As Part of the Baker River Hydroelectric Project

Total Page:16

File Type:pdf, Size:1020Kb

As Part of the Baker River Hydroelectric Project Background The Baker River has two manmade dams built and operated by Puget Sound Energy (PSE) as part of the Baker River Hydroelectric Project. Lower Baker Dam was constructed in 1925, creating Lake Shannon. It spans the Baker River in a narrow reach known as Eden Canyon, just above the river's confluence with the Skagit River. Blocking off all upstream access, a ladder and "elevating contrivance" was constructed by PSE to provide fish passage. Below Lower Baker Dam the Baker River flows unimpeded (except for a small weir at a fish passage station) for about a mile before emptying into the Skagit River. Located approximately eight miles upstream and completed in 1959 is Upper Baker Dam, which is over 300 feet high and inundated the valley that included the natural Baker Lake. Artificial spawning beds were constructed at the upper end of the new Baker Lake to mitigate for loss of natural spawning beaches. Newly refurbished sockeye spawning beaches were finished in 2010, located at the new hatchery facility. The entire escapement of returning adults is now trapped below Lower Baker Dam and transported above the dams. Some are placed in the artificial spawning beaches, some are used for hatchery production, and others are released into Baker Lake to spawn naturally and to fuel an increasingly popular recreational fishery. Adult Baker sockeye enter the trap from mid-June to mid-October with the peak of the run in mid-July. Spawning occurs from mid-September through December, peaking from late September to late November. Fry from the artificial spawning beaches and from hatchery production are released into Baker Lake and Shannon Lake, where they rear naturally. At the smolt stage, sockeye are captured at both dams and released downstream below Lower Baker dam to complete their seaward journey. As part of their mitigation requirements, PSE employees operate and maintain facilities at the Baker River Project under the directives of WDFW and tribal co-managers. The facilities include floating surface collectors for juveniles located on Baker Lake (completed in 2008) and Lake Shannon (completed in 2013), a new fish hatchery, an upstream trap-and haul facility, and a sockeye spawning beach. The native run of Baker River sockeye salmon is the only known sustaining population of sockeye salmon in the Skagit River basin and has been determined to be genetically distinct from other sockeye salmon. Before Lower Baker Dam was built in 1925 the fish had free access to the river and natural (pre-dammed) Baker Lake. The annual sockeye run at that time was estimated to be approximately 20,000 fish. As of 1992 the condition of the population was listed as "critical." In fact, in 1985 only 92 adults were found to return to the river. Since then, the population appears to be recovering, in part due to improvements in the smolt trapping and transportation system. A considerable amount of time, resources and money has been invested into the Baker River Project by PSE and ratepayers. CCA Washington Page 1 9/19/17 Current Fisheries In recent years, as recreational fishing opportunity elsewhere in Puget Sound has been severely diminished, the recreational fishery in Baker Lake has grown in popularity. Thanks in large part to PSE’s efforts, it is anticipated that this has potential to be a healthy and vibrant fishery for years to come. Unfortunately, much of the success of PSE’s program is at risk of being lost due to overharvest. This year provides an excellent opportunity to reassess how the Baker Lake sockeye run can be co- managed in a manner that prioritizes conservation, wild fish escapement, hatchery needs and is consistent with court-ordered catch sharing between the co-managers. Preseason forecasts produced an estimated run size of 47,000 fish. In early August, based on in- season management adjustments, the run size was downgraded to 37,000 fish. It appears unlikely that number will be reached, but even if it is, this would mean the preseason forecast was off by nearly 30%. As of August 28th, there was a total of 16,318 sockeye trapped at Lower Baker Dam, with 8,704 sockeye transferred into Baker Lake (many of which will spawn naturally) and the remaining balance retained for hatchery needs. Prior to reaching Lower Baker Dam, an astounding 16,117 sockeye were harvested by the tribal community. Using prior year’s creel census data, preliminary estimates indicate that the non-tribal community harvested less than 5,000 fish, resulting in a severely imbalanced catch sharing scenario among the co-managers. Proposed Fishery Management Improvements We understand that preseason forecasting is an imprecise art, which is why it is so important that fishery managers consider developing a more robust plan for in-season management. This is especially pertinent in a river system that has an impassable structure where all fish can be accounted for in real time, and fishery decisions can be made with accurate, up-to-date information. CCA Washington Page 2 9/19/17 1) Conservation First In order to help ensure a vibrant fish run for years to come, we propose a conservation buffer of at least 30% be applied to the pre-season forecast for establishing initial harvest management guidelines. Since pre-season forecasts are imprecise, this would reduce the amount of fish available for harvest in tribal and non-tribal fisheries during the early part of the run. This is consistent with other fisheries management protocols in this state and provides assurances that stocks are not overharvested and management objectives are more likely to be achieved, including more equitable catch sharing and that escapement goals are met for both naturally spawning fish and for hatchery production needs. 