Fragmentation Considered Vulnerable: Blindly Intercepting and Discarding Fragments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Many Slides Borrowed from Ben Zhao, Christo Wilson, & Others
12. Network Attacks Blase Ur and David Cash (many slides borrowed from Ben Zhao, Christo Wilson, & others) February 7th, 2020 CMSC 23200 / 33250 Network threat model • Network scanning • Attacks on confidentiality (e.g., eavesdropping) • Attacks on integrity (e.g., spoofing, packet injection) • Attacks on availability (e.g., denial of service (DoS)) Scanning and observing networks Network Scanning: Ping • Essential, low-level network utility • Sends a “ping” ICMP message to a host on the internet $ ping 66.66.0.255 PING 66.66.0.255 (66.66.0.255) 56(84) bytes of data. 64 bytes from 66.66.0.255: icmp_seq=1 ttl=58 time=41.2 ms • Destination host is supposed to respond with a “pong” – Indicating that it can receive packets • By default, ping messages are 56 bytes long (+ some header bytes) – Maximum size 65535 bytes • What if you send a ping that is >65535 bytes long? Ping of Death • $ ping –s 65535 66.66.0.255 – Attack identified in 1997 – IPv6 version identified/fixed in 2013 Network Scanning: Traceroute • traceroute — hops between me and host – Sends repeated ICMP reqs w/ increasing TTL Port Scanning • What services are running on a server? Nmap • 5 seconds to scan a single machine!! SYN scan Only send SYN Responses: • SYN-ACK — port open • RST — port closed • Nothing — filtered (e.g., firewall) Port Scanning on Steroids • How do you speed up scans for all IPv4? – Don’t wait for responses; pipeline – Parallelize: divide & conquer IPv4 ranges – Randomize permutations w/o collisions • Result: the zmap tool – Scan all of IPv4 in 45mins (w/ GigE cxn) – IPv4 in 5 mins w/ 10GigE Eavesdropping Tools: Wireshark, tcpdump, Bro, … Steps: 1. -
Ip Fragmentation
NETWORKING CASE STUDY IN STEM EDUCATION - IP FRAGMENTATION M. Mikac1, M. Horvatić2, V. Mikac2 1Inter-biz, Informatic Services (CROATIA) 2University North (CROATIA) Abstract In the last decade, or even longer, computer networking has been a field that cannot be overseen in technical and STEM education. While technological development and affordable prices brought powerful network devices to the end-user, all the networking principles are still based (and probably will remain so) on old protocols developed back in the ‘60s and the ‘70s of the twentieth century. Therefore, it can be expected that understanding the basics of networking principles is something that future engineers should be familiar with. The global network of today, the Internet, is based on a TCP/IP stack of protocols. That is the fact that is not to be changed - the most important change that seems to be predictable will be wider acceptance and usage of a newer version of Internet Protocol (IP) - IPv6 increases its adoption in the global network but it is still under 30%. Even though different modifications of certain transport (TCP, UDP) and network (IP) protocols appeared, essentially the basics are still based on old protocols and most of the network traffic is still using the good old TCP/IP stack. In order to explain the basic functional principles of today’s networks, different kinds of case studies in real-networks or emulated environments can be introduced to students. Among those, one of the case studies we use in our education is related to explaining, the so-called, IP fragmentation - the process that sometimes "automagically" appears in IP network protocol-based networks when certain constraints are met. -
WHITE PAPER Distributed Denial of Service
WHITE PAPER Distributed Denial of Service DDoS Attack Testing and Verification Solutions OVERVIEW “Xena recreates complex First seen around 2000, Distributed Denial-of-Service (DDoS) attacks are a serious traffic so client and server threat to businesses around the world. Attackers use multiple hosts to swamp targets with bogus traffic, paralyzing the network and potentially costing the victims millions of communicate in exactly dollars. There are many security systems for preventing DDoS attacks – and they all need to be thoroughly tested and verified prior to being activated. the same order as the Xena offers a complete test solution for DDoS mitigation and network security with captured traffic to ensure high-performance products and ample features. Going beyond generating DDoS traffic, Xena’s solutions can help companies test their security products and operators test realistic network scenarios networks and detect flaws, thereby ensuring business continuity and preserve business for the DUT”. integrity. WHITE PAPER Xena Networks – Global Price/Performance Leaders in Gigabit Ethernet Testing – www.xenanetworks.com Distributed Denial of Service DDoS Attack Testing and Verification Solutions Contents INTRODUCTION ................................................................................................................... 3 DDOS Attacks and Business Disruption ........................................................................... 4 Understanding Different DDoS Attacks .......................................................................... -
