Application of Dimensionality Reduction in Recommender System -- a Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Application of Dimensionality Reduction in Recommender System -- a Case Study Application of Dimensionality Reduction in Recommender System -- A Case Study Badrul M. Sarwar, George Karypis, Joseph A. Konstan, John T. Riedl Department of Computer Science and Engineering / Army HPC Research Center University of Minnesota Minneapolis, MN 55455 +1 612 625-4002 {sarwar, karypis, konstan, riedl}@cs.umn.edu meet many of the challenges of recommender Abstract systems, under certain conditions. We investigate the use of dimensionality reduction to 1 Introduction improve performance for a new class of data analysis software called “recommender systems”. Recommender systems have evolved in the extremely Recommender systems apply knowledge discovery interactive environment of the Web. They apply data techniques to the problem of making product analysis techniques to the problem of helping recommendations during a live customer interaction. customers find which products they would like to These systems are achieving widespread success in purchase at E-Commerce sites. For instance, a E-commerce nowadays, especially with the advent of recommender system on Amazon.com the Internet. The tremendous growth of customers (www.amazon.com) suggests books to customers and products poses three key challenges for based on other books the customers have told recommender systems in the E-commerce domain. Amazon they like. Another recommender system on These are: producing high quality recommendations, CDnow (www.cdnow.com) helps customers choose performing many recommendations per second for CDs to purchase as gifts, based on other CDs the millions of customers and products, and achieving recipient has liked in the past. In a sense, high coverage in the face of data sparsity. One recommender systems are an application of a successful recommender system technology is particular type of Knowledge Discovery in Databases collaborative filtering, which works by matching (KDD) (Fayyad et al. 1996) technique. KDD customer preferences to other customers in making systems use many subtle data analysis techniques to recommendations. Collaborative filtering has been achieve two unsubtle goals. They are: (i) to save shown to produce high quality recommendations, but money by discovering the potential for efficiencies, the performance degrades with the number of or (ii) to make more money by discovering ways to customers and products. New recommender system sell more products to customers. For instance, technologies are needed that can quickly produce companies are using KDD to discover which high quality recommendations, even for very large- products sell well at which times of year, so they can scale problems. manage their retail store inventory more efficiently, This paper presents two different experiments where potentially saving millions of dollars a year we have explored one technology called Singular (Brachman et al. 1996). Other companies are using Value Decomposition (SVD) to reduce the KDD to discover which customers will be most dimensionality of recommender system databases. interested in a special offer, reducing the costs of Each experiment compares the quality of a direct mail or outbound telephone campaigns by recommender system using SVD with the quality of a hundreds of thousands of dollars a year recommender system using collaborative filtering. (Bhattacharyya 1998, Ling et al. 1998). These The first experiment compares the effectiveness of applications typically involve using KDD to discover the two recommender systems at predicting consumer a new model, and having an analyst apply the model preferences based on a database of explicit ratings of to the application. However, the most direct benefit products. The second experiment compares the of KDD to businesses is increasing sales of existing effectiveness of the two recommender systems at products by matching customers to the products they producing Top-N lists based on a real-life customer will be most likely to purchase. The Web presents purchase database from an E-Commerce site. Our new opportunities for KDD, but challenges KDD experience suggests that SVD has the potential to systems to perform interactively. While a customer is at the E-Commerce site, the recommender system depicts the neighborhood formation using a nearest- must learn from the customer’s behavior, develop a neighbor technique in a very simple two dimensional model of that behavior, and apply that model to space. Notice that each user’s neighborhood is those recommend products to the customer. Recommender other users who are most similar to him, as identified systems directly realize this benefit of KDD systems by the proximity measure. Neighborhoods need not in E-Commerce. They help consumers find the be symmetric. Each user has the best neighborhood products they wish to buy at the E-Commerce site. for him. Once a neighborhood of users is found, Collaborative filtering is the most successful particular products can be evaluated by forming a recommender system technology to date, and is used weighted composite of the neighbors’ opinions of in many of the most successful recommender systems that document. on the Web, including those at Amazon.com and These statistical approaches, known as automated CDnow.com. collaborative filtering, typically rely upon ratings as The earliest implementations of collaborative numerical expressions of user preference. Several filtering, in systems such as Tapestry (Goldberg et ratings-based automated collaborative filtering al., 1992), relied on the opinions of people from a systems have been developed. The GroupLens close-knit community, such as an office workgroup. Research system (Resnick