Modulation Du Chémoréflexe Et De La Stabilité Respiratoire Par Les Récepteurs Nucléaires Et Membranaires De La Progestérone

Total Page:16

File Type:pdf, Size:1020Kb

Modulation Du Chémoréflexe Et De La Stabilité Respiratoire Par Les Récepteurs Nucléaires Et Membranaires De La Progestérone Modulation du chémoréflexe et de la stabilité respiratoire par les récepteurs nucléaires et membranaires de la progestérone Thèse Ryma Boukari Doctorat en médecine expérimentale Philosophiæ doctor (Ph. D.) Québec, Canada © Ryma Boukari, 2018 Résumé La progestérone stimule le chémoréflexe ventilatoire et réduit l’occurrence des apnées. En revanche, ses mécanismes d’actions sont peu élucidés. Les récepteurs nucléaires (nPR) et les récepteurs membranaires (mPRs) de la progestérone de type α et β sont exprimés dans les centres respiratoires au niveau du tronc cérébral. En premier, nous avons postulé que la délétion des nPR chez la souris femelle (PRKO) affecte le chémoréflexe ventilatoire et augmente la fréquence des apnées durant le sommeil. Nos résultats ont montré que les nPR stimulent la réponse ventilatoire à l’hypercapnie et réduisent la fréquence des apnées post- soupirs durant le sommeil calme. Ensuite, nous avons postulé que le mPRα et le mPRβ modulent le chémoréflexe et la stabilité ventilatoire chez la souris adulte. La réduction de l’expression des récepteurs mPRβ ou le mPRα exprimés au niveau des centres de contrôle ventilatoire de la médulla oglongata a mis en évidence que ces récepteurs contribuent à la régulation du chémoréflexe ventilatoire. De plus, le mPRβ contribue à la stabilité respiratoire chez la souris adulte mâle et femelle. Enfin, nous avons postulé que la réduction de l’expression des nPR, mPRα ou le mPRβ dans le système nerveux central affecte le chémoréflexe et la stabilité ventilatoire chez des rats de 10 jours de vie. Nos résultats ont indiqué que le nPR et le mPRβ contribuent à la stabilité du patron ventilatoire chez le nouveau-né. Nous concluons que la progestérone signale par les récepteurs nPR, mPRα et le mPRβ pour réguler le chémoréflexe ventilatoire chez l’adulte. En outre, le nPR et le mPRb contribuent à la stabilité ventilatoire à la fois chez la souris adulte et le rat nouveau-né. Ces deux récepteurs pourraient être de nouvelles cibles thérapeutiques pour le traitement de l’apnée du sommeil chez l’adulte et l’apnée du nouveau-né. iii Abstract Progesterone stimulates the ventilatory chemorefelx and reduces the occurrence of apnea, but the mechanisms are not well understood. The nuclear (nPR) and membrane progesterone receptors (mPRs) sutypes α and β are expressed in the respiratory centers of the brainstem. First, we postulated that the nPR deletion in female mice (PRKO) affects ventilatory chemoreflex and increases the frequency of apnea during the quiet sleep. Our results showed that the nPR stimulate the ventilatory response to hypercapnia and reduce the frequency of post-sigh apneas during the quiet sleep. Next, we postulated that the mPRα and mPRβ modulate chemoreflex and ventilatory stability in adult mice. The reduction of the expression of the mPRβ or the mPRα, expressed at the level of the ventilatory control centers at the level of the medulla oblongata, has demonstrated that these receptors contribute to the regulation of the ventilatory chemoreflex. In addition, mPRβ contributes to respiratory stability in male and female adult mice. Finally, we have postulated that reduced expression of the nPR, mPRα, or mPRβ in the central nervous system affects chemoreflex and ventilatory stability in 10-day-old rats. Our results indicated that the nPR and mPRβ contribute to the stability of the ventilatory pattern in neonates. We conclude that progesterone signals via nPR receptors, mPRα and mPRβ to regulate ventilatory chemorefelx in adults. In addition, nPR and mPR contribute to ventilatory stability in both adult mice and neonatal rats. These two receptors could be new therapeutic targets for the treatment of sleep apnea in adults and apnea of the newborn. iv Tables des matières Résumé .............................................................................................................................................. iii Abstract .............................................................................................................................................. iv Tables des matières ............................................................................................................................. v Liste des figures ................................................................................................................................... x Liste des tableaux ............................................................................................................................. xiii Liste des abréviations et des sigles .................................................................................................... xiv Remerciements ................................................................................................................................xvii Avant-propos .................................................................................................................................... xix ................................................................................................................ 1 Introduction ............................................................................................................ 1 Introduction générale ................................................................................................ 