<<

Double-: Part 2 Backgrounds and More Experiments

Lindley Winslow Massachusetts Institute of Technology Lepton e- e- Number Violation!

νi νi

Nucleus Z ➢ ➢ Nucleus Z+2

Nuclear Process

Neutrinoless Light Majorana Neutrino Exchange (LMNE) Neutrinoless Double Beta Decay

The sum of the electron energies gives a spike at the endpoint of the “neutrino-full” double beta decay.

Rev.Mod.Phys., 481-516 (2008) From Last Time: How do you relate the cosmological measurements? Let’s make a detector! Endpoint Abundance

48Ca 4.271 MeV 0.187%

150Nd 3.367 MeV 5.6%

96Zr 3.350 MeV 2.8%

100Mo 3.034 MeV 9.6%

82Se 2.995 MeV 9.2%

116Cd 2.802 MeV 7.5%

130Te 2.527 MeV 34.5%

136Xe 2.457 MeV 8.9%

76Ge 2.039 MeV 7.8%

PHYSICAL REVIEW D 87, 071301(R) (2013) PHYSICAL REVIEW D 87, 071301(R) (2013) PHYSICAL REVIEW D 87, 071301(R) (2013) PHYSICAL REVIEW D 87, 071301(R) (2013) PHYSICAL REVIEW D 87, 071301(R) (2013) PHYSICAL REVIEW D 87, 071301(R) (2013) PHYSICAL REVIEW D 87, 071301(R) (2013)

A lot of detector ideas: Detector Data: source = detector X Good Good Energy at Size Resolution

Bad Energy More Difficult Resolution to make big. Copper frame:! 10 mK heat sink!

PTFE holders: " weak thermal coupling!

NTD Ge thermistor: " resistive thermometer!

TeO 2 crystal: " energy absorber! Si joule heater: " reference pulses! Radia%on:)) energy!deposit!

4 10 Period-2 110m Data Ag Total 238U+232Th+210Bi 103 Total (0 ββν U.L.) 210Po+85Kr+40K 136Xe 2 ββν IB/External 136Xe 0 ββν 102 (90% C.L. U.L.)

10 Events/0.05MeV

1

10−1 1234 Visible Energy (MeV) Copper frame:! 10 mK heat sink!

PTFE holders: " weak thermal coupling!

NTD Ge thermistor: " resistive thermometer!

TeO 2 crystal: " energy absorber! Si joule heater: " reference pulses! Radia%on:)) energy!deposit!

4 10 Period-2 110m Data Ag Total 238U+232Th+210Bi 103 Total (0 ββν U.L.) 210Po+85Kr+40K 136Xe 2 ββν IB/External 136Xe 0 ββν Spallation 102 (90% C.L. U.L.)

10 Events/0.05MeV

1

10−1 1234 Visible Energy (MeV) So Much More detail! All energy depositions fully Also, the relative intensity of individual contained i.e. no gammas gamma lines tells a lot about the escape. source position. 76Ge - GERDA/Majorana Detector Data:

136Xe - EXO-200/nEXO Detector Data: From Liang Yang

From Liang Yang From Liang Yang

NEMO-2/SuperNEMO - A Tracker

Backgrounds? 4 10 Period-2 110m Data Ag Total 238U+232Th+210Bi 103 Total (0 ββν U.L.) 210Po+85Kr+40K 136Xe 2 ββν IB/External 136Xe 0 ββν Spallation 102 (90% C.L. U.L.)

10 Events/0.05MeV

1

10−1 1234 Visible Energy (MeV) This is a lot of ! Some Random Ones

110mAg • metastable state of silver • fission product • What is its lifetime? • Why is it so long? Let’s do some research! http://www.nndc.bnl.gov/chart/ Some Random Ones

40K • Long lived • Naturally occurring • What is it’s characteristic ? • Why is it so long-lived? Chain

Long Lived

Often times it is that is coming into your detector.

Note: mixture of beta and alpha decays, the Bi-Po decays are particularly useful for coincidence analyses. Chain

Long Lived

Often times it is radon that is coming into your detector.

Highest energy gamma ray of either U or Th chain. Alpha Decay Pretty Simple

Alpha Decay to Excited States

Q-Value reduced so becomes less probable.

40K, Why is it so long-lived? 208Tl, What does it look like inside and outside a detector? (contained and not contained) 4 10 Period-2 110m Data Ag Total 238U+232Th+210Bi 103 Total (0 ββν U.L.) 210Po+85Kr+40K 136Xe 2 ββν IB/External 136Xe 0 ββν Spallation 102 (90% C.L. U.L.)

10 Events/0.05MeV

1

10−1 1234 Visible Energy (MeV) μ

Muon travels through making What is this? lots of and other things including light . Production: Light Isotope Production: Where does 60Co come from?

http://www.nndc.bnl.gov/sigma/

or

http://www.nndc.bnl.gov/exfor/exfor.htm

Hint: (n, alpha)