite Michie and King was the ongoing ran- image was taken with the Canada-France-Hawaii Telescope. Courtesy Peter B. Stetson, Do- dom encounters between cluster stars, minion Astrophysical Observatory. Below: Many amateurs’ first acquaintance with globular clusters came courtesy the Messier catalog, named for its 18th-century author, Charles Messier.The Messier globulars depicted here and on the following page were photographed 1 by Evered Kreimer with a 12 ⁄2-inch reflector. North is up with east to the left in each photo. M M M ©1998 Sky Publishing Corp. All rights reserved. cape, and so the process repeats itself of a collapsing globular cluster? of the cluster as a whole! Here was the and accelerates. This eventually leads to Such an energy source does exist, in resolution of Hénon’s paradox: binaries a rapid shrinking of the cluster core. the form of binary stars. Binaries can can serve as energy sources that stabilize The density profile of such a cluster is exchange energy during close encoun- globular-cluster cores against collapse. much steeper than the uniform cores ters with single stars, thereby becoming And thus both King and Michie on of the King-Michie models, declining either more or less tightly bound. one side and Hénon on the other were approximately as the inverse of the ra- These interactions can be very com- right: globular cluster cores do col- dius squared. plex, resulting in the formation of a lapse, but the collapse is arrested by At first glance, there doesn’t seem to temporary triple-star system, the dis- the presence of one or more hard bi- be any way to stop the collapse and ruption of the binary, or the exchange naries. Precollapse clusters can look stabilize the cluster. But since globular of partners. When all is said and done, just like the King-Michie models, and clusters abound, and none seem to however, in most cases the interaction some stabilized postcollapse ones can have little quasars within them, ends with a binary flying off in one di- too. But clusters that have undergone a Hénon’s models were all but disregard- rection and a single star flying off in recent collapse and recovery still retain ed for more than 20 years. Yet subse- another. And this is where the miracle the characteristic Hénon density pro- quent theoretical investigations in the happens. As it turns out, so-called hard file, with its very small core. In the 1980s by Donald Lynden-Bell, Haldan binaries — those with binding energies mid-1980s, in the first systematic sur- Cohn, Jeremy Goodman, and many larger than the average among stars in veys of globular-cluster structure, others have essentially confirmed and the cluster — tend to lose energy in about one-fifth of all galactic globulars extended Hénon’s ideas. such encounters. They become ever showed the characteristic post-core- Virtually the same process of core more tightly bound and more likely to collapse morphology — a cusplike collapse happens in protostars, but provide energy to the next star that density distribution near their centers. with a crucial difference: in protostars passes by. Examples include M15 and M30. On the core becomes hot and dense Extensive numerical simulations of the other hand, M5 and M13 are enough for thermonuclear reactions to binary-star/single-star interactions per- King-Michie type clusters. We now be- start. These reactions provide energy formed in the 1980s have confirmed lieve that most globulars evolve only that compensates for thermal losses, this prediction. Binaries provide a huge gradually toward core collapse, unless preventing collapse. But what can sub- reservoir of energy; a single hard binary they evaporate first. stitute for nuclear reactions in the core can have a binding energy equal to that Cluster cores may never settle down Left: This simulation shows the interaction of a single star with a “hard” (tightly bound) binary in the core of a globular cluster. Such interactions typically provide kinetic energy to passing stars at the expense of the binary’s orbit, which tightens. Eventually, the binding energy of a frequent- ly star-crossed binary can rival that of the entire cluster. Below: From the relatively diffuse exem- plars on the bottom of the previous page to the more condensed ones shown here, globulars present a wide range of morphologies to eyepiece observers. However, quantitative bright- ness measurements are required to tell which clusters’ cores have actually collapsed. Opposite page, bottom: The origin of a globular cluster’s core collapse. As more stars are lost the process accelerates, until it is halted by energy pro- vided by “hard” binary stars. Opposite page, top: At any given time, the core of a collapsing globular cluster has a uniform density, while just outside the core the density sharply decreases (left side of diagram). As time passes the core shrinks and the density increases, but the E. STERL PHINNEY, CALTECH / STEIN SIGURDSSON, UNIVERSITY OF CAMBRIDGE overall shape of the density profile remains roughly constant. M M M 40 October 1998 Sky & Telescope ©1998 Sky Publishing Corp. All rights reserved. completely: core collapses and bounces integrated star clusters along with ters undergo core collapse every billion can recur in a cycle called gravothermal some dwarf satellite galaxies. The 150 years. In that same period, several clus- oscillation. Obviously, a collapse-and- or so globulars surviving today are ters evaporate under the influence of recovery sequence cannot be observed probably just a small fraction of those tidal shocks. Eventually there will be directly, as it may take tens or hundreds that once populated the galactic halo. none left! of millions of years to complete, but Tidal shocks can also accelerate the Everything said so far presumes that the cycle’s existence seems convincingly evolution of clusters toward core col- stars can be treated as point masses in- established in numerical experiments.