2) Adjust Fisheries Mid-Season The duration and timing of the sockeye fishery varies with in-season abundance. With a conservation buffer in place, fisheries managers can better adjust harvest management targets mid-season with actual, up-to-date data. Not only does this help ensure conservation objectives are met or exceeded in years when abundance is below the preseason forecast, it can also result in more robust fisheries in years when abundance is above the preseason forecast. With a fish trap in place at Lower Baker Dam, and daily fish counts made available by PSE, all the necessary infrastructure is already in place for this management approach. 3) Improved Catch Sharing In an effort to be more transparent with the management of this fishery, we recommend publicizing the yearly harvest goals to the general public. Along with the preseason forecast this should include, at a minimum, hatchery escapement needs, wild escapement goals, tribal harvest and non-tribal harvest goals. If it is the goal of this fishery to equitably balance catch sharing, then preliminary harvest guidelines should be based on actual catch. Simply putting fish into Baker Lake does not equate to a harvested fish. WDFW has conducted creel surveys that are used to estimate non-tribal harvest in the Skagit River and Baker Lake, and this information could be used to guide non-tribal catch share estimates. Transfer of Fish to the Skokomish River Compounding the catch sharing and forecasting issues is the transfer of Baker Lake sockeye broodstock to the Skokomish River system and Lake Cushman on the Olympic Peninsula. WDFW recently entered into an agreement with PSE and the Skokomish Tribe to provide this sockeye production. Under normal circumstances, a new sockeye fishery in Lake Cushman would be well received and supported by the recreational fishing community, but unfortunately the Skokomish River system was recently closed to all non-tribal fishing. We remain hopeful that WDFW will ensure that non-tribal anglers have access to this fishery, which has the potential to become a vibrant recreational fishery similar to Baker Lake. This would create a much needed new fishery in the region. Without an agreement to provide equitable access, many anglers are questioning if these sockeye will be accessible, in any meaningful way, to the non-tribal fishing public. Thank you for your continued service and we look forward to working with you in the coming months to develop healthier and more equitable sockeye fisheries in Puget Sound. CCA Washington Page 3 9/19/17 .
Recommended publications
  • Baker Sockeye Briefing
    Baker Sockeye Briefing Aaron Dufault and Edward Eleazer Commission Meeting 10/27/2017 WA Dept. of Fish and Wildlife, Information subject to changes 1 Outline • History/Background • Fishery Management • Harvest/Sharing Updated through 2017 • Challenges • Proposed solutions • Summary Commission Meeting 10/27/2017 WA Dept. of Fish and Wildlife, Information subject to changes 2 Baker Lake History • Native Baker River sockeye run blocked by Lower Baker Dam (Lake Shannon) in 1925 – ladder for fish passage • Upper Baker Dam (1959) – enlarged Baker lake • Blocked upstream fish passage • Human transport of adults/smolts from lake to Baker river • Hatchery dependent run – low levels of natural spawning in Baker Lake/River Commission Meeting 10/27/2017 WA Dept. of Fish and Wildlife, Information subject to changes 3 Fishing Locations – Skagit R. Baker Lake Lake Shannon Tribal U&A * Baker Trap Rec. Fishery * Mt. Vernon Skagit Bay Commission Meeting 10/27/2017 WA Dept. of Fish and Wildlife, Information subject to changes 4 In-Season Management • Baker Trap Counts • Flow Dependent – can be variable • 20 day migration from mouth to trap • Treaty Test Fisheries 6/1 6/11 6/21 7/1 7/11 7/21 7/31 8/10 8/20 8/30 • Started in 2012 – no timeline if/when test fisheries will become useful for in-season run updates • In-Season Update (ISU) Models– utilize trap counts to predict total runsize • Reliability of models greatly increases after 50% migration • Migration time limits effectiveness of in-season actions Commission Meeting 10/27/2017 WA Dept. of Fish and Wildlife, Information subject to changes 5 2014/15 Baker Lake Workshops • 2 Public Workshops in Fall/Winter 2014/15 • Prompted following poor return in 2014 and sharing imbalance between state and tribes • Primary Outcomes: • River vs Lake Fishery Priority of harvest (sliding scale with runsize) • Bag limits (runsize dependent in lake) • Fisheries start and end dates • Post 2014/15 workshops, continue to work with key stakeholders to address concerns • Most recent meeting on Oct.