2 La fonction respiratoire chez les mammifères ............................................................ 4 La fonction respiratoire .................................................................................................4 La ventilation pulmonaire....................................................................................................... 4 Échanges gazeux et circulation ............................................................................................... 5 La respiration cellulaire .......................................................................................................... 6 La physiologie du chémoréflexe ventilatoire chez les mammifères ...............................8 Le chémoréflexe périphérique ................................................................................................ 8 Le chémoréflexe central ....................................................................................................... 14 Les mécanorécepteurs ................................................................................................. 21 Intégration centrale et genèse de la commande ventilatoire motrice ......................... 21 Intégration des afférences sensorielles respiratoires ............................................................ 21 Genèse du rythme et de la commande ventilatoire motrice .................................................. 24 La physiopathologie de l’apnée du sommeil chez l’adulte ....................................... 26 Définition de l’apnée du sommeil (AS) ........................................................................ 26 Les types de l’AS .......................................................................................................... 28 L'apnée obstructive du sommeil (AOS) ................................................................................. 28 L'apnée centrale du sommeil (ACS) ...................................................................................... 28 L’apnée mixte ...................................................................................................................... 31 Épidémiologie et le dimorphisme sexuel de l’AS ......................................................... 31 Conséquences pathologiques de l’AS .......................................................................... 32 Les mécanismes physiopathologiques de l’AS ............................................................. 33 Obstruction des voies aériennes supérieures (VAS) .............................................................. 34 Mécanisme de l’apnée centrale ............................................................................................ 44 Les approches thérapeutiques disponibles .................................................................. 51 L’impact de la progestérone sur la fonction respiratoire chez les mammifères ....... 52 Généralités sur la progestérone .................................................................................. 52 Définition de la progestérone ............................................................................................... 52 Les voies de la biosynthèse et le métabolisme de la progestérone ........................................ 53 v Le lieu de la biosynthèse de la progestérone ........................................................................ 53 Taux de la progestérone chez le mâle et la femelle (humains et rongeurs) : .......................... 56 Actions pléiotropiques de la progestérone ........................................................................... 58 Effet de la progestérone sur le contrôle ventilatoire chez l’adulte .............................. 58 La ventilation chez la femelle et le mâle : Le dimorphisme sexuel ......................................... 58 Impact de la progestérone sur la fonction respiratoire.......................................................... 60 Les mécanismes expliquant les effets respiratoires de la progestérone ................................. 65 La pathophysiologie de l’apnée du nouveau-né ....................................................... 75 La définition de l’apnée du nouveau-né .....................................................................
Recommended publications
  • Peripheral Nervous System……………………………………………….9
    PhD School in Integrative Biomedical Research Department of Pharmacological and Biomolecular Sciences Curriculum: Neuroscience Molecular basis for the development of innovative therapies for peripheral neuropathies treatment: role and cross-regulation of the GABAergic system and neuroactive steroids SDD BIO/09 - Physiology Luca Franco Castelnovo Badge number R10402 PhD Tutor: Prof. Valerio Magnaghi PhD School Coordinator: Prof. Chiarella Sforza Academic year 2015/2016 INDEX Abstract…………………………………………………………………...page 1 Abbreviations list…………………………………………………………….....5 Introduction………………………………………………………………….....8 Peripheral nervous system……………………………………………….9 General concepts……………...……….……………………………........……..9 Sensory system and nociceptive fibers.………………..………….…………..12 Schwann cells and myelination……….……..………………...………………15 Peripheral neuropathies…….…………………………………………...26 General concepts……………………………………………………...……….26 Neuropathic pain……………………………………...……………………….27 Nerve regeneration…………………………………………………………….28 The GABAergic system………….……………………………………...32 GABA……………….…………………………………………………..……..32 GABA-A receptors…………………………………………………………….33 GABA-B receptors…………………………………………………………….42 GABAergic system in the peripheral nervous system…………………………47 Protein kinase C – type ε……………………….………………………..51 General concepts…………………………………………………….…………51 Cross-talk with allopregnanolone and GABA-A………………………………54 Neuroactive steroids…………......………………………………………57 General concepts…………………………………….…………………………57 Mechanism of action…………………………….……………………………..59 Progesterone derivatives………………………………….……………………60