Recommended publications
  • 5. Cosmic Distance Ladder Ii: Standard Candles
    5. COSMIC DISTANCE LADDER II: STANDARD CANDLES EQUIPMENT Computer with internet connection GOALS In this lab, you will learn: 1. How to use RR Lyrae variable stars to measures distances to objects within the Milky Way galaxy. 2. How to use Cepheid variable stars to measure distances to nearby galaxies. 3. How to use Type Ia supernovae to measure distances to faraway galaxies. 1 BACKGROUND A. MAGNITUDES Astronomers use apparent magnitudes , which are often referred to simply as magnitudes, to measure brightness: The more negative the magnitude, the brighter the object. The more positive the magnitude, the fainter the object. In the following tutorial, you will learn how to measure, or photometer , uncalibrated magnitudes: http://skynet.unc.edu/ASTR101L/videos/photometry/ 2 In Afterglow, go to “File”, “Open Image(s)”, “Sample Images”, “Astro 101 Lab”, “Lab 5 – Standard Candles”, “CD-47” and open the image “CD-47 8676”. Measure the uncalibrated magnitude of star A: uncalibrated magnitude of star A: ____________________ Uncalibrated magnitudes are always off by a constant and this constant varies from image to image, depending on observing conditions among other things. To calibrate an uncalibrated magnitude, one must first measure this constant, which we do by photometering a reference star of known magnitude: uncalibrated magnitude of reference star: ____________________ 3 The known, true magnitude of the reference star is 12.01. Calculate the correction constant: correction constant = true magnitude of reference star – uncalibrated magnitude of reference star correction constant: ____________________ Finally, calibrate the uncalibrated magnitude of star A by adding the correction constant to it: calibrated magnitude = uncalibrated magnitude + correction constant calibrated magnitude of star A: ____________________ The true magnitude of star A is 13.74.
    [Show full text]
  • New Globular Cluster Age Estimates and Constraints on the Cosmic Equation of State and the Matter Density of the Universe
    1 New Globular Cluster Age Estimates and Constraints on the Cosmic Equation of State and The Matter Density of the Universe. Lawrence M. Krauss* & Brian Chaboyer *Departments of Physics and Astronomy, Case Western Reserve University, 10900 Euclid Ave., Cleveland OH USA 44106-7079; Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH. USA New estimates of globular cluster distances, combined with revised ranges for input parameters in stellar evolution codes and recent estimates of the earliest redshift of cluster formation allow us to derive a new 95% confidence level lower limit on the age of the Universe of 11 Gyr. This is now definitively inconsistent with the expansion age for a flat Universe for the currently allowed range of the Hubble constant unless the cosmic equation of state is dominated by a component that violates the strong energy condition. This solidifies the case for a dark energy-dominated universe, complementing supernova data and direct measurements of the geometry and matter density in the Universe. The best-fit age is consistent with a cosmological constant-dominated (w=pressure/energy density = -1) universe. For the Hubble Key project best fit value of the Hubble Ω Constant our age limits yields the constraints w < -0.4 and Ωmatter < 0.38 at the 68 Ω % confidence level, and w < -0.26 and Ωmatter < 0.58 at the 95 % confidence level. Age determinations of globular clusters provided one of the earliest motivations for considering the possible existence of a cosmological constant. By comparing a lower limit on the age of the oldest globular clusters in our galaxy--- estimated in the 1980 s to be 15-20 Gyr---with the expansion age, determined by measurements of the Hubble constant, an apparent inconsistency arose: globular clusters appeared to be older than 2 the Universe unless one allowed for a possible Cosmological Constant.