et al. 1994) provides a However, collaborative filtering for large pseudonymous collaborative filtering solution for 1 2 3 5 4 Figure 1: Illustration of the neighborhood formation process. The distance between the target user and every other user is computed and the closest-k users are chosen as the neighbors (for this diagram k = 5). communities cannot depend on each person knowing Usenet news and movies. Ringo (Shardanand et al. the others. Several systems use statistical techniques 1995) and Video Recommender (Hill et al. 1995) are to provide personal recommendations of documents email and web systems that generate by finding a group of other users, known as recommendations on music and movies respectively. neighbors that have a history of agreeing with the Here we present the schematic diagram of the target user. Usually, neighborhoods are formed by architecture of the GroupLens Research collaborative Recommender System Reques t Ratings Ratings WWW Dynamic HTML Respons e Server generator Recomm- Recomm- endations Customer endations Correlation Ratings Figure 2. Recommender System Architecture Database Database applying proximity measures such as the Pearson filtering engine in figure 2. The user interacts with a correlation between the opinions of the users. These Web interface. The Web server software are called nearest-neighbor techniques. Figure 1 communicates with the recommender system to choose products to suggest to the user. The 2 Existing Recommender Systems recommender system, in this case a collaborative Approaches and their Limitations filtering system, uses its database of ratings of products to form neighborhoods and make Most collaborative filtering based recommender recommendations. The Web server software displays systems build a neighborhood of likeminded the recommended products to the user. customers. The Neighborhood formation scheme The largest Web sites operate at a scale that stresses usually uses Pearson correlation or cosine similarity the direct implementation of collaborative filtering. as a measure of proximity (Shardanand et al. 1995, Model-based techniques (Fayyad et al., 1996) have Resnick et al. 1994). Once these systems determine the potential to contribute to recommender systems the proximity neighborhood they produce two types that can operate at the scale of these sites. However, of recommendations. these techniques must be adapted to the real-time 1. Prediction of how much a customer C will like a needs of the Web, and they must be tested in realistic product P. In case of correlation based problems derived from Web access patterns. The algorithm, prediction on product ‘P’ for present paper describes our experimental results in customer ‘C’ is computed by computing a applying a model-based technique, Latent Semantic weighted sum of co-rated items between C and Indexing (LSI), that uses a dimensionality reduction all his neighbors and then by adding C's average technique, Singular Value Decomposition (SVD), to rating to that. This can be expressed by the our recommender system. We use two data sets in following formula (Resnick et al., 1994): our experiments to test the performance of the model- based technique: a movie dataset and an e-commerce - åJÎrates (J P J )rCJ dataset. C = C + P pred r The contributions of this paper are: åJ CJ 1. The details of how one model-based Here, rCJ denotes the correlation between user C technology, LSI/SVD, was applied to and neighbor J. JP is J's ratings on product P. reduce dimensionality in recommender J and C are J and C's average ratings. The systems for generating predictions. prediction is personalized for the customer C. There are, however, some naive non- 2. Using low dimensional representation personalized prediction schemes where to compute neighborhood for generating prediction, for example, is computed simply by recommendations. taking the average ratings of items being predicted over
Recommended publications
  • CRUC: Cold-Start Recommendations Using Collaborative Filtering in Internet of Things
    CRUC: Cold-start Recommendations Using Collaborative Filtering in Internet of Things Daqiang Zhanga,*, Qin Zoub, Haoyi Xiongc a School of Computer Science, Nanjing Normal University, Nanjing, Jiangsu Province, 210046,China b School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei Province, 430072, China c Department of Telecommunication, Institute Telecome – Telecom SudParis, Evry, 91011, France Abstract The Internet of Things (IoT) aims at interconnecting everyday objects (including both things and users) and then using this connection information to provide customized user services. However, IoT does not work in its initial stages without adequate acquisition of user preferences. This is caused by cold-start problem that is a situation where only few users are interconnected. To this end, we propose CRUC scheme --- Cold-start Recommendations Using Collaborative Filtering in IoT, involving formulation, filtering and prediction steps. Extensive experiments over real cases and simulation have been performed to evaluate the performance of CRUC scheme. Experimental results show that CRUC efficiently solves the cold-start problem in IoT. Keywords: Cold-start Problem, Internet of Things, Collaborative Filtering 1. Introduction The Internet of Things (IoT) refers to a self-configuring network in which everyday objects are interconnected to the Internet [1] [2]. IoT deploys sensors in infrastructures (e.g., rooms and buildings) to get a heightened awareness of real-time events. It also employs sensors capturing contextual information about objects (e.g., user preferences) to achieve an enhanced situational awareness [3] [21-26]. Readings from a large number of sensors for various objects are enormous, but only a few of them are useful for a specific user.