    [Show full text]
  • Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex
    Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex by Beryl Yik Ting Chung A Thesis presented to The University of Guelph In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences and Neuroscience Guelph, Ontario, Canada © Beryl Yik Ting Chung, April, 2018 ABSTRACT NICOTINIC SIGNALLING AND NEUROSTEROID MODULATION IN PRINCIPAL NEURONS OF THE HIPPOCAMPAL FORMATION AND PREFRONTAL CORTEX Beryl Yik Ting Chung Advisor: University of Guelph, 2018 Dr. Craig D.C. Bailey Nicotinic signalling plays an important role in coordinating the response of neuronal networks in many brain regions. During pre- and postnatal circuit formation, neurotransmission mediated by nicotinic acetylcholine receptors (nAChRs) influences neuronal survival and regulates neuronal excitability, synaptic transmission, and synaptic plasticity. Nicotinic signalling is also necessary for the proper function of the hippocampal formation (HF) and prefrontal cortex (PFC), which are anatomically and functionally connected and facilitate higher-order cognitive functions. The decline or dysfunction in nicotinic signalling and nAChR function has been observed in various neurological disorders, and the disruption or alteration of nicotinic signalling in the HF and/or PFC can impair learning and memory. While the location and functional role of the α4β2* nAChR isoform has been well characterized in the medial portion of the PFC, this is not well-established in the HF. What is the role of α4β2* nAChRs in excitatory principal neurons of the HF during early development? Growing evidence suggests that the progesterone metabolite allopregnanolone (ALLO) plays a role in mediating the proper function of the HF and the PFC, and that it may also inhibit nAChR function.
    [Show full text]
  • PGRMC1 and PGRMC2 in Uterine Physiology and Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector PERSPECTIVE ARTICLE published: 19 September 2013 doi: 10.3389/fnins.2013.00168 PGRMC1 and PGRMC2 in uterine physiology and disease James K. Pru* and Nicole C. Clark Department of Animal Sciences, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA Edited by: It is clear from studies using progesterone receptor (PGR) mutant mice that not all of Sandra L. Petersen, University of the actions of progesterone (P4) are mediated by this receptor. Indeed, many rapid, Massachusetts Amherst, USA non-classical P4 actions have been reported throughout the female reproductive tract. Reviewed by: Progesterone treatment of Pgr null mice results in behavioral changes and in differential Cecily V. Bishop, Oregon National Primate Research Center, USA regulation of genes in the endometrium. Progesterone receptor membrane component Christopher S. Keator, Ross (PGRMC) 1 and PGRMC2 belong to the heme-binding protein family and may serve as University School of Medicine, P4 receptors. Evidence to support this derives chiefly from in vitro culture work using Dominica primary or transformed cell lines that lack the classical PGR. Endometrial expression of *Correspondence: PGRMC1 in menstrual cycling mammals is most abundant during the proliferative phase James K. Pru, Department of Animal Sciences, School of Molecular of the cycle. Because PGRMC2 expression shows the most consistent cross-species Biosciences, Center for expression, with highest levels during the secretory phase, PGRMC2 may serve as a Reproductive Biology, Washington universal non-classical P4 receptor in the uterus.
    [Show full text]
  • Progesterone – Friend Or Foe?
    Frontiers in Neuroendocrinology 59 (2020) 100856 Contents lists available at ScienceDirect Frontiers in Neuroendocrinology journal homepage: www.elsevier.com/locate/yfrne Progesterone – Friend or foe? T ⁎ Inger Sundström-Poromaaa, , Erika Comascob, Rachael Sumnerc, Eileen Ludersd,e a Department of Women’s and Children’s Health, Uppsala University, Sweden b Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden c School of Pharmacy, University of Auckland, New Zealand d School of Psychology, University of Auckland, New Zealand e Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA ARTICLE INFO ABSTRACT Keywords: Estradiol is the “prototypic” sex hormone of women. Yet, women have another sex hormone, which is often Allopregnanolone disregarded: Progesterone. The goal of this article is to provide a comprehensive review on progesterone, and its Emotion metabolite allopregnanolone, emphasizing three key areas: biological properties, main functions, and effects on Hormonal contraceptives mood in women. Recent years of intensive research on progesterone and allopregnanolone have paved the way Postpartum depression for new treatment of postpartum depression. However, treatment for premenstrual syndrome and premenstrual Premenstrual dysphoric disorder dysphoric disorder as well as contraception that women can use without risking mental health problems are still Progesterone needed. As far as progesterone is concerned, we might be dealing with a two-edged sword: while its metabolite allopregnanolone has been proven useful for treatment of PPD, it may trigger negative symptoms in women with PMS and PMDD. Overall, our current knowledge on the beneficial and harmful effects of progesterone is limited and further research is imperative. Introduction 1.
