NET Assemblies in Gupta TD 6
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ironpython in Action
IronPytho IN ACTION Michael J. Foord Christian Muirhead FOREWORD BY JIM HUGUNIN MANNING IronPython in Action Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> IronPython in Action MICHAEL J. FOORD CHRISTIAN MUIRHEAD MANNING Greenwich (74° w. long.) Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: [email protected] ©2009 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine. -
Top 40 .NET Interview Questions & Answers
https://career.guru99.com/ Guru99 Provides FREE ONLINE TUTORIAL on Various courses like Java | MIS | MongoDB | BigData | Cassandra | Web Services ------------------------------------------------------------------------------------------------------------------------------- SQLite | JSP | Informatica | Accounting | SAP Training | Python ------------------------------------------------------------------------------------------------------------------------------- Excel | ASP Net | HBase | Testing | Selenium | CCNA | NodeJS ------------------------------------------------------------------------------------------------------------------------------- TensorFlow | Data Warehouse | R Programming | Live Projects | DevOps ------------------------------------------------------------------------------------------------------------------------------- Top 40 .NET Interview Questions & Answers 1) Explain what is .NET Framework? The.Net Framework is developed by Microsoft. It provides technologies and tool that is required to build Networked Applications as well as Distributed Web Services and Web Applications. 2) What does .NET Framework provides? .NET Framework renders the necessary compile time and run time foundation to build and run any language that conforms to the Common Language Specification (CLS). 3) Mention what are main components of .Net framework? The main components of .Net framework are Common Language Runtime (CLR) .Net Framework Class Library (FCL) Application Domains Runtime Host Cross-Language Interoperability Side-by-Side Execution -
Moscow ML .Net Owner's Manual
Moscow ML .Net Owner's Manual Version 0.9.0 of November 2003 Niels Jørgen Kokholm, IT University of Copenhagen, Denmark Peter Sestoft, Royal Veterinary and Agricultural University, Copenhagen, Denmark This document describes Moscow ML .Net 0.9.0, a port of Moscow ML 2.00 to the .Net platform. The focus is on how Moscow ML .Net differs from Moscow ML 2.0. Three other documents, the Moscow ML Owner’s Manual [7], the Moscow ML Language Overview [5] and the Moscow ML Library Documentation [6] describe general aspects of the Moscow ML system. Moscow ML implements Standard ML (SML), as defined in the 1997 Definition of Standard ML, including the SML Modules language and some extensions. Moreover, Moscow ML supports most re- quired parts of the SML Basis Library. It supports separate compilation and the generation of stand-alone executables. The reader is assumed to be familiar with the .Net platform [2]. Contents 1 Characteristics of Moscow ML .Net 2 1.1 Compiling and linking 2 1.2 Command-line options 3 1.3 Additional primitives in the built-in units 3 1.4 The libraries 4 2 Installation 5 3 External programming interface 5 3.1 How external assemblies are found and loaded 5 3.2 How to call a .Net static method from Moscow ML .Net. 6 3.2.1 An example 7 3.2.2 Passing arguments and using results 7 3.2.3 Representation of ML Values 8 3.2.4 Notes 8 3.2.5 An experimental auto-marshalling import mechanism: clr_val 8 3.3 How to call an ML function from .Net 10 3.3.1 Example 10 3.3.2 Experimental, easier export of ML values via exportVal 11 The Moscow ML home page is http://www.dina.kvl.dk/~sestoft/mosml.html 1 1 Characteristics of Moscow ML .Net Unlike most other ports of Moscow ML, this port is not based on porting the Caml Light runtime, but is based on the creation of a new backend that generates .Net CIL code. -
NET Framework
Advanced Windows Programming .NET Framework based on: A. Troelsen, Pro C# 2005 and .NET 2.0 Platform, 3rd Ed., 2005, Apress J. Richter, Applied .NET Frameworks Programming, 2002, MS Press D. Watkins et al., Programming in the .NET Environment, 2002, Addison Wesley T. Thai, H. Lam, .NET Framework Essentials, 2001, O’Reilly D. Beyer, C# COM+ Programming, M&T Books, 2001, chapter 1 Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 2 Contents The most important features of .NET Assemblies Metadata Common Type System Common Intermediate Language Common Language Runtime Deploying .NET Runtime Garbage Collection Serialization Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 3 .NET Benefits In comparison with previous Microsoft’s technologies: Consistent programming model – common OO programming model Simplified programming model – no error codes, GUIDs, IUnknown, etc. Run once, run always – no "DLL hell" Simplified deployment – easy to use installation projects Wide platform reach Programming language integration Simplified code reuse Automatic memory management (garbage collection) Type-safe verification Rich debugging support – CLR debugging, language independent Consistent method failure paradigm – exceptions Security – code access security Interoperability – using existing COM components, calling Win32 functions Krzysztof -
