Energy Consumption of an Off-Road Modified Pick-Up and the Possibility of Hybridisation Or Electrification
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Energy consumption of an off-road modified pick-up and the possibility of hybridisation or electrification HÉÐINN HAUKSSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Abstract Arctic Trucks have been modifying vehicles such as the Toyota Hilux, Toyota Land Cruiser, Isuzu D-Max, Nissan Patrol and Nissan Navara for over 25 years for special projects as well as for recreational purposes both in Iceland and other countries. Arctic Trucks started up as a sub-division for Toyota Iceland but became an independent company in 2005. Their capability to make off- road vehicles is well known, the Toyota Hilux AT38 being their flagship. It has been driven to both the magnetic north pole, the south pole and various other remote places and is widely used for logistics in Icelandic highlands as well as other places both during summer and winter time. This M.Sc. project in vehicle engineering covers measurements of energy consumption of a modified Toyota Hilux AT38 2017 in order to determine if some improvements are possible when it comes to fuel consumption and the vehicles environmental impact by hybridisation or full electrification of the vehicle. Fuel consumption is measured in various on-road and off-road conditions (gravel, snow and asphalt). Calculations are made to estimate the effect on fuel consumption of the climate control in the vehicle cabin. Air drag coefficent and friction coefficient are estimated based on coast-down tests in real-life condi- tions. These factors are necessary to evaluate the total running resistance of the vehicle. These fuel consumption measurements show that the fuel consumption for off-road driving is quite high and since this type of vehicle also needs to be light, the advantages of hybridisation or full electrification need to be examined further. For highway and city driving, hybridisation might be feasible but many factors need to be looked at for that case as well. As of now, battery technology and lack of infrastructure are standing in the way of this type of electric or plug- in hybrid vehicles, since these vehicles are used in environments where electricity or even fossil fuel is hard and expensive to reach. i Sammanfattning Arctic Trucks har modifierat fordon såsom Toyota Hilux, Toyota Land Cruiser, Isuzu D-Max, Nissan Patrol och Nissan Navara i över 25 år för speciella pro- jekt såväl som för rekreationsändamål både i Island och i andra länder. Arctic trucks startades upp som en underavdelning av Toyota Island men blev ett självständigt företag 2005. Deras förmåga att göra terrängfordon är välkänt, med Toyota Hilux AT38 som deras flaggskepp. Den har körts till både den magnetiska nordpolen, sydpolen och flera andra avlägsna platser och används ofta för logistik på isländska högländerna samt andra platser både sommartid och vintertid. Detta examensarbete i fordonsteknik omfattar mätningar av energiför- brukningen för en Toyota Hilux AT38 2017 för att avgöra om det finns möj- lighet till förbättringar av bränsleförbrukningen och fordonets miljöpåverkan genom hybridisering eller full elektrifiering av fordonet. Bränsleförbrukningen har mäts upp under verkliga förhållande på väg och i terräng för olika underlag (snö, grus och asfalt). Beräkningar har gjorts för att uppskatta effekten på bränsleförbrukningen av klimatkontrollen i fordonshytten. Utrullningsprov har genomförs för att uppskatta luftmotståndskoefficienten och rullmotståndskoefficienten som är nödvändiga faktorer för att utvärdera for- donets totala färdmotstånd. Bränsleförbrukningsmätningarna visar att bränsleförbrukningen för ter- rängkörning är ganska hög och eftersom fordonet dessutom behöver vara lätt, måste fördelarna med hybridisering eller full elektrifiering undersökas ytterli- gare. För motorvägs- och stadskörning kan hybridisering vara genomförbar men många faktorer måste utvärderas även i de fallen. Just nu står batteriteknik och brist på infrastruktur i vägen för elektrifiering/hybridisering av denna typ av fordon, eftersom dessa fordon används i miljöer där el eller till och med fossilt bränsle är svårt hitta inom körområdet. ii Acknowledgements This report is part of my final project to receive a M.Sc. in Vehicle Engineering at KTH Royal Institute of Technology, Stockholm, Sweden. The work has been performed at Arctic Trucks Iceland in Reykjavik. I would like to express my gratitude to my project supervisor Jenny Jerrelind for her guidance and help through the course of the project. I would like to offer my special thanks to Hinrik Jóhannsson, R&D manager at Arctic Trucks International for supplying me with an office, test vehicle and general support and interest in the project. Eiríkur Einarsson, technical