    [Show full text]
  • Progesterone Receptor Membrane Component 1 Suppresses the P53
    www.nature.com/scientificreports OPEN Progesterone Receptor Membrane Component 1 suppresses the p53 and Wnt/β-catenin pathways to Received: 30 October 2017 Accepted: 2 February 2018 promote human pluripotent stem Published: xx xx xxxx cell self-renewal Ji Yea Kim1, So Young Kim1, Hong Seo Choi1, Min Kyu Kim1, Hyun Min Lee1, Young-Joo Jang2 & Chun Jeih Ryu1 Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional heme-binding protein involved in various diseases, including cancers and Alzheimer’s disease. Previously, we generated two monoclonal antibodies (MAbs) 108-B6 and 4A68 against surface molecules on human pluripotent stem cells (hPSCs). Here we show that PGRMC1 is the target antigen of both MAbs, and is predominantly expressed on hPSCs and some cancer cells. PGRMC1 is rapidly downregulated during early diferentiation of hPSCs. Although PGRMC1 knockdown leads to a spread-out morphology and impaired self-renewal in hPSCs, PGRMC1 knockdown hPSCs do not show apoptosis and autophagy. Instead, PGRMC1 knockdown leads to diferentiation of hPSCs into multiple lineage cells without afecting the expression of pluripotency markers. PGRMC1 knockdown increases cyclin D1 expression and decreases Plk1 expression in hPSCs. PGRMC1 knockdown also induces p53 expression and stability, suggesting that PGRMC1 maintains hPSC self-renewal through suppression of p53-dependent pathway. Analysis of signaling molecules further reveals that PGRMC1 knockdown promotes inhibitory phosphorylation of GSK-3β and increased expression of Wnt3a and β-catenin, which leads to activation of Wnt/β-catenin signaling. The results suggest that PGRMC1 suppresses the p53 and Wnt/β-catenin pathways to promote self-renewal and inhibit early diferentiation in hPSCs.
    [Show full text]
  • PRODUCT SPECIFICATION Anti-PAQR9 Product
    Anti-PAQR9 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-PAQR9 Product Number HPA052798 Gene Description progestin and adipoQ receptor family member IX Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: IMLESWLFDLRGENPTLFVHF Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended IHC (Immunohistochemistry) Applications - Antibody dilution: 1:20 - 1:50 - Retrieval method: HIER pH6 Characterization Data Available at atlasantibodies.com/products/HPA052798 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • PGRMC1 Phosphorylation Status and Cell Plasticity 1: Glucose Metabolism, Mitochondria
    bioRxiv preprint doi: https://doi.org/10.1101/737718; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title PGRMC1 phosphorylation status and cell plasticity 1: glucose metabolism, mitochondria, and mouse xenograft tumorigenesis Authors Bashar M. Thejer,1,2,3 Partho P. Adhikary,1,2,4 Amandeep Kaur,5,6 Sarah L. Teakel,1 Ashleigh Van Oosterum,7 Ishith Seth,1 Marina Pajic,8,9 Kate M. Hannan,10,11 Megan Pavy,11 Perlita Poh,11 Jalal A. Jazayeri,1 Thiri Zaw,12 Dana Pascovici,12 Marina Ludescher,13 Michael Pawlak,14 Juan C. Cassano,15 Lynne Turnbull,16 Mitra Jazayeri,17 Alexander C. James,18,19,20 Craig P. Coorey,18,21 Tara L. Roberts,18,19,20,21 Simon J. Kinder,22 Ross D. Hannan,9,10,23,24,25 Ellis Patrick,26 Mark P. Molloy,12,27 Elizabeth J. New,5 Tanja N. Fehm,13 Hans Neubauer,13 Ewa M. Goldys,28,29 Leslie A. Weston,30,31 and Michael A. Cahill.1,10,* Affiliations 1. School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia. 2. Co-first author. 3. Department of Biology, College of Science, University of Wasit, Wasit, Iraq. 4. Current address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada. 5. University of Sydney, School of Chemistry, Sydney, NSW, 2006 Australia.