    [Show full text]
  • Mount Baker, Washington
    WATER-QUALITY EFFECTS ON BAKER LAKE OF RECENT VOLCANIC ACTIVITY AT MOUNT BAKER, WASHINGTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 1022-B Prepared in cooperation with the State of Washington Department of Ecology Water-Quality Effects on Baker Lake of Recent Volcanic Activity at Mount Baker, Washington By G. C. BORTLESON, R. T. WILSON, and B. L. FOXWORTHY VOLCANIC ACTIVITY AT MOUNT BAKER, WASHINGTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 1022-B Prepared in cooperation with the State of Washington Department of Ecology UNITED STATES GOVERNMENT PRINTING OFFICE:1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Bortleson, Gilbert Carl, 1940- Water-quality effects on Baker Lake of recent volcanic activity at Mount Baker, Washington. (Volcanic Activity at Mt. Baker) (Geologic Survey Professional Paper 1022-B) Bibliography: p. 30. Supt.ofDocs.no.: I 19.16:1022-6 1. Water quality-Washington (State)--Baker Lake. 2. Volcanism-Washington (State). 3. Baker, Mount, Wash. I. Wilson, Reed T., joint author. II. Foxworthy, Bruce, La Verne, 1925- joint author. III. Washington (State). Dept. of Ecology. IV. Title. V. Series: Volcanic activity at Mount Baker, Washington. VI. Series: United States Geological Survey Professional Paper 1022-B. TD224.W2B67 363.6'1 77-21097 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03008-0 CONTENTS Conversion factors _________________________. Ill Quality of surface waters draining to Baker Lake ______B16 Abstract__________________________________. Bl Water in Sherman Crater __________________ 16 Introduction ______________________________. 1 Boulder Creek and other streams _____________.
    [Show full text]
  • Mt. Baker-Snoqualmie National Forest Geothermal Power Plant Environmental Impact Assessment Evan Derickson Western Washington University
    Western Washington University Western CEDAR Huxley College Graduate and Undergraduate Huxley College of the Environment Publications Winter 2013 Mt. Baker-Snoqualmie National Forest geothermal power plant environmental impact assessment Evan Derickson Western Washington University Ethan Holzer Western Washington University Brandon Johansen Western Washington University Audra McCafferty Western Washington University Eric Messerschmidt Western Washington University See next page for additional authors Follow this and additional works at: https://cedar.wwu.edu/huxley_stupubs Part of the Environmental Studies Commons Recommended Citation Derickson, Evan; Holzer, Ethan; Johansen, Brandon; McCafferty, Audra; Messerschmidt, Eric; and Olsen, Kyle, "Mt. Baker- Snoqualmie National Forest geothermal power plant environmental impact assessment" (2013). Huxley College Graduate and Undergraduate Publications. 29. https://cedar.wwu.edu/huxley_stupubs/29 This Environmental Impact Assessment is brought to you for free and open access by the Huxley College of the Environment at Western CEDAR. It has been accepted for inclusion in Huxley College Graduate and Undergraduate Publications by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Author Evan Derickson, Ethan Holzer, Brandon Johansen, Audra McCafferty, Eric Messerschmidt, and Kyle Olsen This environmental impact assessment is available at Western CEDAR: https://cedar.wwu.edu/huxley_stupubs/29 Mt. Baker-Snoqualmie National Forest Geothermal Power
    [Show full text]
  • CONCEPTUAL RESTORATION PLAN Baker River Alluvial Fan Enhancement