    [Show full text]
  • Nonlinear Dimensionality Reduction by Locally Linear Embedding
    R EPORTS 2 ˆ 35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994). 1ÐR (DM, DY). DY is the matrix of Euclidean distanc- ing the coordinates of corresponding points {xi, yi}in 36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682 es in the low-dimensional embedding recovered by both spaces provided by Isomap together with stan- ˆ (1998). each algorithm. DM is each algorithm’s best estimate dard supervised learning techniques (39). 37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994). of the intrinsic manifold distances: for Isomap, this is 44. Supported by the Mitsubishi Electric Research Labo- 38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc- the graph distance matrix DG; for PCA and MDS, it is ratories, the Schlumberger Foundation, the NSF tion to Parallel Computing: Design and Analysis of the Euclidean input-space distance matrix DX (except (DBS-9021648), and the DARPA Human ID program. Algorithms (Benjamin/Cummings, Redwood City, CA, with the handwritten “2”s, where MDS uses the We thank Y. LeCun for making available the MNIST 1994), pp. 257Ð297. tangent distance). R is the standard linear correlation database and S. Roweis and L. Saul for sharing related ˆ 39. D. Beymer, T. Poggio, Science 272, 1905 (1996). coefficient, taken over all entries of DM and DY. unpublished work. For many helpful discussions, we 40. Available at www.research.att.com/ϳyann/ocr/mnist. 43. In each sequence shown, the three intermediate im- thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths, 41. P. Y. Simard, Y. LeCun, J.
    [Show full text]
  • Comparison of Dimensionality Reduction Techniques on Audio Signals
    Comparison of Dimensionality Reduction Techniques on Audio Signals Tamás Pál, Dániel T. Várkonyi Eötvös Loránd University, Faculty of Informatics, Department of Data Science and Engineering, Telekom Innovation Laboratories, Budapest, Hungary {evwolcheim, varkonyid}@inf.elte.hu WWW home page: http://t-labs.elte.hu Abstract: Analysis of audio signals is widely used and this work: car horn, dog bark, engine idling, gun shot, and very effective technique in several domains like health- street music [5]. care, transportation, and agriculture. In a general process Related work is presented in Section 2, basic mathe- the output of the feature extraction method results in huge matical notation used is described in Section 3, while the number of relevant features which may be difficult to pro- different methods of the pipeline are briefly presented in cess. The number of features heavily correlates with the Section 4. Section 5 contains data about the evaluation complexity of the following machine learning method. Di- methodology, Section 6 presents the results and conclu- mensionality reduction methods have been used success- sions are formulated in Section 7. fully in recent times in machine learning to reduce com- The goal of this paper is to find a combination of feature plexity and memory usage and improve speed of following extraction and dimensionality reduction methods which ML algorithms. This paper attempts to compare the state can be most efficiently applied to audio data visualization of the art dimensionality reduction techniques as a build- in 2D and preserve inter-class relations the most. ing block of the general process and analyze the usability of these methods in visualizing large audio datasets.
    [Show full text]
  • Efficient Pseudo-Relevance Feedback Methods for Collaborative Filtering Recommendation
    Efficient Pseudo-Relevance Feedback Methods for Collaborative Filtering Recommendation Daniel Valcarce, Javier Parapar, and Álvaro Barreiro Information Retrieval Lab Computer Science Department University of A Coruña, Spain {daniel.valcarce,javierparapar,barreiro}@udc.es Abstract. Recently, Relevance-Based Language Models have been dem- onstrated as an effective Collaborative Filtering approach. Nevertheless, this family of Pseudo-Relevance Feedback techniques is computationally expensive for applying them to web-scale data. Also, they require the use of smoothing methods which need to be tuned. These facts lead us to study other similar techniques with better trade-offs between effective- ness and efficiency. Specifically, in this paper, we analyse the applicability to the recommendation task of four well-known query expansion tech- niques with multiple probability estimates. Moreover, we analyse the ef- fect of neighbourhood length and devise a new probability estimate that takes into account this property yielding better recommendation rank- ings. Finally, we find that the proposed algorithms are dramatically faster than those based on Relevance-Based Language Models, they do not have any parameter to tune (apart from the ones of the neighbourhood) and they provide a better trade-off between accuracy and diversity/novelty. Keywords: Recommender Systems, Collaborative Filtering, Query Expansion, Pseudo-Relevance Feedback. 1 Introduction Recommender systems are recognised as a key instrument to deliver relevant information to the users. Although the problem that attracts most attention in the field of Recommender Systems is accuracy, the emphasis on efficiency is increasing. We present new Collaborative Filtering (CF) algorithms. CF methods exploit the past interactions betweens items and users. Common approaches to CF are based on nearest neighbours or matrix factorisation [17].