DNS Threats November, 2015
DNS Threats November, 2015 This document contains brief descriptions of a number of potential DNS threats. Direct DNS amplification Direct DNS amplification attacks are aimed at congesting DNS server outbound bandwidth. They start by sending a large number of DNS queries, specially crafted so that they result in a very large response that can reach up to 70 times the size of the request. Since DNS relies on the User Datagram Protocol (UDP), the attacker can use a small volume of outbound traffic to cause the DNS server to generate a much larger volume, resulting in congestion of the DNS server’s upload and eventually a denial of service (DoS). Reflection Reflection attacks use a third-party DNS server (typically an open recursive name server) in the Internet to propagate a DoS or DDoS attack by sending queries to the recursive server. Recursive servers will process queries from any IP address, and they return responses. The attack spoofs the DNS queries it sends by including the victim’s IP address as the source IP in the query, so that the query has the victim’s server information rather than the attacker’s. So when the recursive name server receives the requests, it sends all the responses to the victim’s IP address. A high volume of such “reflected” traffic can bring down the victim’s site. Distributed reflection DoS Distributed reflection DoS (DrDoS) attacks combine reflection with amplification that significantly increases the size of the response to the initial queries—and the likelihood that the victim’s server will be overwhelmed. -
Cyber Attacks Explained: Dos and Ddos
CYBER ATTACKS EXPLAINED: DOS AND DDOS With this article, we begin a new series on the major kinds of cyber attacks that weaken the IT security infrastructure within organisations. With the rapid spread of Internet technologies and applications, the number of those seeking to break into systems is also increasing — usually to gain fame, money, or to damage the target’s reputation. The first to be covered in this series is the Denial of Service attack (DoS) and the distributed version (DDoS). We will learn how these attacks work technically, and discuss ways to stop them at the network entry point. The fundamental technique behind a DoS attack is to make the target system busy. In a computer server, when a network packet is being received, all components (right from the network interface card or NIC to the application running under the OS) are participating to ensure successful delivery of that packet. The NIC must monitor the Ethernet frames meant for it, align data and pass it to the network card driver, which then adds its own intelligence and passes it to the OS, which takes it to the application. Each component involved can exhibit some form of vulnerability, and DoS attacks are devised to exploit one or more of these, to penetrate into the system. Let’s now understand the basics of the TCP/IP protocol, which uses a handshake between the sender and receiver. Figure 1 shows how a healthy TCP handshake takes place, and how a SYN flood attack compares with it. Figure 1: A healthy TCP handshake When the sender wants to communicate, it sends a SYN packet with its own IP address as the source, and the receiver’s IP address as the destination. -
Cisco − IP Fragmentation and PMTUD Cisco − IP Fragmentation and PMTUD Table of Contents
Cisco − IP Fragmentation and PMTUD Cisco − IP Fragmentation and PMTUD Table of Contents IP Fragmentation and PMTUD.........................................................................................................................1 Introduction..............................................................................................................................................1 IP Fragmentation and Reassembly...........................................................................................................1 Issues with IP Fragmentation............................................................................................................3 Avoiding IP Fragmentation: What TCP MSS Does and How It Works...........................................4 Problems with PMTUD.....................................................................................................................6 Common Network Topologies that Need PMTUD...........................................................................9 What Is PMTUD?..................................................................................................................................11 What Is a Tunnel?..................................................................................................................................11 Considerations Regarding Tunnel Interfaces..................................................................................12 The Router as a PMTUD Participant at the Endpoint of a Tunnel..................................................13 -