    [Show full text]
  • The Ellipticities of Globular Clusters in the Andromeda Galaxy
    ASTRONOMY & ASTROPHYSICS MAY I 1996, PAGE 447 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 116, 447-461 (1996) The ellipticities of globular clusters in the Andromeda galaxy A. Staneva1, N. Spassova2 and V. Golev1 1 Department of Astronomy, Faculty of Physics, St. Kliment Okhridski University of Sofia, 5 James Bourchier street, BG-1126 Sofia, Bulgaria 2 Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarigradsko chauss´ee, BG-1784 Sofia, Bulgaria Received March 15; accepted October 4, 1995 Abstract. — The projected ellipticities and orientations of 173 globular clusters in the Andromeda galaxy have been determined by using isodensity contours and 2D Gaussian fitting techniques. A number of B plates taken with the 2 m Ritchey-Chretien-coud´e reflector of the Bulgarian National Astronomical Observatory were digitized and processed for each cluster. The derived ellipticities and orientations are presented in the form of a catalogue?. The projected ellipticities of M 31 GCs lie between 0.03 0.24 with mean valueε ¯=0.086 0.038. It may be concluded that the most globular clusters in the Andromeda galaxy÷ are quite spherical. The derived± orientations do not show a preference with respect to the center of M 31. Some correlations of the ellipticity with other clusters parameters are discussed. The ellipticities determined in this work are compared with those in other Local Group galaxies. Key words: globular clusters: general — galaxies: individual: M 31 — galaxies: star clusters — catalogs 1. Introduction Bergh & Morbey (1984), and Kontizas et al. (1989), have shown that the globulars in LMC are markedly more ellip- Representing the oldest of all stellar populations, the glo- tical than those in our Galaxy.
    [Show full text]
  • Sebastien GUILLOT Post-Doctoral Fellow at IRAP
    Sebastien GUILLOT Post-doctoral Fellow at IRAP 9, avenue du Colonel Roche, BP 44346. 31028 Toulouse Cedex 4 [email protected] Citizenship: French Date of birth: August 6th, 1984 www.astro.puc.cl/~sguillot/ Research Interests Neutron stars, dense matter physics, High-energy phenomena, X-ray binaries and accretion physics, globular clusters Employment Institut de Recherche en Astrophysique et Planétologie, Toulouse, France 2018 CNES Post-doctoral Fellow Pontificia Universidad Católica de Chile, Instituto de Astrofísica 2015 – 2017 FONDECYT Post-doctoral Fellow McGill University, Physics Department 2014 – 2015 Post-doctoral researcher and outreach coordinator Education PhD in astrophysics, McGill University – Vanier Graduate Scholar 2014 Master in physics, McGill University 2009 Bachelor of Science (with distinctions), University of Victoria (BC, Canada) 2007 Euro-American Institute of Technology (EAI Tech, Sophia-Antipolis, France) 2001 – 2003 Note: Two-years preparation program in Astrophysics with courses in French/English, before transferring to UVic Other Research Experience Joint Institute for Laboratory Astrophysics, U. of Colorado (Supervisor: Rosalba Perna) 2013 Research Internship – 2 months, funded by FRQNT International Internship Award). Harvard-Smithsonian Centre for Astrophysics (Supervisor: Alyssa Goodman) 2006 Research Assistant with the COMPLETE team. Sub-mm observations of molecular clouds – 3 months. McGill University, Physics Department (Supervisor: Gil Holder) 2005 Research Assistant. Theoretical Cosmology (weak
    [Show full text]
  • The Cosmic Distance Scale • Distance Information Is Often Crucial to Understand the Physics of Astrophysical Objects
    The cosmic distance scale • Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment, its location in space... • There are essentially two ways to derive distances to astronomical objects, through absolute distance estimators or through relative distance estimators • Absolute distance estimators Objects for whose distance can be measured directly. They have physical properties which allow such a measurement. Examples are pulsating stars, supernovae atmospheres, gravitational lensing time delays from multiple quasar images, etc. • Relative distance estimators These (ultimately) depend on directly measured distances, and are based on the existence of types of objects that share the same intrinsic luminosity (and whose distance has been determined somehow). For example, there are types of stars that have all the same intrinsic luminosity. If the