Dark Energy and Life's Ultimate Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cosmic Questions, Answers Pending
special section | cosmic questions, Answers pending Cosmic questions, answers pending throughout human history, great missions of mission reveal the exploration have been inspired by curiosity, : the desire to find out about unknown realms. secrets of the universe such missions have taken explorers across wide oceans and far below their surfaces, THE OBJECTIVE deep into jungles, high onto mountain peaks For millennia, people have turned to the heavens in search of clues to nature’s mysteries. truth seekers from ages past to the present day and over vast stretches of ice to the earth’s have found that the earth is not the center of the universe, that polar extremities. countless galaxies dot the abyss of space, that an unknown form of today’s greatest exploratory mission is no matter and dark forces are at work in shaping the cosmos. Yet despite longer earthbound. it’s the scientific quest to these heroic efforts, big cosmological questions remain unresolved: explain the cosmos, to answer the grandest What happened before the Big Bang? ............................... Page 22 questions about the universe as a whole. What is the universe made of? ......................................... Page 24 what is the identity, for example, of the Is there a theory of everything? ....................................... Page 26 Are space and time fundamental? .................................... Page 28 “dark” ingredients in the cosmic recipe, com- What is the fate of the universe? ..................................... Page 30 posing 95 percent of the -
Parallel Sessions
Identification of Dark Matter July 23-27, 2012 9th International Conference Chicago, IL http://kicp-workshops.uchicago.edu/IDM2012/ PARALLEL SESSIONS http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ http://www.fnal.gov/ International Advisory Committee Daniel Akerib Elena Aprile Rita Bernabei Case Western Reserve University, Columbia University, USA Universita degli Studi di Roma, Italy Cleveland, USA Gianfranco Bertone Joakim Edsjo Katherine Freese University of Amsterdam Oskar Klein Centre / Stockholm University of Michigan, USA University Richard Gaitskell Gilles Gerbier Anne Green Brown University, USA IRFU/ CEA Saclay, France University of Nottingham, UK Karsten Jedamzik Xiangdong Ji Lawrence Krauss Universite de Montpellier, France University of Maryland, USA Arizona State University, USA Vitaly Kudryavtsev Reina Maruyama Leszek Roszkowski University of Sheffield University of Wisconsin-Madison University of Sheffield, UK Bernard Sadoulet Pierre Salati Daniel Santos University of California, Berkeley, USA University of California, Berkeley, USA LPSC/UJF/CNRS Pierre Sikivie Daniel Snowden-Ifft Neil Spooner University of Florida, USA Occidental College University of Sheffield, UK Max Tegmark Karl van Bibber Kavli Institute for Astrophysics & Space Naval Postgraduate School Monterey, Research at MIT, USA USA Local Organizing Committee Daniel Bauer Matthew Buckley Juan Collar Fermi National Accelerator Laboratory Fermi National Accelerator Laboratory Kavli Institute for Cosmological Physics Scott Dodelson Aimee -
THE COSMIC COCKTAIL Three Parts Dark Matter
release For immediate release Contact: Andrew DeSio Publication Date: June 11, 2014 (609) 258-5165 [email protected] Weaving a tale of scientific discovery, adventures in cosmology, and the hunt for dark matter, Dr. Katherine Freese explores just what exactly the universe is made out of in THE COSMIC COCKTAIL Three Parts Dark Matter “Freese tells her trailblazing and very personal story of how the worlds of particle physics and astronomy have come together to unveil the mysterious ingredients of the cosmic cocktail that we call our universe.” Brian Schmidt, 2011 Nobel Laureate in Physics, Australian National University What is dark matter? Where is it? Where did it come from? How do scientists study the stuff when they can’t see it? According to current research, our universe consists of only 5% ordinary matter (planets, comets, galaxies) while the rest is made of dark matter (26%) and dark energy (69%). Scientists and researchers are hard at work trying to detect these mysterious phenomena. And there are none further ahead in the pursuit than Dr. Katherine Freese, one of today’s foremost pioneers in the study of dark matter. In her splendidly written new book THE COSMIC COCKTAIL: Three Parts Dark Matter (Publication Date: June 11, 2014; $29.95), Dr. Freese tells the inside story of the epic quest to solve one of the most compelling enigmas of modern science—what is the universe made of? Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the field, acclaimed theoretical physicist Katherine Freese recounts the hunt for dark matter, from the predictions and discoveries of visionary scientists like Fritz Zwicky— the Swiss astronomer who coined the term "dark matter" in 1933—to the deluge of data today from underground laboratories, satellites in space, and the Large Hadron Collider. -