    SKAGIT COUNTY SHORELINE MASTER PROGRAM CONCEPTUAL RESTORATION PLAN Baker River Alluvial RESTORATION STRATEGY CONCEPT ELEMENTS 1. Increase off -channel rearing habitat by excavating a 11. Replace the existing shoreline stairway 66.6. Substitute pervious, natural-surface pedestrian channel connecting the mainstem Skagit with an off - shoreline access trails for impervious road surfaces. Fan Enhancement channel pond. 22.2. Reduce imperviousness of vehicular and pedestrian access along river banks 77.7. Provide channels to link habitats of the historic Little BACKGROUND 2. Improve instream complexity by adding large woody Baker River channel and alluvial fan as a backwater debris. 3.3. Replace invasive plant species with native trees and The Baker River Alluvial Fan area at the confl uence with 3 channel. shrubs. the larger Skagit River is located partly within the Town 3. Substitute pervious pedestrian trails for impervious 88.8. Provide low-impact recreational improvements such of Concrete and partly in unincorporated Skagit County. vehicular access road and parking areas where feasible 44. Improve the existing WDFW boat launch site as campgrounds outside the fl oodway. For more than a decade, various stakeholders including in areas adjacent to the Baker and Skagit Rivers. user groups, landowners, local governments, and other 55.5. Improve sinuosity of lower Baker River, establish 99.9. Place boulders, log structures, and/or engineered log interested parties have been considering habitat and 4. Remove invasive plant species and replace them with fl oodplain benches and meanders. jams to increase low-fl ow complexity and improve recreational improvement opportunities along the lower native trees and shrubs to provide riparian functions salmonid fi sh habitat for juvenile rearing and adult Baker River and its associated alluvial fan.
    [Show full text]
  • The Wild Cascades
    THE WILD CASCADES Fall, 1984 2 The Wild Cascades PRESIDENT'S MESSAGE ONCE THE LINES ARE DRAWN, THE BATTLE IS NOT OVER The North Cascades Conservation Council has developed a reputation for consistent, hard-hitting, responsible action to protect wildland resources in the Washington Cascades. It is perhaps best known for leading the fight to preserve and protect the North Cascades in the North Cascades National Park, the Pasayten and Glacier Peak Wilderness Areas, and the Ross Lake and Lake Chelan National Recreation Areas. Despite the recent passage of the Washington Wilderness Act, many areas which deserve and require wilderness designation remain unprotected. One of the goals of the N3C must be to assure protection for these areas. In this issue of the Wild Cascades we have analyzed the Washington Wilderness Act to see what we won and what still hangs in the balance (page ). The N3C will continue to fight to establish new wilderness areas, but there is also a new challenge. Our expertise is increasingly being sought by government agencies to assist in developing appropriate management plans and to support them against attempts to undermine such plans. The invitation to participate more fully in management activities will require considerable effort, but it represents a challenge and an opportunity that cannot be ignored. If we are to meet this challenge we will need members who are either knowledgable or willing to learn about an issue and to guide the Board in its actions. The Spring issue of the Wild Cascades carried a center section with two requests: 1) volunteers to assist and guide the organization on various issues; and 2) payment of dues.