Understanding CIL
Understanding CIL James Crowley Developer Fusion http://www.developerfusion.co.uk/ Overview Generating and understanding CIL De-compiling CIL Protecting against de-compilation Merging assemblies Common Language Runtime (CLR) Core component of the .NET Framework on which everything else is built. A runtime environment which provides A unified type system Metadata Execution engine, that deals with programs written in a Common Intermediate Language (CIL) Common Intermediate Language All compilers targeting the CLR translate their source code into CIL A kind of assembly language for an abstract stack-based machine, but is not specific to any hardware architecture Includes instructions specifically designed to support object-oriented concepts Platform Independence The intermediate language is not interpreted, but is not platform specific. The CLR uses JIT (Just-in-time) compilation to translate the CIL into native code Applications compiled in .NET can be moved to any machine, providing there is a CLR implementation for it (Mono, SSCLI etc) Demo Generating IL using the C# compiler .method private hidebysig static void Main(string[] args) cil managed { .entrypoint // Code size 31 (0x1f) Some familiar keywords with some additions: .maxstack 2 .locals init (int32 V_0, .method – this is a method int32 V_1, hidebysig – the method hides other methods with int32 V_2) the same name and signature. IL_0000: ldc.i4.s 50 cil managed – written in CIL and should be IL_0002: stloc.0 executed by the execution engine (C++ allows IL_0003: ldc.i4.s -
Working with Ironpython and WPF
Working with IronPython and WPF Douglas Blank Bryn Mawr College Programming Paradigms Spring 2010 With thanks to: http://www.ironpython.info/ http://devhawk.net/ IronPython Demo with WPF >>> import clr >>> clr.AddReference("PresentationFramework") >>> from System.Windows import * >>> window = Window() >>> window.Title = "Hello" >>> window.Show() >>> button = Controls.Button() >>> button.Content = "Push Me" >>> panel = Controls.StackPanel() >>> window.Content = panel >>> panel.Children.Add(button) 0 >>> app = System.Windows.Application() >>> app.Run(window) XAML Example: Main.xaml <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns: x="http://schemas.microsoft.com/winfx/2006/xaml" Title="TestApp" Width="640" Height="480"> <StackPanel> <Label>Iron Python and WPF</Label> <ListBox Grid.Column="0" x:Name="listbox1" > <ListBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Path=title}" /> </DataTemplate> </ListBox.ItemTemplate> </ListBox> </StackPanel> </Window> IronPython + XAML import sys if 'win' in sys.platform: import pythoncom pythoncom.CoInitialize() import clr clr.AddReference("System.Xml") clr.AddReference("PresentationFramework") clr.AddReference("PresentationCore") from System.IO import StringReader from System.Xml import XmlReader from System.Windows.Markup import XamlReader, XamlWriter from System.Windows import Window, Application xaml = """<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" Title="XamlReader Example" Width="300" Height="200"> <StackPanel Margin="5"> <Button -
The Zonnon Project: a .NET Language and Compiler Experiment
The Zonnon Project: A .NET Language and Compiler Experiment Jürg Gutknecht Vladimir Romanov Eugene Zueff Swiss Fed Inst of Technology Moscow State University Swiss Fed Inst of Technology (ETH) Computer Science Department (ETH) Zürich, Switzerland Moscow, Russia Zürich, Switzerland [email protected] [email protected] [email protected] ABSTRACT Zonnon is a new programming language that combines the style and the virtues of the Pascal family with a number of novel programming concepts and constructs. It covers a wide range of programming models from algorithms and data structures to interoperating active objects in a distributed system. In contrast to popular object-oriented languages, Zonnon propagates a symmetric compositional inheritance model. In this paper, we first give a brief overview of the language and then focus on the implementation of the compiler and builder on top of .NET, with a particular emphasis on the use of the MS Common Compiler Infrastructure (CCI). The Zonnon compiler is an interesting showcase for the .NET interoperability platform because it implements a non-trivial but still “natural” mapping from the language’s intrinsic object model to the underlying CLR. Keywords Oberon, Zonnon, Compiler, Common Compiler Infrastructure (CCI), Integration. 