Against Transhumanism the Delusion of Technological Transcendence
Edition 1.0 Against Transhumanism The delusion of technological transcendence Richard A.L. Jones Preface About the author Richard Jones has written extensively on both the technical aspects of nanotechnology and its social and ethical implications; his book “Soft Machines: nanotechnology and life” is published by OUP. He has a first degree and PhD in physics from the University of Cam- bridge; after postdoctoral work at Cornell University he has held positions as Lecturer in Physics at Cambridge University and Profes- sor of Physics at Sheffield. His work as an experimental physicist concentrates on the properties of biological and synthetic macro- molecules at interfaces; he was elected a Fellow of the Royal Society in 2006 and was awarded the Institute of Physics’s Tabor Medal for Nanoscience in 2009. His blog, on nanotechnology and science policy, can be found at Soft Machines. About this ebook This short work brings together some pieces that have previously appeared on my blog Soft Machines (chapters 2,4 and 5). Chapter 3 is adapted from an early draft of a piece that, in a much revised form, appeared in a special issue of the magazine IEEE Spectrum de- voted to the Singularity, under the title “Rupturing the Nanotech Rapture”. Version 1.0, 15 January 2016 The cover picture is The Ascension, by Benjamin West (1801). Source: Wikimedia Commons ii Transhumanism, technological change, and the Singularity 1 Rapid technological progress – progress that is obvious by setting off a runaway climate change event, that it will be no on the scale of an individual lifetime - is something we take longer compatible with civilization. -
The Cosmos - Before the Big Bang
From issue 2601 of New Scientist magazine, 28 April 2007, page 28-33 The cosmos - before the big bang How did the universe begin? The question is as old as humanity. Sure, we know that something like the big bang happened, but the theory doesn't explain some of the most important bits: why it happened, what the conditions were at the time, and other imponderables. Many cosmologists think our standard picture of how the universe came to be is woefully incomplete or even plain wrong, and they have been dreaming up a host of strange alternatives to explain how we got here. For the first time, they are trying to pin down the initial conditions of the big bang. In particular, they want to solve the long-standing mystery of how the universe could have begun in such a well- ordered state, as fundamental physics implies, when it seems utter chaos should have reigned. Several models have emerged that propose intriguing answers to this question. One says the universe began as a dense sea of black holes. Another says the big bang was sparked by a collision between two membranes floating in higher-dimensional space. Yet another says our universe was originally ripped from a larger entity, and that in turn countless baby universes will be born from the wreckage of ours. Crucially, each scenario makes unique and testable predictions; observations coming online in the next few years should help us to decide which, if any, is correct. Not that modelling the origin of the universe is anything new. -
Quantum Cosmology of the Big Rip: Within GR and in a Modified Theory of Gravity
universe Conference Report Quantum Cosmology of the Big Rip: Within GR and in a Modified Theory of Gravity Mariam Bouhmadi-López 1,2,*, Imanol Albarran 3,4 and Che-Yu Chen 5,6 1 Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain 3 Departamento de Física, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal; [email protected] 4 Centro de Matemática e Aplicações da Universidade da Beira Interior (CMA-UBI), Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal 5 Department of Physics, National Taiwan University, 10617 Taipei, Taiwan; [email protected] 6 LeCosPA, National Taiwan University, 10617 Taipei, Taiwan * Correspondence: [email protected] Academic Editors: Mariusz P. D ˛abrowski, Manuel Krämer and Vincenzo Salzano Received: 8 March 2017; Accepted: 12 April 