    [Show full text]
  • Historical Record of Fish Related Issues on the Skagit River
    HISTORICAL RECORD OF FISH RELATED ISSUES ON THE SKAGIT RIVER SKAGIT COUNTY, WASHINGTON 1897 THROUGH 1969 By Larry Kunzler June 4, 2005 Updated and republished June 2008 www.skagitriverhistory.com Historical Record of Fish Related Issues On The Skagit River Table of Contents Table of Contents............................................................................................................................ 2 PREFACE....................................................................................................................................... 4 Levees and Fish Discussed Early in Skagit History ....................................................................... 5 Flood Control Projects Impacted Fish Runs ................................................................................... 5 Fish Hatchery At Baker Lake Stops Work For Winter................................................................... 6 Seattle To Build State Hatchery On Upper River........................................................................... 6 Forest Service To Survey Road From Here To Baker Lake........................................................... 7 O’malley Is Appointed As Fish Commissioner.............................................................................. 7 Fish Hatchery Man Has Exciting Trip To Lake.............................................................................. 7 Preliminary Work On Baker Lake Road Started This Week.......................................................... 8 Power Company To Continue
    [Show full text]
  • Baker River Hydroelectric Project FERC No
    Baker River Hydroelectric Project FERC No. 2150 PDEA Initial Review Comments 1/16/04 The documents available to the general public, apparently Volume I, Part 1 of 2, and Volume II, Part 1 of 2, exclude key information including the results of numerous studies and other documents that are part of the license submittal. Because so many studies are incomplete and have therefore not been incorporated into the substantive compilation of factual material relevant to the current re-licensing effort, it is difficult to comment from the County’s perspective regarding addition of flood storage in the Baker Project. For example, there are several references to study “A09,” as yet incomplete, which will provide essential information regarding salmonid spawning and rearing habitat. It is also difficult to comment on a report that does not include the recommended conditions considered necessary to protect fish and wildlife from the federal resource agencies. In numerous instances, the PDEA refers to future actions that will be undertaken after the license is issued. (See page 5-117.) The mechanism to ensure these actions are completed is not clear. It should be noted that Puget Sound Energy (PSE) has refused to conduct a flood control study1 requested by Skagit County on December 2, 2002, to verify the County’s reservoir elevation recommendations, primarily based upon a concern that this study will not be complete in time to include with the license submittal. Yet in several other areas of the re-licensing effort, results of other studies are clearly
    [Show full text]
  • Assessment of Energy Storage Alternatives in the Puget Sound Energy System
    PNNL- 23040 Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 1: Financial Feasibility Analysis December 2013 Patrick Balducci, PNNL Patrick Leslie, Puget Sound Energy Chunlian Jin, PNNL Charles Daitch, Puget Sound Energy Di Wu, PNNL Andy Marshall, Primus Power Michael Kintner-Meyer, PNNL PNNL-23040 Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 1: Financial Feasibility Analysis P Balducci, PNNL C Jin, PNNL D Wu, PNNL M Kintner-Meyer, PNNL P Leslie, Puget Sound Energy C Daitch, Puget Sound Energy A Marshall, Primus Power December 2013 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 and the Bonneville Power Administration. Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary For more than a decade, the Pacific Northwest has been capable of generating more electric energy than the region’s utilities required for meeting customer demand. Now, however, the Regional Resource Adequacy Forum’s five-year forecast indicates the region will soon reach load-resource balance. As capacity constraints loom, the percentage of renewables on the grid continues to grow, driven by renewable portfolio standards throughout the region, production tax credits and decreasing costs. In the Bonneville Power Administration region, with a total of 6 gigawatts of wind power, the need to manage the variability and intermittency of renewable energy resources has become a very real challenge, sometimes necessitating wind curtailments to sustain reliable operations. The continued increase of these renewable sources will necessitate the deployment of technologies that can address intermittency in an environmentally sustainable fashion. Energy storage systems have the potential to improve the operating capabilities of the electricity grid.
    [Show full text]
  • Propagation and Distribution of Food Fishes
    U. S. DEPARTMENT OF COMMERCE R. P. LAMONT, Secretary BUREAU OF FISHERIES HENRY O'MALLEY, Commieeioner Bureau of Fisheries Document No. 1098 PROPAGATION AND DISTRIBUTION OF FOOD FISHES FISCAL YEAR 1930 By GLEN C. LEACH APPENDIX XVI TO REPORT OF COMMISSIONER OF FISHERIES FOR THE FISCAL YEAR 1930 UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON i 1931 For sale by the Superintendent of Documents, Washington, D. C. - - - - - - - - - Price 15 cents PROPAGATION AND DISTRIBUTION OF FOOD FISHES, FISCAL 1 YEAR 1930 By GLEN C. LEACH, Chief, Division of Fish Culture CONTENTS Page Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1125 Part 1.—Fish Production: Propagation and Rescue Work Species handled _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1126 Output 1127 Cooperation with other conservation agencies - - - - - - - - - - - - - - - - - - 1128 Cooperative fish nurseries - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1129 State fish-cultural activities - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1132 Salvage of food fishes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1135 Transfers of eggs between stations - - - - - - - - - - - - - - - - - - - - - - - - - - - 1136 Shipments to foreign countries - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1137 Output of stations and substations - - - - - - - - - - - - - - - - - - - - - - - - - - 1137 Egg collections - - - - - - - - - - - - - - - - - - -
