Journal of Applied Microbiology ISSN 1364-5072 1 ORIGINAL ARTICLE 2 3 Sedimentary arsenite-oxidizing and arsenate-reducing 4 bacteria associated with high arsenic groundwater from 5 6 Shanyin, Northwestern China 7 H. Fan1,C.Su2, Y. Wang1, J. Yao2, K. Zhao1, Y. Wang2 and G. Wang1 8 9 1 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China 10 2 Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan, China 11 12 13 14 15 Keywords Abstract aoxB 16 , arsenate-reducing bacteria, arsenic, arsenite-oxidizing bacteria, groundwater. Aims: Shanyin County is one of the most severe endemic arsenism affected 17 areas in China but micro-organisms that potentially release arsenic from sedi- 18 Correspondence ments to groundwater have not been studied. Our aim was to identify bacteria 19 Gejiao Wang PhD, State Key Laboratory of with the potential to metabolize or transform arsenic in the sediments. 20 Agricultural Microbiology, College of Life Methods and Results: Culture and nonculture-based molecular methods were Science and Technology, Huazhong 21 performed to identify arsenite-oxidizing bacteria, arsenate-reducing bacteria Agricultural University, Wuhan 430070, 22 and arsenite oxidase genes. Arsenite-oxidizing bacteria were identified only 23 China. E-mail:
[email protected];
[email protected] from the land surface to 7 metres (m)-deep underground that were affiliated to 24 a- and b-Proteobacteria. Arsenate-reducing bacteria were found in almost all 25 2007/1589: received 29 September 2007, the sediment samples with different depths (0–41 m) and mainly belong to 26 revised 18 January 2008 and accepted 19 c-Proteobacteria.