(DOS) Testing Ixchariot
TEST PLAN Denial of Service (DOS) Testing IxChariot www.ixiacom.com 915-6681-01, 2005 Contents Overview of Denial of Service functionality in IxChariot..................................3 A brief outline of the DoS attack types supported in IxChariot...................... 4 Test Case 1: Ping Attack on Oracle Traffic........................................................5 Test Case : VoIP and TCP SYN Attacks...........................................................8 Copyright © 2005 Ixia. All rights reserved. The information in this document is furnished for Ixia informational use only, is subject to change 6601 W. Agoura Road without notice, and should not be construed as a commitment by Ixia. Ixia assumes no Calabasas, CA 9130 responsibility or liability for any errors or Phone: (818) 871-1800 inaccuracies that may appear in this document. Ixia and the Ixia logo are trademarks of Ixia. All Fax: (818) 871-1805 other companies, product names, and logos are Email: [email protected] trademarks or registered trademarks of their respective holders. Internet: www.ixiacom.com Copyright © Ixia, 005 Denial of Service (DOS) Testing: Sample Test Plans Denial of Service (DOS) Testing: Sample Test Plans Denial of Service (DoS) attacks are a reality for most organizations with connections to the public Internet. In order to protect yourselves from the potential hazards of network hackers and malicious coders, a set of devices and software- based tools such as DUTs, intrusion detection systems (IDS), remote access solutions (VPN) and sophisticated routers and L4-7 application switches have been developed to effectively block malicious traffic and protect the organization’s data and information infrastructure. Leveraging the advanced functionality of Ixia hardware, IxChariot is now capable of generating line-rate traffic that emulates common DoS attack types while at the same time generating and measuring the performance of application traffic (VoIP, Internet, enterprise) that is being sent over the network. -
Dos Attack Prevention Using Rule-Based Sniffing Technique and Firewall in Cloud Computing
125 E3S W eb of C onferences , 21004 (2019) https://doi.org/10.1051/e3sconf/201912521004 ICENIS 2019 DoS Attack Prevention Using Rule-Based Sniffing Technique and Firewall in Cloud Computing Kagiraneza Alexis Fidele1,2*, and Agus Hartanto2 1 Data Entry and Update Taxpayer’s Registry in Rwanda Revenue Authority (RRA) Kigali-Rwanda 2 Master of Information System, School of Postgraduate Studies Diponegoro University, Semarang – Indonesia Abstract. Nowadays, we are entering an era where the internet has become a necessary infrastructure and support that can be applied as a means of regular communication and data service. In these services, cloud- based on servers has an essential role as it can serve numerous types of devices that are interconnected with several protocols. Unfortunately, internet cloud servers become the main target of attacks such as Denial of Service (DoS), Distributed Denial of Service (DDoS). These attacks have illegal access that could interfere in service functions. Sniffing techniques are typically practiced by hackers and crackers to tap data that passes through the internet network. In this paper, sniffing technique aims to identify packets that are moving across the network. This technique will distinguish packet on the routers or bridges through a sniffer tool known as snort connected to a database containing the attack pattern. If the sniffing system encounters strange patterns and recognizes them as attacks, it will notify to the firewall to separate the attacker's original Internet Protocol (IP) address. Then, communication from the attacker's host to the target will be discontinued. Consequently, the identified attack activity will stop working, and the service will proceed to run. -
ASF Series Ddos Mitigation Datasheet
ASF Application DDoS Mitigation DATASEET ASF Series Application Security Firewall provides enterprise-grade application DDoS (Distributed Denial of Service) mitigation solution, which helps defend critical business applications in the enterprise data center from DDoS attacks and other threats. Array Networks ASF Series employ the sophisticated 64-bit SpeedCore™ multi-core processing architecture, providing comprehensive and accurate DoS andDDoSattack detection and mitigation for business-critical applications. The ASF Series provide granularattack mitigation controland improve attack detectionaccuracy and minimize false positives with the traffic baseline learning feature, dynamic refreshingof defense profile based on the learned traffic baseline, and the client source verification function. Product Function Description Combination of Detection and Cleaning ASF Series provides a high-performance DDoS engine, which can accurately