    [Show full text]
  • Membrane Progesterone Receptor Beta (Mprβ/Paqr8) Promotes
    www.nature.com/scientificreports OPEN Membrane progesterone receptor beta (mPRβ/Paqr8) promotes progesterone-dependent neurite Received: 19 December 2016 Accepted: 30 May 2017 outgrowth in PC12 neuronal cells Published: xx xx xxxx via non-G protein-coupled receptor (GPCR) signaling Mayu Kasubuchi1, Keita Watanabe1, Kanako Hirano2, Daisuke Inoue2, Xuan Li1, Kazuya Terasawa3, Morichika Konishi4, Nobuyuki Itoh2 & Ikuo Kimura1 Recently, sex steroid membrane receptors garnered world-wide attention because they may be related to sex hormone-mediated unknown rapid non-genomic action that cannot be currently explained by their genomic action via nuclear receptors. Progesterone affects cell proliferation and survival via non- genomic effects. In this process, membrane progesterone receptors (mPRα, mPRβ, mPRγ, mPRδ, and mPRε) were identified as putative G protein-coupled receptors (GPCRs) for progesterone. However, the structure, intracellular signaling, and physiological functions of these progesterone receptors are still unclear. Here, we identify a molecular mechanism by which progesterone promotes neurite outgrowth through mPRβ (Paqr8) activation. Mouse mPRβ mRNA was specifically expressed in the central nervous system. It has an incomplete GPCR topology, presenting 6 transmembrane domains and did not exhibit typical GPCR signaling. Progesterone-dependent neurite outgrowth was exhibited by the promotion of ERK phosphorylation via mPRβ, but not via other progesterone receptors such as progesterone membrane receptor 1 (PGRMC-1) and nuclear progesterone receptor in nerve growth factor-induced neuronal PC12 cells. These findings provide new insights of regarding the non-genomic action of progesterone in the central nervous system. Steroid hormones such as corticosterone, progesterone, testosterone, and estrogen are known to exhibit their physiological effects via their specific nuclear receptors1.
    [Show full text]
  • Fatostatin Reverses Progesterone Resistance by Inhibiting The
    Ma et al. Cell Death and Disease (2021) 12:544 https://doi.org/10.1038/s41419-021-03762-0 Cell Death & Disease ARTICLE Open Access Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma Xiaohong Ma 1,2,TianyiZhao1,2,HongYan3,KuiGuo 1,2, Zhiming Liu1,LinaWei1,2,WeiLu1,2, Chunping Qiu 1 and Jie Jiang 1 Abstract Progesterone resistance can significantly restrict the efficacy of conservative treatment for patients with endometrial cancer who wish to preserve their fertility or those who suffer from advanced and recurrent cancer. SREBP1 is known to be involved in the occurrence and progression of endometrial cancer, although the precise mechanism involved remains unclear. In the present study, we carried out microarray analysis in progesterone-sensitive and progesterone- resistant cell lines and demonstrated that SREBP1 is related to progesterone resistance. Furthermore, we verified that SREBP1 is over-expressed in both drug-resistant tissues and cells. Functional studies further demonstrated that the inhibition of SREBP1 restored the sensitivity of endometrial cancer to progesterone both in vitro and in vivo, and that the over-expression of SREBP1 promoted resistance to progesterone. With regards to the mechanism involved, we found that SREBP1 promoted the proliferation of endometrial cancer cells and inhibited their apoptosis by activating the NF-κB pathway. To solve the problem of clinical application, we found that Fatostatin, an inhibitor of SREBP1, could increase the sensitivity of endometrial cancer to progesterone and reverse progesterone resistance by inhibiting 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; SREBP1 both in vitro and in vivo. Our results highlight the important role of SREBP1 in progesterone resistance and suggest that the use of Fatostatin to target SREBP1 may represent a new method to solve progesterone resistance in patients with endometrial cancer.