distance to a sample of these objects has been measured directly (e.g. through trigonometric parallax), then we can use these to determine the distance to a nearby galaxy by comparing their apparent brightness to those in the Milky Way. Essentially we use that log(D1/D2) = 1/5 * [(m1 –m2) - (A1 –A2)] where D1 is the distance to system 1, D2 is the distance to system 2, m1 is the apparent magnitudes of stars in S1 and S2 respectively, and A1 and A2 corrects for the absorption towards the sources in S1 and S2. Stars or objects which have the same intrinsic luminosity are known as standard candles. If the distance to such a standard candle has been measured directly, then the relative distances will have been anchored to an absolute distance scale.
    [Show full text]
  • Isolated Elliptical Galaxies and Their Globular Cluster Systems II
    A&A 574, A21 (2015) Astronomy DOI: 10.1051/0004-6361/201424530 & c ESO 2015 Astrophysics Isolated elliptical galaxies and their globular cluster systems II. NGC 7796 – globular clusters, dynamics, companion?;?? T. Richtler1;4, R. Salinas2, R. R. Lane1, M. Hilker4, and M. Schirmer3 1 Departamento de Astronomía, Universidad de Concepción, Concepción, Chile e-mail: [email protected] 2 Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, MI 48824 East Lansing, USA 3 Gemini Observatory, Casilla 603, La Serena, Chile 4 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany Received 4 July 2014 / Accepted 16 November 2014 ABSTRACT Context. Rich globular cluster systems, particularly the metal-poor part of them, are thought to be the visible manifestations of long- term accretion processes. The invisible part is the dark matter halo, which may show some correspondence to the globular cluster system. It is therefore interesting to investigate the globular cluster systems of isolated elliptical galaxies, which supposedly have not experienced extended accretion. Aims. We investigate the globular cluster system of the isolated elliptical NGC 7796, present new photometry of the galaxy, and use published kinematical data to constrain the dark matter content. Methods. Deep images in B and R, obtained with the VIsible MultiObject Spectrograph (VIMOS) at the VLT, form the data base. We performed photometry with DAOPHOT and constructed a spherical photometric model. We present isotropic and anisotropic Jeans-models and give a morphological description of the companion dwarf galaxy. Results. The globular cluster system has about 2000 members, so it is not as rich as those of giant ellipticals in galaxy clusters with a comparable stellar mass, but richer than many cluster systems of other isolated ellipticals.
    [Show full text]
  • Globular Clusters
    Observing Globular Clusters TAAS Astronomy 101 Jon Schuchardt August 2016 Outline • What are globular clusters? • Historical significance • Shapley-Sawyer classification M5 (Serpens Caput) • How to find, observe, and report on globular clusters What are Globular Star Clusters? • Densely packed, spherical agglomerations of 104 to 107 very old stars (12-14 billion years old) that surround a galactic nucleus • Most in the Milky Way are 10,000 to 50,000 light years away from us • Diameters: 10s to 100s of light years • Densities: average about 1 star per cubic light year, but more dense in the core • About 150 globular clusters known in the Milky Way What are Globular Star Clusters? • Some globular clusters, e.g., M15, have undergone gravitational collapse in their cores • Glob cores can be millions or even billions of times more densely populated than our solar neighborhood • Imagine a night sky with thousands of stars brighter than Sirius! • Black holes of low stellar mass (10-20 solar masses) may be common at the center of globular clusters. They have been detected (2012-2013) in M22 (a pair) and M62 by detecting radio emissions using the Very Large Array M62 (Ophiuchus) Easier to “see” the black holes using radio emissions and the VLA versus a Hubble view of M22 (Sagittarius) J. Strader et al., Nature Oct 4, 2012 Hertzsprung-Russell diagrams: Typical globular cluster (left) and M55 (right) Note the “knee”” H-R Diagram for M3 (Canes Venatici) The “knee” shows where stars begin to depart the Main Sequence on their path to becoming giants Can be used to estimate the age of the cluster “The thing’s hollow -- it goes on forever -- and -- oh my God! -- it’s full of stars!” Commander David Bowman 2001: A Space Odyssey Arthur C.