1. INTRODUCTION: THE BRIEF CCI and b) to experiment with evolutionary language HISTORY OF THE PROJECT concepts. The notion of active object was taken from the Active Oberon language [Gut01]. In addition, two This is a technical paper presenting and describing new concurrency mechanisms have been added: an the current state of the Zonnon project. Zonnon is an accompanying communication mechanism based on evolution of the Pascal, Modula, Oberon language syntax-oriented protocols , borrowed from the Active line [Wir88]. -
The Microsoft Way: COM, OLE/Activex, COM+, and .NET CLR
8557 Chapter 15 p329-380 8/10/02 12:24 pm Page 329 CHAPTER FIFTEEN The Microsoft way: COM, OLE/ActiveX, COM+, and .NET CLR In a sense, Microsoft is taking the easiest route. Instead of proposing a global standard and hoping to port its own systems to it, it continually re-engineers its existing application and platform base. Component technology is intro- duced gradually, gaining leverage from previous successes, such as the original Visual Basic controls (VBX – non-object-oriented components!), object link- ing and embedding (OLE), OLE database connectivity (ODBC), ActiveX, Microsoft Transaction Server (MTS), or active server pages (ASP). In the standards arena, Microsoft focuses mostly on internet (IETF) and web (W3C) standards. More recently, some of its .NET specifications (CLI and C#) where adopted by ECMA – a European standards body with a fast track to ISO (ECMA, 2001a, 2001b). Microsoft is not trying to align its approaches with OMG or Java standards. While Java figured prominently in Microsoft’s strategy for a while, it has been relegated to a mere continuation of support of its older Visual J++ product – in part as a result of a settlement between Sun and Microsoft. In addition, under the name Visual J# .NET, Microsoft offers a migration tool to .NET, primarily targeting users of Visual J++ 6.0. As part of the .NET initiative, Microsoft is promoting language neutrality as a major tenet of CLR and aims to establish a new language, C#. C# adopts many of the successful traits of Java, while adding several distinctive features of its own (such as value types) and not supporting key Java features (such as inner classes). -
Languages and Compilers (Sprog Og Oversættere)
Languages and Compilers (SProg og Oversættere) Bent Thomsen Department of Computer Science Aalborg University With acknowledgement to Microsoft, especially Nick Benton,whose slides this lecture is based on. 1 The common intermediate format nirvana • If we have n number of languages and need to have them running on m number of machines we need m*n compilers! •Ifwehave onecommon intermediate format we only need n front-ends and m back-ends, i.e. m+n • Why haven’t you taught us about the common intermediate language? 2 Strong et al. “The Problem of Programming Communication with Changing Machines: A Proposed Solution” C.ACM. 1958 3 Quote This concept is not particularly new or original. It has been discussed by many independent persons as long ago as 1954. It might not be difficult to prove that “this was well-known to Babbage,” so no effort has been made to give credit to the originator, if indeed there was a unique originator. 4 “Everybody knows that UNCOL was a failure” • Subsequent attempts: – Janus (1978) • Pascal, Algol68 – Amsterdam Compiler Kit (1983) • Modula-2, C, Fortran, Pascal, Basic, Occam – Pcode -> Ucode -> HPcode (1977-?) • FORTRAN, Ada, Pascal, COBOL, C++ – Ten15 -> TenDRA -> ANDF (1987-1996) • Ada, C, C++, Fortran – .... 5 Sharing parts of compiler pipelines is common • Compiling to textual assembly language • Retargetable code-generation libraries – VPO, MLRISC • Compiling via C – Cedar, Fortran, Modula 2, Ada, Scheme, Standard ML, Haskell, Prolog, Mercury,... • x86 is a pretty convincing UNCOL – pure software translation -
Programming with Windows Forms