    [Show full text]
  • D Electric Resources & Alternatives
    D Electric Resources & Alternatives This appendix describes PSE’s existing electric resources; current electric resource alternatives and the viability and availability of each; and estimated ranges for capital and operating costs. 1 1 / Operating costs are defined as operation and maintenance costs, insurance and property taxes. Capital costs are defined as depreciation and carrying costs on capital expenditures. D- 1 FINAL PSE 2021 IRP D Electric Resources & Alternatives Contents 1. RESOURCE TYPES D-3 2. EXISTING RESOURCES INVENTORY D-7 • Supply-side Thermal Resources • Supply-side Renewable Resources • Supply-side Contract Resources • Supply-side Transmission Resources • Demand-side Resources • Demand-side Customer Programs 3. ELECTRIC RESOURCE ALTERNATIVES D-36 • Demand-side Resource Costs and Technologies • Supply-side Renewable Resource Costs and Technologies • Supply-side Thermal Resource Costs and Technologies D- 2 FINAL PSE 2021 IRP D Electric Resources & Alternatives 1. RESOURCE TYPES The following overview summarizes some of the distinctions used to classify electric resources. Supply-side and Demand-side Both of these types of resources are capable of enabling PSE to meet customer loads. Supply- side resources provide electricity to meet load, and these resources originate on the utility side of the meter. Demand-side resources contribute to meeting need by reducing demand. An “integrated” resource plan includes both supply- and demand-side resources. SUPPLY-SIDE RESOURCES for PSE include: • Generating plants, including
    [Show full text]
  • Total Dissolved Gas Abatement Plan
    TOTAL DISSOLVED GAS ABATEMENT PLAN BAKER RIVER HYDROELECTRIC PROJECT FERC PROJECT NO. 2150 Puget Sound Energy Bellevue, Washington November 2, 2009 Baker TDG Abatement Plan.Doc PUGET SOUND ENERGY Baker River Hydroelectric Project Doc ID: BAK.20091102.0201.PSE.DOE 2 November 2009 Total Dissolved Gas Abatement Plan CONTENTS CONTENTS 1.0 Introduction............................................................................................................................................................................... 1 1.1 Background ...................................................................................................................................................................... 1 1.2 Purpose of this TDG Abatement Plan .............................................................................................................................. 3 1.3 Organization of This TDG Abatement Plan...................................................................................................................... 3 1.4 Project Features............................................................................................................................................................... 3 2.0 TDG Information........................................................................................................................................................................ 4 2.1 TDG Sources at Hydroelectric Projects...........................................................................................................................
    [Show full text]
  • Section 2. Hazard Summaries
    Whatcom County SECTION 2: HAZARD SUMMARIES Natural Hazards Mitigation Plan SECTION 2. HAZARD SUMMARIES The following seven natural hazards were identified to be significant risks to the county, and specifically hazardous to the populated western areas of Whatcom County: 1. Earthquakes 2. Flooding 3. Geologic Hazards 4. Severe Storms 5. Tsunamis 6. Volcanoes 7. Wildland Fires The updated HIVA was received late in the plan update process and will be the basis for the next version of the all hazards plan. The following sections describe the seven significant natural hazards and their potential threats to Whatcom County. Much of the information collected in these hazard summaries came from local experts working in hazard assessment or hazard mitigation for a specific hazard. The summaries describe the hazards, convey the areas at potential risk from each hazard, and describe mitigation measures as implemented in the past or to be implemented in the future to manage the effects of natural disasters in Whatcom County. Each hazard description is organized into the following parts: Hazard Related Definitions Background Information General description of the hazard relevant to Whatcom County and Washington State History Historical background on the presence of the hazard in Whatcom County; much of this information was obtained from agencies such as FEMA, the Washington Department of Natural Resources (WDNR), and the U.S. Geological Society (USGS) Vulnerability Assessment Descriptions of specific areas within the county at risk for each hazard, when this information was available Mitigation Strategies Recommended mitigation strategies to lessen the dangers posed by each hazard Whatcom County Sheriff’s Office Division of Emergency Management Original Submission: June 1, 2015 2 - 1 FEMA Approval: Dec 15, 2016 Whatcom County SECTION 2: HAZARD SUMMARIES Natural Hazards Mitigation Plan Whatcom County’s Planning and Development Services provided the entire hazard GIS datasets, except for the Wildland Fire data, which came from WDNR’s North Region.
    [Show full text]