    [Show full text]
  • Litrec Vs. Movielens a Comparative Study
    LitRec vs. Movielens A Comparative Study Paula Cristina Vaz1;4, Ricardo Ribeiro2;4 and David Martins de Matos3;4 1IST/UAL, Rua Alves Redol, 9, Lisboa, Portugal 2ISCTE-IUL, Rua Alves Redol, 9, Lisboa, Portugal 3IST, Rua Alves Redol, 9, Lisboa, Portugal 4INESC-ID, Rua Alves Redol, 9, Lisboa, Portugal fpaula.vaz, ricardo.ribeiro, [email protected] Keywords: Recommendation Systems, Data Set, Book Recommendation. Abstract: Recommendation is an important research area that relies on the availability and quality of the data sets in order to make progress. This paper presents a comparative study between Movielens, a movie recommendation data set that has been extensively used by the recommendation system research community, and LitRec, a newly created data set for content literary book recommendation, in a collaborative filtering set-up. Experiments have shown that when the number of ratings of Movielens is reduced to the level of LitRec, collaborative filtering results degrade and the use of content in hybrid approaches becomes important. 1 INTRODUCTION and (b) assess its suitability in recommendation stud- ies. The number of books, movies, and music items pub- The paper is structured as follows: Section 2 de- lished every year is increasing far more quickly than scribes related work on recommendation systems and is our ability to process it. The Internet has shortened existing data sets. In Section 3 we describe the collab- the distance between items and the common user, orative filtering (CF) algorithm and prediction equa- making items available to everyone with an Internet tion, as well as different item representation. Section connection.
    [Show full text]
  • Combining User-Based and Item-Based Collaborative Filtering Using Machine Learning
    Combining User-Based and Item-Based Collaborative Filtering Using Machine Learning Priyank Thakkar, Krunal Varma, Vijay Ukani, Sapan Mankad and Sudeep Tanwar Abstract Collaborative filtering (CF) is typically used for recommending those items to a user which other like-minded users preferred in the past. User-based collaborative filtering (UbCF) and item-based collaborative filtering (IbCF) are two types of CF with a common objective of estimating target user’s rating for the target item. This paper explores different ways of combining predictions from UbCF and IbCF with an aim of minimizing overall prediction error. In this paper, we propose an approach for combining predictions from UbCF and IbCF through multiple linear regression (MLR) and support vector regression (SVR). Results of the proposed approach are compared with the results of other fusion approaches. The comparison demonstrates the superiority of the proposed approach. All the tests are performed on a large publically available dataset. Keywords User-based collaborative filtering · Item-based collaborative filtering Machine learning · Multiple linear regression · Support vector regression P. Thakkar (B) · K. Varma · V. Ukani · S. Mankad · S. Tanwar Institute of Technology, Nirma University, Ahmedabad 382481, India e-mail: [email protected] K. Varma e-mail: [email protected] V. Ukani e-mail: [email protected] S. Mankad e-mail: [email protected] S. Tanwar e-mail: [email protected] © Springer Nature Singapore Pte Ltd. 2019 173 S. C. Satapathy and A. Joshi (eds.), Information and Communication Technology for Intelligent Systems, Smart Innovation, Systems and Technologies 107, https://doi.org/10.1007/978-981-13-1747-7_17 174 P.