A P P E N D I X A ■ ■ ■ Programming with Windows Forms Since the release of the .NET platform (circa 2001), the base class libraries have included a particular API named Windows Forms, represented primarily by the System.Windows.Forms.dll assembly. The Windows Forms toolkit provides the types necessary to build desktop graphical user interfaces (GUIs), create custom controls, manage resources (e.g., string tables and icons), and perform other desktop- centric programming tasks. In addition, a separate API named GDI+ (represented by the System.Drawing.dll assembly) provides additional types that allow programmers to generate 2D graphics, interact with networked printers, and manipulate image data. The Windows Forms (and GDI+) APIs remain alive and well within the .NET 4.0 platform, and they will exist within the base class library for quite some time (arguably forever). However, Microsoft has shipped a brand new GUI toolkit called Windows Presentation Foundation (WPF) since the release of .NET 3.0. As you saw in Chapters 27-31, WPF provides a massive amount of horsepower that you can use to build bleeding-edge user interfaces, and it has become the preferred desktop API for today’s .NET graphical user interfaces. The point of this appendix, however, is to provide a tour of the traditional Windows Forms API. One reason it is helpful to understand the original programming model: you can find many existing Windows Forms applications out there that will need to be maintained for some time to come. Also, many desktop GUIs simply might not require the horsepower offered by WPF. -
Using Powershell and Reflection API to Invoke Methods from .NET
Using Powershell and Reflection API to invoke methods from .NET Assemblies written by Khai Tran | October 14, 2013 During application assessments, I have stumbled upon several cases when I need to call out a specific function embedded in a .NET assembly (be it .exe or .dll extension). For example, an encrypted database password is found in a configuration file. Using .NET Decompiler, I am able to see and identify the function used to encrypt the database password. The encryption key appears to be static, so if I could call the corresponding decrypt function, I would be able to recover that password. Classic solution: using Visual Studio to create new project, import encryption library, call out that function if it’s public or use .NET Reflection API if it’s private (or just copy the class to the new workspace, change method accessibility modifier to public and call out the function too if it is self-contained). Alternative (and hopeful less-time consuming) solution: Powershell could be used in conjunction with .NET Reflection API to invoke methods directly from the imported assemblies, bypassing the need of an IDE and the grueling process of compiling source code. Requirements Powershell and .NET framework, available at http://www.microsoft.com/en-us/download/details.aspx?id=34595 Note that Powershell version 3 is used in the below examples, and the assembly is developed in C#. Walkthrough First, identify the fully qualified class name (typically in the form of Namespace.Classname ), method name, accessibility level, member modifier and method arguments. This can easily be done with any available .NET Decompiler (dotPeek, JustDecompile, Reflector) Scenario 1: Public static class – Call public static method namespace AesSample { public class AesLibStatic { .. -
NET Reverse Engineering
.NET.NET ReverseReverse EngineeringEngineering Erez Metula, CISSP Application Security Department Manager Security Software Engineer 2B Secure ErezMetula @2bsecure.co.il Agenda • The problem of reversing & decompilation • Server DLL hijacking • Introduction to MSIL & the CLR • Advanced techniques • Debugging • Patching • Unpacking • Reversing the framework • Exposing .NET CLR vulnerabilities • Revealing Hidden functionality • Tools! The problem of reversing & decompilation • Code exposure • Business logic • Secrets in code – passwords – connection strings – Encryption keys • Intellectual proprietary (IP) & software piracy • Code modification • Add backdoors to original code • Change the application logic • Enable functionality (example: “only for registered user ”) • Disable functionality (example: security checks) Example – simple reversing • Let ’s peak into the code with reflector Example – reversing server DLL • Intro • Problem description (code) • Topology • The target application • What we ’ll see Steps – tweaking with the logic • Exploiting ANY server / application vulnerability to execute commands • Information gathering • Download an assembly • Reverse engineer the assembly • Change the assembly internal logic • Upload the modified assembly, overwrite the old one. • Wait for some new action • Collect the data … Exploiting ANY server / application vulnerability to execute commands • Example application has a vulnerability that let us to access th e file system • Sql injection • Configuration problem (Open share, IIS permissions,