    [Show full text]
  • High-Velocity Stars in the Cores of Globular Clusters: the Illustrative Case of NGC 2808
    A&A 543, A82 (2012) Astronomy DOI: 10.1051/0004-6361/201219062 & c ESO 2012 Astrophysics High-velocity stars in the cores of globular clusters: the illustrative case of NGC 2808 N. Lützgendorf1, A. Gualandris2,3, M. Kissler-Patig1,K.Gebhardt4,H.Baumgardt5, E. Noyola6, J. M. D. Kruijssen2, B. Jalali7,P.T.deZeeuw1,8, and N. Neumayer1 1 European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany e-mail: [email protected] 2 Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching, Germany 3 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 4 Astronomy Department, University of Texas at Austin, Austin, TX 78712, USA 5 School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia 6 Instituto de Astronomia, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-264, 04510 Mexico, Mexico 7 1. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany 8 Sterrewacht Leiden, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands Received 17 February 2012 / Accepted 15 May 2012 ABSTRACT Context. We report the detection of five high-velocity stars in the core of the globular cluster NGC 2808. The stars lie on the red giant −1 −1 branch and show total velocities between 40 and 45 km s . For a core velocity dispersion σc = 13.4kms , this corresponds to up −1 to 3.4σc. These velocities are close to the estimated escape velocity (∼50 km s ) and suggest an ejection from the core. Two of these stars have been confirmed in our recent integral field spectroscopy data and we will discuss them in more detail here.
    [Show full text]
  • Globular Cluster Ages
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13–17, January 1998 Colloquium Paper This paper was presented at a colloquium entitled ‘‘The Age of the Universe, Dark Matter, and Structure Formation,’’ organized by David N. Schramm, held March 21–23, 1997, sponsored by the National Academy of Sciences at the Beckman Center in Irvine, CA. Globular cluster ages RAUL JIMENEZ* Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, United Kingdom ABSTRACT We review two new methods to determine the very useful technique to determine distances to GC indepen- age of globular clusters (GCs). These two methods are more dently of the subdwarf fitting and RR–Lyrae techniques. It is accurate than the classical isochrone fitting technique. The also very powerful to determine relative ages of GCs with little first method is based on the morphology of the horizontal error. branch and is independent of the distance modulus of the In the next sections I describe the traditional isochrone globular cluster. The second method uses a careful binning of fitting method and the HB morphology and LF methods. I the stellar luminosity function and determines simultaneously finish with a discussion on the uncertainties of the different the distance and age of the GC. We find that the oldest galactic methods and the most likely value for the age of the oldest 6 GCs have an age of 13.5 2 gigayears (Gyr). The absolute GCs. minimum age for the oldest GCs is 10.5 Gyr (with 99% confidence) and the maximum 16.0 Gyr (with 99% confi- The Isochrone Fitting Method dence).