    [Show full text]
  • Towards an Effective Crowdsourcing Recommendation System a Survey of the State-Of-The-Art
    2015 IEEE Symposium on Service-Oriented System Engineering Towards an Effective Crowdsourcing Recommendation System A Survey of the State-of-the-Art Eman Aldhahri, Vivek Shandilya, Sajjan Shiva Computer Science Department, The University of Memphis Memphis, USA {aldhahri, vmshndly, sshiva}@memphis.edu Abstract—Crowdsourcing is an approach where requesters can behaviors. User behavior can be interpreted as preferable call for workers with different capabilities to process a task for features.. Explicit profiles are based on asking users to complete monetary reward. With the vast amount of tasks posted every a preferable features form. Two techniques common in this area day, satisfying workers, requesters, and service providers--who are: a collaborative filtering approach (with cold start problems, are the stakeholders of any crowdsourcing system--is critical to scarcity and scalability in large datasets [6]), and a content- its success. To achieve this, the system should address three based approach (with problems due to overspecialization, etc.). objectives: (1) match the worker with a suitable task that fits the A hybrid approach that combines the two techniques has also worker’s interests and skills, and raise the worker’s rewards; (2) been used. give requesters more qualified solutions with lower cost and II. MOTIVATION time; and (3) raise the accepted tasks rate which will raise the The main objective in this study is to investigate various online aggregated commissions accordingly. For these objectives, we recommendation systems by analyzing their input parameters, present a critical study of the state-of-the-art in effectiveness, and limitations in order to assess their usage in recommendation systems that are ubiquitous among crowdsourcing systems.
    [Show full text]
  • Unsupervised Speech Representation Learning Using Wavenet Autoencoders Jan Chorowski, Ron J
    1 Unsupervised speech representation learning using WaveNet autoencoders Jan Chorowski, Ron J. Weiss, Samy Bengio, Aaron¨ van den Oord Abstract—We consider the task of unsupervised extraction speaker gender and identity, from phonetic content, properties of meaningful latent representations of speech by applying which are consistent with internal representations learned autoencoding neural networks to speech waveforms. The goal by speech recognizers [13], [14]. Such representations are is to learn a representation able to capture high level semantic content from the signal, e.g. phoneme identities, while being desired in several tasks, such as low resource automatic speech invariant to confounding low level details in the signal such as recognition (ASR), where only a small amount of labeled the underlying pitch contour or background noise. Since the training data is available. In such scenario, limited amounts learned representation is tuned to contain only phonetic content, of data may be sufficient to learn an acoustic model on the we resort to using a high capacity WaveNet decoder to infer representation discovered without supervision, but insufficient information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the to learn the acoustic model and a data representation in a fully kind of constraint that is applied to the latent representation. supervised manner [15], [16]. We compare three variants: a simple dimensionality reduction We focus on representations learned with autoencoders bottleneck, a Gaussian Variational Autoencoder (VAE), and a applied to raw waveforms and spectrogram features and discrete Vector Quantized VAE (VQ-VAE). We analyze the quality investigate the quality of learned representations on LibriSpeech of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately re- [17].
    [Show full text]
  • Unsupervised Speech Representation Learning Using Wavenet Autoencoders
    Unsupervised speech representation learning using WaveNet autoencoders https://arxiv.org/abs/1901.08810 Jan Chorowski University of Wrocław 06.06.2019 Deep Model = Hierarchy of Concepts Cat Dog … Moon Banana M. Zieler, “Visualizing and Understanding Convolutional Networks” Deep Learning history: 2006 2006: Stacked RBMs Hinton, Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks” Deep Learning history: 2012 2012: Alexnet SOTA on Imagenet Fully supervised training Deep Learning Recipe 1. Get a massive, labeled dataset 퐷 = {(푥, 푦)}: – Comp. vision: Imagenet, 1M images – Machine translation: EuroParlamanet data, CommonCrawl, several million sent. pairs – Speech recognition: 1000h (LibriSpeech), 12000h (Google Voice Search) – Question answering: SQuAD, 150k questions with human answers – … 2. Train model to maximize log 푝(푦|푥) Value of Labeled Data • Labeled data is crucial for deep learning • But labels carry little information: – Example: An ImageNet model has 30M weights, but ImageNet is about 1M images from 1000 classes Labels: 1M * 10bit = 10Mbits Raw data: (128 x 128 images): ca 500 Gbits! Value of Unlabeled Data “The brain has about 1014 synapses and we only live for about 109 seconds. So we have a lot more parameters than data. This motivates the idea that we must do a lot of unsupervised learning since the perceptual input (including proprioception) is the only place we can get 105 dimensions of constraint per second.” Geoff Hinton https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/ Unsupervised learning recipe 1. Get a massive labeled dataset 퐷 = 푥 Easy, unlabeled data is nearly free 2. Train model to…??? What is the task? What is the loss function? Unsupervised learning by modeling data distribution Train the model to minimize − log 푝(푥) E.g.