    [Show full text]
  • Biphasic Modulation of Camp Levels by the Contraceptive Nomegestrol Acetate. Impact on P-Glycoprotein Expression and Activity In
    Biphasic modulation of cAMP levels by the contraceptive nomegestrol acetate. Impact on P-glycoprotein expression and activity in hepatic cells. Guillermo Nicolás Tocchettia,b Camila Juliana Domíngueza Felipe Zecchinatia a Maite Rocío Arana María Laura Ruiza Silvina Stella Maris Villanuevaa Johanna Weissb Aldo Domingo Mottinoa Juan Pablo Rigallib,c* a Institute of Experimental Physiology (IFISE-CONICET). Rosario National University. Suipacha 570. (2000) Rosario. Argentina. Phone: +54-341-4305799. FAX: +54-341- 4399473. b Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg. Im Neuenheimer Feld 410. (69120) Heidelberg. Germany. Phone: +49-6221-56- 39400. FAX: +49-6221-56-4642. c Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center. P.O. Box 9101. (6500 HB) Nijmegen. The Netherlands. Phone: +31-(0)24-3614202. FAX: +31-(0)24-3668340. * corresponding author. E-mail: [email protected] Abstract ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA- mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α.
    [Show full text]
  • Ated Progesterone Receptor Component 2 (PGRMC-2) in Matur
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2021 doi:10.20944/preprints202107.0555.v1 Article Molecular Characterization of a Functional Membrane-Associ- ated Progesterone Receptor Component 2 (PGRMC-2) in Matur- ing Oocytes of the Human Parasite Nematode Trichinella spi- ralis: Implications to the Host-Parasite Relationship Jorge Morales-Montor 1, *, Álvaro Colin-Oviedo 2, Gloria María. González-González 2, José Prisco Palma-Nicolás 2, Alejandro Sánchez-González 2, Karen Elizabeth Nava-Castro 3, Lenin Dominguez-Ramirez 4, Martín García-Va- 5 6 2, rela , Víctor Hugo Del Río-Araiza and Romel Hernández-Bello * 1 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de México 04510, México.; [email protected] 2 Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey. P 64460. Nuevo León, México.; [email protected] (A.C.O); [email protected] (G.M.G.G); jose.pal- [email protected] (J.P.P.N); [email protected] (A.S.G); [email protected] (R.H.B). 3 Laboratorio de Genotoxicología y Medicina Ambientales. Departamento de Ciencias Ambientales. Centro de Ciencias de la Atmósfera. Universidad Nacional Autónoma de México. 04510. Ciudad de México, Mé- xico.; [email protected] 4 Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Sta. Catarina Mártir, Cholula, C.P 72810 Puebla, México.; [email protected] 5 Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.; gar- [email protected] 6 Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autó- noma de México, Ciudad de México 04510, México.; [email protected] * Correspondence: [email protected] ; Tel.: (+52 (81) 8329-4177; R.H.B), jmontor66@bio- medicas.unam.mx ; Tel.: (+52555-56223158, Fax: +52555-56223369; J.M.M).
    [Show full text]
  • Genomic and Non-Genomic Action of Neurosteroids in the Peripheral Nervous System
    fnins-14-00796 July 27, 2020 Time: 18:11 # 1 MINI REVIEW published: 29 July 2020 doi: 10.3389/fnins.2020.00796 Genomic and Non-genomic Action of Neurosteroids in the Peripheral Nervous System Alessandra Colciago, Veronica Bonalume, Valentina Melfi and Valerio Magnaghi* Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy Since the former evidence of biologic actions of neurosteroids in the central nervous system, also the peripheral nervous system (PNS) was reported as a structure affected by these substances. Indeed, neurosteroids are synthesized and active in the PNS, exerting many important actions on the different cell types of this system. PNS is a target for neurosteroids, in their native form or as metabolites. In particular, old and recent evidence indicates that the progesterone metabolite allopregnanolone possesses important functions in the PNS, thus contributing to its physiologic processes. In this review, we will survey the more recent findings on the genomic and non-genomic actions of neurosteroids in nerves, ganglia, and cells forming the PNS, focusing on the mechanisms regulating the peripheral neuron-glial crosstalk. Then, we will refer to the Edited by: physiopathological significance of the neurosteroid signaling disturbances in the PNS, in Hubert Vaudry, to identify new molecular targets for promising pharmacotherapeutic approaches. Université de Rouen, France Keywords: neuroactive steroid, allopregnanolone, GABA, myelin, Schwann cell, dorsal root ganglia Reviewed by: Michael Schumacher, Institut National de la Santé et de la Recherche Médicale (INSERM), INTRODUCTION France Shogo Haraguchi, The importance of endogenous neurosteroids for the control of the peripheral nervous Showa University, Japan system (PNS) become increasingly relevant in the last decades.
    [Show full text]