2017; Published: 14 April 2017 Abstract: Quantum gravity is the theory that is expected to successfully describe systems that are under strong gravitational effects while at the same time being of an extreme quantum nature. When this principle is applied to the universe as a whole, we use what is commonly named “quantum cosmology”. So far we do not have a definite quantum theory of gravity or cosmology, but we have several promising approaches. Here we will review the application of the Wheeler–DeWitt formalism to the late-time universe, where it might face a Big Rip future singularity. The Big Rip singularity is the most virulent future dark energy singularity which can happen not only in general relativity but also in some modified theories of gravity. -
Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics . -
From Space, a New View of Doomsday
Past 30 Days Welcome, kamion This page is print-ready, and this article will remain available for 90 days. Instructions for Saving | About this Service | Purchase History February 17, 2004, Tuesday SCIENCE DESK From Space, A New View Of Doomsday By DENNIS OVERBYE (NYT) 2646 words Once upon a time, if you wanted to talk about the end of the universe you had a choice, as Robert Frost put it, between fire and ice. Either the universe would collapse under its own weight one day, in a fiery ''big crunch,'' or the galaxies, now flying outward from each other, would go on coasting outward forever, forever slowing, but never stopping while the cosmos grew darker and darker, colder and colder, as the stars gradually burned out like tired bulbs. Now there is the Big Rip. Recent astronomical measurements, scientists say, cannot rule out the possibility that in a few billion years a mysterious force permeating space-time will be strong enough to blow everything apart, shred rocks, animals, molecules and finally even atoms in a last seemingly mad instant of cosmic self-abnegation. ''In some ways it sounds more like science fiction than fact,'' said Dr. Robert Caldwell, a Dartmouth physicist who described this apocalyptic possibility in a paper with Dr. Marc Kamionkowski and Dr. Nevin Weinberg, from the California Institute of Technology, last year. The Big Rip is only one of a constellation of doomsday possibilities resulting from the discovery by two teams of astronomers six years ago that a mysterious force called dark energy seems to be wrenching the universe apart. -
Formation of Structure in Dark Energy Cosmologies
HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES HIP-2006-08 Formation of Structure in Dark Energy Cosmologies Tomi Sebastian Koivisto Helsinki Institute of Physics, and Division of Theoretical Physics, Department of Physical Sciences Faculty of Science University of Helsinki P.O. Box 64, FIN-00014 University of Helsinki Finland ACADEMIC DISSERTATION To be presented for public criticism, with the permission of the Faculty of Science of the University of Helsinki, in Auditorium CK112 at Exactum, Gustaf H¨allstr¨omin katu 2, on November 17, 2006, at 2 p.m.. Helsinki 2006 ISBN 952-10-2360-9 (printed version) ISSN 1455-0563 Helsinki 2006 Yliopistopaino ISBN 952-10-2961-7 (pdf version) http://ethesis.helsinki.fi Helsinki 2006 Helsingin yliopiston verkkojulkaisut Contents Abstract vii Acknowledgements viii List of publications ix 1 Introduction 1 1.1Darkenergy:observationsandtheories..................... 1 1.2Structureandcontentsofthethesis...................... 6 2Gravity 8 2.1Generalrelativisticdescriptionoftheuniverse................. 8 2.2Extensionsofgeneralrelativity......................... 10 2.2.1 Conformalframes............................ 13 2.3ThePalatinivariation.............................. 15 2.3.1 Noethervariationoftheaction..................... 17 2.3.2 Conformalandgeodesicstructure.................... 18 3 Cosmology 21 3.1Thecontentsoftheuniverse........................... 21 3.1.1 Darkmatter............................... 22 3.1.2 Thecosmologicalconstant........................ 23 3.2Alternativeexplanations............................ -
Conference Program