    [Show full text]
  • Dimensionality Reduction and Principal Component Analysis
    Dimensionality Reduction Before running any ML algorithm on our data, we may want to reduce the number of features Dimensionality Reduction and Principal ● To save computer memory/disk space if the data are large. Component Analysis ● To reduce execution time. ● To visualize our data, e.g., if the dimensions can be reduced to 2 or 3. Dimensionality Reduction results in an Projecting Data - 2D to 1D approximation of the original data x2 x1 Original 50% 5% 1% Projecting Data - 2D to 1D Projecting Data - 2D to 1D x2 x2 x2 x1 x1 x1 Projecting Data - 2D to 1D Projecting Data - 2D to 1D new feature new feature Projecting Data - 3D to 2D Projecting Data - 3D to 2D Projecting Data - 3D to 2D Why such projections are effective ● In many datasets, some of the features are correlated. ● Correlated features can often be well approximated by a smaller number of new features. ● For example, consider the problem of predicting housing prices. Some of the features may be the square footage of the house, number of bedrooms, number of bathrooms, and lot size. These features are likely correlated. Principal Component Analysis (PCA) Principal Component Analysis (PCA) Suppose we want to reduce data from d dimensions to k dimensions, where d > k. Determine new basis. PCA finds k vectors onto which to project the data so that the Project data onto k axes of new projection errors are minimized. basis with largest variance. In other words, PCA finds the principal components, which offer the best approximation. PCA ≠ Linear Regression PCA Algorithm Given n data
    [Show full text]
  • Wiki-Rec: a Semantic-Based Recommendation System Using Wikipedia As an Ontology
    Wiki-Rec: A Semantic-Based Recommendation System Using Wikipedia as an Ontology Ahmed Elgohary, Hussein Nomir, Ibrahim Sabek, Mohamed Samir, Moustafa Badawy, Noha A. Yousri Computer and Systems Engineering Department Faculty of Engineering, Alexandria University Alexandria, Egypt {algoharyalex, hussein.nomier, ibrahim.sabek, m.samir.galal, moustafa.badawym}@gmail.com, [email protected] Abstract— Nowadays, satisfying user needs has become the Hybrid models try to overcome the limitations of each in main challenge in a variety of web applications. Recommender order to generate better quality recommendations. systems play a major role in that direction. However, as most Since most of the information on the web is present in a of the information is present in a textual form, recommender textual form, recommendation systems have to deal with systems face the challenge of efficiently analyzing huge huge amounts of unstructured text. Efficient text mining amounts of text. The usage of semantic-based analysis has techniques are, therefore, needed to understand documents in gained much interest in recent years. The emergence of order to extract important information. Traditional term- ontologies has yet facilitated semantic interpretation of text. based or lexical-based analysis cannot capture the underlying However, relying on an ontology for performing the semantic semantics when used on their own. That is why semantic- analysis requires too much effort to construct and maintain the based analysis approaches have been introduced [1] [2] to used ontologies. Besides, the currently known ontologies cover a small number of the world's concepts especially when a non- overcome such a limitation. The use of ontologies have also domain-specific concepts are needed.
    [Show full text]
  • User Relevance for Item-Based Collaborative Filtering R
    User Relevance for Item-Based Collaborative Filtering R. Latha, R. Nadarajan To cite this version: R. Latha, R. Nadarajan. User Relevance for Item-Based Collaborative Filtering. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. pp.337-347, 10.1007/978-3-642-40925-7_31. hal-01496080 HAL Id: hal-01496080 https://hal.inria.fr/hal-01496080 Submitted on 27 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License User Relevance for Item-based Collaborative Filtering R. Latha, R. Nadarajan Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore Tamil Nadu, India [email protected], [email protected] Abstract. A Collaborative filtering (CF), one of the successful recommenda- tion approaches, makes use of history of user preferences in order to make pre- dictions. Common drawback found in most of the approaches available in the literature is that all users are treated equally. i.e., all users have same im- portance. But in the real scenario, there are users who rate items, which have similar rating pattern.
    [Show full text]