    [Show full text]
  • Star Clusters E NCYCLOPEDIA of a STRONOMY and a STROPHYSICS
    Star Clusters E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Star Clusters the Galaxy can be used to derive the cluster distance, independently of parallax measurements. Even a small telescope shows obvious local concentrations Afinal category of clusters has recently been identified of stars scattered around the sky. These star clusters are based on observations with infrared detectors. These are not chance juxtapositions of unrelated stars. They are, the embedded clusters—star clusters still in the process of instead, physically associated groups of stars, moving formation, and still embedded in the clouds out of which together through the Galaxy. The stars in a cluster are they formed. Because it is possible to see through the dust held together either permanently or temporarily by their much better at infrared wavelengths than in the optical, mutual gravitational attraction. these clusters have suddenly become observable. The classic, and best known, example of a star cluster Star clusters are of considerable astrophysical impor- is the Pleiades, visible in the evening sky in early winter tance to probe models of stellar evolution and dynamics, (from the northern hemisphere) as a group of 7–10 stars explore the star formation process, calibrate the extragalac- (depending on one’s eyesight). More than 600 Pleiades tic distance scale and most importantly to measure the age members have been identified telescopically. and evolution of the Galaxy. Clusters are generally distinguished as being either Definition of a star cluster—cluster catalogs GALACTIC OPEN CLUSTERS or GLOBULAR CLUSTERS, corresponding Just what is a cluster? How many stars does it take to to their appearance as seen through a moderate-aperture make a cluster? Trumpler in 1930 defined open clusters telescope.
    [Show full text]
  • A Astronomical Terminology
    A Astronomical Terminology A:1 Introduction When we discover a new type of astronomical entity on an optical image of the sky or in a radio-astronomical record, we refer to it as a new object. It need not be a star. It might be a galaxy, a planet, or perhaps a cloud of interstellar matter. The word “object” is convenient because it allows us to discuss the entity before its true character is established. Astronomy seeks to provide an accurate description of all natural objects beyond the Earth’s atmosphere. From time to time the brightness of an object may change, or its color might become altered, or else it might go through some other kind of transition. We then talk about the occurrence of an event. Astrophysics attempts to explain the sequence of events that mark the evolution of astronomical objects. A great variety of different objects populate the Universe. Three of these concern us most immediately in everyday life: the Sun that lights our atmosphere during the day and establishes the moderate temperatures needed for the existence of life, the Earth that forms our habitat, and the Moon that occasionally lights the night sky. Fainter, but far more numerous, are the stars that we can only see after the Sun has set. The objects nearest to us in space comprise the Solar System. They form a grav- itationally bound group orbiting a common center of mass. The Sun is the one star that we can study in great detail and at close range. Ultimately it may reveal pre- cisely what nuclear processes take place in its center and just how a star derives its energy.
    [Show full text]
  • Astronomy Astrophysics
    A&A 415, 123–143 (2004) Astronomy DOI: 10.1051/0004-6361:20031448 & c ESO 2004 Astrophysics VLT spectroscopy of globular cluster systems? I. The photometric and spectroscopic data set??;??? T. H. Puzia1, M. Kissler-Patig2, D. Thomas3, C. Maraston3,R.P.Saglia1, R. Bender1,3, T. Richtler4, P. Goudfrooij5,andM.Hempel2 1 Sternwarte der Ludwig-Maximilians-Universit¨at, Scheinerstr. 1, 81679 M¨unchen, Germany e-mail: [email protected] 2 European Southern Observatory, 85749 Garching bei M¨unchen, Germany e-mail: [email protected] 3 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstrasse, 85748 Garching bei M¨unchen, Germany e-mail: bender, maraston, [email protected] 4 Grupo de Astronom´ıa, Departamento de F´ısica, Casilla 160-C, Universidad de Concepci´on, Concepci´on, Chile e-mail: [email protected] 5 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] Received 14 May 2003 / Accepted 11 September 2003 Abstract. We present Lick line-index measurements of extragalactic globular clusters in seven early-type galaxies (NGC 1380, 2434, 3115, 3379, 3585, 5846, and 7192) with different morphological types (E–S0) located in field and group/cluster environ- ments. High-quality spectra were taken with the FORS2 instrument at ESO’s Very Large Telescope. 50% of our data allows an age resolution ∆t/t 0.3 and a metallicity resolution 0.25 0.4 dex, depending on the absolute metallicity.∼ Globular cluster candidates are selected≈ from deep B, V, R, I, K FORS2/ISAAC∼ − photometry with 80 100% success rate inside one effective ra- − dius.
    [Show full text]