manager at Toyota Iceland deserves a special thanks for his support with the data logging equipment. I wish to acknowledge the help provided by Freyr Þórsson, Kristinn Mag- nússon and Baldur Gunnarsson for supplying me with information regarding the project and general help through the course of the project. I would also like to thank my girlfriend, Linda Dögg Snæbjörnsdóttir for her encouragement and patience through the course of the project. Hedinn Hauksson iii List of Figures 1 Toyota Hilux AT38 2017 MY. .2 2 Rolling resistance and air drag as a function of vehicle velocity. Combined resistance forces can also be seen [1]. .6 3 Range of multiple Nissan Leaf vehicles in cold weather conditions [2]. .8 4 Impact of auxiliary load on the range of a Nissan Leaf electric vehicle [3]. .8 5 Series hybrid drivetrain setup [4]. .9 6 Parallel hybrid drivetrain setup [4]. .9 7 Complex hybrid drivetrain setup [4]. 10 8 Typical hybrid functions and requirements [5]. 11 9 Typical Hybrid electric vehicle battery pack from a Toyota Prius [6]. 12 10 Torque curves of an ICE and an electric motor [7]. 13 11 Heat balance of an engine with two BMEP values. Engine losses are made up of many factors [8]. 14 12 Brake thermal efficiency of three engines equipped with Continu- ously Variable Transmission, Manual Transmission and a Hybrid Vehicle [8]. 15 13 Route location, Langjökull to Gullfoss . 17 14 Route location at Hamragarðaheiði . 18 15 Route location at Þórsmörk . 18 16 Screenshot from the data acquisition software for the coast-down test. Many parameters were logged but vehicle speed was only needed for the coast down test. For fuel consumption measure- ments Injection Volume is used and Engine speed. 20 17 The OBDII connector under the steering wheel. 21 18 Setup of measurement device in the Hilux. 21 19 Specifications for Vehicle Interface Module. 21 20 Heat distribution of the rear of a car. By far the biggest part of the heat is lost through the windows [9]. 22 21 Heat loss through the windows of a Toyota Hilux as a function of outside temperature and wind velocity. Inside temperature is set at 20◦C............................... 24 22 Total running resistance due to air drag and rolling resistance as a function of velocity of a Toyota Hilux AT38. 26 23 Speedometer smartphone application used to verify speedometer of the Toyota Hilux AT38. 27 iv 24 Case 1. Logged fuel consumption over a period of time, average consumption and moving average with 1 min timespan. Tyre pressure 4 psi on soft snow at Langjökull glacier. 28 25 Case 2. Fuel consumption over a period of time, average con- sumption and moving average with 1 and 2 minute timespan, respectively. Tyre pressure 4 psi on soft snow. 30 26 Case 3. Fuel consumption over a period of time, moving average for 1, 5 and 10 minutes. Tyre pressure 4 psi on soft snow. 31 27 Case 4. Fuel consumption over a period of time, average fuel consumption as well as 1, 5 and 10 minute moving average. Tyre pressure 4 psi on soft snow. 32 28 Case 5. Fuel consumption over a period of time, average fuel consumption, 1,2 and 5 min moving averages. Tyre pressure 4 psi on soft snow. 33 29 Case 6. Fuel consumption over a period of time, average and 1 and 2 min moving average. Tyre pressure 25 psi on gravel road. 33 30 Case 7. Fuel consumption over a period of time, average con- sumption and 1,2 and 5 min moving average. Tyre pressure 25 psi on gravel road. 34 31 Case 8. Fuel consumption over a period of time, average con- sumption and 1,2 and 5 min moving average. Tyre pressure 25 psi on gravel road. 35 32 Fuel consumption over a period of time. Tyre pressure 10 psi on gravel road. 36 33 Case 10. Fuel consumption over a period of time, average con- sumption and 1, 5 and 10 min moving average. Tyre pressure 4 psi on gravel road. 37 34 Case 11. Fuel consumption over a period of time. Tyre pressure 3 psi on gravel road. 38 35 Case 12. Fuel consumption over a period of time, average con- sumption and 1,5,10 and 20 min moving average. Tyre pressure 10 psi on gravel road. 39 36 Case 13. Fuel consumption over a period of time, average con- sumption and 1,5,10 and 20 min moving average. Tyre pressure 10 psi on gravel road. 39 37 Case 14. Fuel consumption over a period of time, average con- sumption and 1,5,10 and 20 min moving average. Tyre pressure 25 psi on asphalt. 40 38 Fuel consumption over a period of time, average consumption and 1,2,5 and 10 min moving average. Tyre pressure 22 psi on asphalt. 41 v List of Tables 1 Hilux AT 38 specifications (Arctic Trucks, 2018). .4 2 Conditions for each measurement case. 19 3 Parameters used to calculate heat loss. 24 4 Measured velocity values from coast down test at 25 psi tyre pressure. The average rolling resistance coefficient is 0.032. 26 5 Rolling resistance coefficient fr as a function of tyre pressure on asphalt.