detect and identify Layer 3 to Layer 7 DDoS attacks and DoS attacks with the help of session tracking and source verification mechanisms. After detecting DDoS attacks, ASF Series will generate and execute automatic blacklist to quickly clean the malicious traffic in the mixed traffic for the defense objects. In addition, ASF Series allows attack detection and traffic cleaning to be deployed together or separately. Enterprise-grade DDoS Mitigation ASF Series provide Layer 3 to Layer 7 DDoS mitigation, capable of mitigating volumetric DDoS attacks, protocol-based DDoS attacks, and application layer attacks with latency of microseconds. ASF Series supports providing granular and unique DDoS mitigation for different applications using DDoS profiles. Once defense objects are created, automatic DDoS profiles will provide the default DDoS mitigation for them. The traffic baseline learning function then allows the appliance to learn the traffic baseline of the applications and thus dynamic refresh the defense parameters for the automatic profiles. -
RFC 8900: IP Fragmentation Considered Fragile
Stream: Internet Engineering Task Force (IETF) RFC: 8900 BCP: 230 Category: Best Current Practice Published: September 2020 ISSN: 2070-1721 Authors: R. Bonica F. Baker G. Huston R. Hinden O. Troan F. Gont Juniper Networks Una�liated APNIC Check Point Software Cisco SI6 Networks RFC 8900 IP Fragmentation Considered Fragile Abstract This document describes IP fragmentation and explains how it introduces fragility to Internet communication. This document also proposes alternatives to IP fragmentation and provides recommendations for developers and network operators. Status of This Memo This memo documents an Internet Best Current Practice. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8900. Copyright Notice Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. -
07-Fragmentation+Ipv6+NAT Posted.Pptx
IP Fragmentation & Reassembly Network links have MTU (maximum transmission unit) – the largest possible link-level frame Computer Networks • different link types, different MTUs • not including frame header/trailer fragmentation: • in: one large datagram but including any and all headers out: 3 smaller datagrams above the link layer Large IP datagrams are split up reassembly Lecture 7: IP Fragmentation, (“fragmented”) in the network IPv6, NAT • each with its own IP header • fragments are “reassembled” only at final destination (why?) • IP header bits used to identify and order related fragments IPv4 Packet Header Format IP Fragmentation and Reassembly 4 bits 4 bits 8 bits 16 bits Example: 4000-byte datagram unique per datagram hdr len Type of Service MTU = 1500 bytes usually IPv4 version per source (bytes) (TOS) Total length (bytes) 3-bit One large datagram length ID IP fragmentation use Identification 13-bit Fragment Offset fragflag offset flags becomes several =4000 =x =0 =0 upper layer protocol 20-byte to deliver payload to, Time to Protocol Header Checksum Header smaller datagrams e.g., ICMP (1), UDP (17), Live (TTL) 1480 bytes in offset = TCP (6) • all but the last fragments data field 1480/8 Source IP Address must be in multiple of 8 length ID fragflag offset Destination IP Address bytes =1500 =x =MF =0 e.g. timestamp, • offsets are specified in record route, Options (if any) length ID fragflag offset source route unit of 8-byte chunks =1500 =x =MF =185 • IP header = 20 bytes (1 Payload (e.g., TCP/UDP packet, max size?) length ID fragflag offset -
TCP/IP Illustrated TCP/IP Illustrated, Volume 1 the Protocols W
TCP/IP Illustrated TCP/IP Illustrated, Volume 1 The Protocols W. Richard Stevens Contents Preface Chapter 1. Introduction 1.1 Introduction 1.2 Layering 1.3 TCP/IP Layering 1.4 Internet Addresses 1.5 The Domain Name System 1.6 Encapsulation 1.7 Demultiplexing 1.8 Client-Server Model 1.9 Port Numbers 1.10 Standardization Process 1.11 RFCs 1.12 Standard, Simple Services 1.13 The Internet 1.14 Implementations 1.15 Application Programming Interfaces 1.16 Test Network 1.17 Summary Chapter 2. Link Layer 2.1 Introduction 2.2 Ethernet and IEEE 802 Encapsulation 2.3 Trailer Encapsulation 2.4 SLIP: Serial Line IP 2.5 Compressed SLIP file:///F|/USER/DonahuJ/tcpip/tcpip_ill/index.htm (1 of 9) [1/23/2002 10:11:12 AM] TCP/IP Illustrated 2.6 PPP: Point-to-Point Protocol 2.7 Loopback Interface 2.8 MTU 2.9 Path MTU 2.10 Serial Line Throughput Calculations 2.11 Summary Chapter 3. IP: Internet Protocol 3.1 Introduction 3.2 IP Header 3.3 IP Routing 3.4 Subnet Addressing 3.5 Subnet Mask 3.6 Special Case IP Address 3.7 A Subnet Example 3.8 ifconfig Command 3.9 netstat Command 3.10 IP Futures 3.11 Summary Chapter 4. ARP: Address Resolution Protocol 4.1 Introduction 4.2 An Example 4.3 ARP Cache 4.4 ARP Packet Format 4.5 ARP Examples 4.6 Proxy ARP 4.7 Gratuitous ARP 4.8 arp Command 4.9 Summary Chapter 5. RARP: Reverse Address Resolution Protocol 5.1 Introduction 5.2 RARP Packet Format 5.3 RARP Examples 5.4 RARP Server design 5.5 Summary Chapter 6.