Identification of Dark Matter July 23-27, 2012 9th International Conference Chicago, IL http://kicp-workshops.uchicago.edu/IDM2012/ CONFERENCE PROGRAM http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ http://www.fnal.gov/ International Advisory Committee Daniel Akerib Elena Aprile Rita Bernabei Case Western Reserve University, Columbia University, USA Universita degli Studi di Roma, Italy Cleveland, USA Gianfranco Bertone Joakim Edsjo Katherine Freese University of Amsterdam Oskar Klein Centre / Stockholm University of Michigan, USA University Richard Gaitskell Gilles Gerbier Anne Green Brown University, USA IRFU/ CEA Saclay, France University of Nottingham, UK Karsten Jedamzik Xiangdong Ji Lawrence Krauss Universite de Montpellier, France University of Maryland, USA Arizona State University, USA Vitaly Kudryavtsev Reina Maruyama Leszek Roszkowski University of Sheffield University of Wisconsin-Madison University of Sheffield, UK Bernard Sadoulet Pierre Salati Daniel Santos University of California, Berkeley, USA University of California, Berkeley, USA LPSC/UJF/CNRS Pierre Sikivie Daniel Snowden-Ifft Neil Spooner University of Florida, USA Occidental College University of Sheffield, UK Max Tegmark Karl van Bibber Kavli Institute for Astrophysics & Space Naval Postgraduate School Monterey, Research at MIT, USA USA Local Organizing Committee Daniel Bauer Matthew Buckley Juan Collar Fermi National Accelerator Laboratory Fermi National Accelerator Laboratory Kavli Institute for Cosmological Physics Scott Dodelson Aimee -
Big Rip Singularity in 5D Viscous Cosmology
Send Orders for Reprints to [email protected] The Open Astronomy Journal, 2014, 7, 7-11 7 Open Access Big Rip Singularity in 5D Viscous Cosmology 1,* 2 G.S. Khadekar and N.V. Gharad 1Department of Mathematics, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Phule Educational Campus, Amravati Road, Nagpur-440033, India 2Department of Physics, Jawaharlal Nehru College, Wadi, Nagpur-440023, India Abstract: Dark energy of phantom or quintessence nature with an equation of state parameter almost equal to -1 often leads to a finite future singularity. The singularities in the dark energy universe, by assuming bulk viscosity in the frame- work of Kaluza-Klein theory of gravitation have been discussed. Particularly, it is proved, that the physically natural as- sumption of letting the bulk viscosity be proportional to the scalar expansion in a spatially 5D FRW universe, can derive the fluid into the phantom region ( < -1), even if it lies in the quintessence region ( >-1) in the non viscous case. It is also shown that influence of the viscosity term acts to shorten the singularity time but it does not change the nature of sin- gularity in the framework of higher dimensional space time. Keywords: Big Rip, dark energy, future singularity, viscous cosmology. 1. INTRODUCTION including a quintessence (Wang et al. [12]) and phantom (Caldwell [13]), and (ii) interacting dark energy models, by A revolutionary development seems to have taken place considering the interaction including Chaplygin gas (Ka- in cosmology during the last few years. The latest develop- menohehik et al [14]), generalized Chaplygin gas (Bento et ments of super-string theory and super-gravitational theory al. -
Top 10 Discoveries by ESO Telescopes
Top 10 Discoveries by ESO Telescopes • European Southern Observatory – reaching new heights in astronomy • Exploring the Universe from the Atacama Desert, in Chile since 1964 • ESO is the most productive astronomical observatory in the world TOP 10 discoveries by ESO telescopes, 26 April 2011 La Silla Observatory: ESO’s first observatory • Two of the most productive 4-metre class telescopes in the world – ESO 3.6-metre telescope, since 1976 – The New Technology Telescope (NTT, 3.58 m), since 1989 • 300 refereed publications per year TOP 10 discoveries by ESO telescopes, 26 April 2011 ESO’s top 10 discoveries 1. Stars orbiting the Milky Way black hole 2. Accelerating Universe 3. First image of an exoplanet 4. Gamma-ray bursts — the connections with supernovae and merging neutron stars 5. Cosmic temperature independently measured 6. Oldest star known in the Milky Way 7. Flares from the supermassive black hole at the centre of the Milky Way 8. Direct measurements of the spectra of exoplanets and their atmospheres 9. Richest planetary system 10. Milky Way stellar motions More info in: http://www.eso.org/public/science/top10.html TOP 10 discoveries by ESO telescopes, 26 April 2011 1. Stars orbiting the Milky Way black hole TOP 10 discoveries by ESO telescopes, 26 April 2011 1. Stars orbiting the Milky Way black hole • The discovery: unprecedented 16-year long study tracks stars orbiting the Milky Way black hole • When: a 16-year long campaign started in 1992, with 50 nights of observations in total • Instruments / telescopes: – SHARP / NTT, La Silla Observatory – NACO / Yepun (UT4), VLT • More info in press releases eso0226 and eso0846: http://www.eso.org/public/news/eso0226/ http://www.eso.org/public/news/eso0846/ TOP 10 discoveries by ESO telescopes, 26 April 2011 1.