A Revised Morphometric Formula for the Characterization of Cowries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
References Please Help Making This Preliminary List As Complete As Possible!
Cypraeidae - important references Please help making this preliminary list as complete as possible! ABBOTT, R.T. (1965) Cypraea arenosa Gray, 1825. Hawaiian Shell News 14(2):8 ABREA, N.S. (1980) Strange goings on among the Cypraea ziczac. Hawaiian Shell News 28 (5):4 ADEGOKE, O.S. (1973) Paleocene mollusks from Ewekoro, southern Nigeria. Malacologia 14:19-27, figs. 1-2, pls. 1-2. ADEGOKE, O.S. (1977) Stratigraphy and paleontology of the Ewekoro Formation (Paleocene) of southeastern Nigeria. Bulletins of American Paleontology 71(295):1-379, figs. 1-6, pls. 1-50. AIKEN, R. P. (2016) Description of two undescribed subspecies and one fossil species of the Genus Cypraeovula Gray, 1824 from South Africa. Beautifulcowries Magazine 8: 14-22 AIKEN, R., JOOSTE, P. & ELS, M. (2010) Cypraeovula capensis - A specie of Diversity and Beauty. Strandloper 287 p. 16 ff AIKEN, R., JOOSTE, P. & ELS, M. (2014) Cypraeovula capensis. A species of diversity and beauty. Beautifulcowries Magazine 5: 38–44 ALLAN, J. (1956) Cowry Shells of World Seas. Georgian House, Melbourne, Australia, 170 p., pls. 1-15. AMANO, K. (1992) Cypraea ohiroi and its associated molluscan species from the Miocene Kadonosawa Formation, northeast Japan. Bulletin of the Mizunami Fossil Museum 19:405-411, figs. 1-2, pl. 57. ANCEY, C.F. (1901) Cypraea citrina Gray. The Nautilus 15(7):83. ANONOMOUS. (1971) Malacological news. La Conchiglia 13(146-147):19-20, 5 unnumbered figs. ANONYMOUS. (1925) Index and errata. The Zoological Journal. 1: [593]-[603] January. ANONYMOUS. (1889) Cypraea venusta Sowb. The Nautilus 3(5):60. ANONYMOUS. (1893) Remarks on a new species of Cypraea. -
The Recent Molluscan Marine Fauna of the Islas Galápagos
THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful. -
Cowry Shells of Andrew Bay in Rakhine Coastal Region of Myanmar
Journal of Aquaculture & Marine Biology Research Article Open Access Cowry shells of Andrew Bay in Rakhine coastal region of Myanmar Abstract Volume 8 Issue 4 - 2019 A total of 21 species of cowry shells belonging to genus Cypraea Linnaeus 1758 of family Cypraeidae falling under the order Mesogastropoda collected from field observation in Naung Naung Oo 2014, were identified, using liquid-preserved materials and living specimens in the field, Department of Marine Science, Mawlamyine University, Myanmar based on the external characters of shell structures. The specimens comprised Cypraea tigris Linnaeus, 1758, C. miliaris Gmelin, 1791, C. mauritiana Linnaeus, 1758, C. thersites Correspondence: Naung Naung Oo, Assistant Lecturer, Department of Marine Science, Mawlamyine University, Myanmar, Gaskoin, 1849, C. arabica Linnaeus, 1758, C. scurra Gmelin, 1791, C. eglantina Duclos, Email 1833, C. talpa Linnaeus, 1758, C. argus Linnaeus, 1758, C. erosa Linnaeus, 1758, C. labrolineata Gaskoin, 1849, C. caputserpentis Linnaeus, 1758, C. nucleus Linnaeus, 1758, Received: July 06, 2019 | Published: August 12, 2019 C. isabella Linnaeus, 1758, C. cicercula Linnaeus, 1758, C. globulus Linnaeus, 1758, C. lynx Linnaeus, 1758, C. asellus Linnaeus, 1758, C. saulae Gaskoin, 1843, C. teres Gmelin, 1791 and C. reevei Gray, 1832. The distribution, habitats and distinct ecological notes of cowry shells in intertidal and subtidal zone of Andrew Bay and adjacent coastal areas were studied in brief. Keywords: andrew Bay, cowry shells, cypraeidae, gastropod, rakhine Coastal Region Introduction in the Western Central Pacific.17 There are Cypraea annulus Linnaeus, 1758; C. arabica Linnaeus, 1758; C. argus Linnaeus, 1758; C. bouteti The literature of the molluscs is vast in other countries but Burgess and Arnette, 1981; C. -
Checklist of Cypraeidae
Checklist of Cypraeidae Propustularia cernica viridicolor surinamensis cernica leforti spurca spurca Nesiocypraea spurca verdensium midwayensis midwayensis spurca sanctaehelenae midwayensis kontiki acicularis lisetae lisetae englerti lisetae maricola poraria teramachii teramachii albuginosa teramachii polyphemus irrorata teramachii neocaledonica citrina citrina aenigma citrina dauphinensis Ipsa helvola helvola childreni helvola hawaiiensis Cryptocypraea helvola bellatrix dillwyni marginalis erosa erosa Nucleolaria erosa chlorizans nucleus nebrites granulata boivinii cassiaui ostergaardi Staphylaea labrolineata staphylaea staphylaea gangranosa staphylaea consobrina ocellata staphylaea laevigata turdus staphylaea nolani miliaris semiplota lamarckii limacina limacina eburnea limacina interstincta Perisserosa Monetaria guttata guttata annulus guttata surinensis obvelata guttata azumai moneta Umbilia caputserpentis armeniaca armeniaca caputophidii armeniaca andreyi caputdraconis caputdraconis armeniaca clarksoni caputdraconis poppei armeniaca diprotodon Naria hesitata hesitata beckii hesitata beddomei macandrewi hesitata suprastrata thomasi oriettae bernardi capricornica capricornica cernica cernica capricornica thorni 1 Checklist of Cypraeidae petilirostris maculifera scindata Muracypraea maculifera martybealsi mus mus maculifera andreae mus bicornis Barycypraea Cypraea teulerei tigris tigris fultoni fultoni tigris pardalis fultoni amorimi tigris schilderiana Zoila tigris lorenzi decipiens decipiens pantherina decipiens suprasinum Macrocypraea -
Download (642Kb)
Cypraea tigris Linnaeus, 1758 Jasmin F. IDENTIFICATION Order : Littorinimorpha Family : Cypraeidae Common/FAO Name (English) : Tiger cowrie Local names:names Not available MORPHOLOGICAL DESCRIPTION The tiger cowrie is a large, oval, dextral gastropod having a glossy and heavy shell. Dorsal side of the shell is pale in colour with dark circular spots. The ventral shell opening has a serrated margin. The mantle has two lateral extensions which can extend and cover the entire dorsal surface of the shell. The extensions meet at the midline of the dorsal surface of the shell. The mantle can be retracted into the shell through the ventral shell opening. The mantle has pin-like white-tipped projections on its surface. Source of image : RC CMFRI, Tuticorin 393 P R O F I L E GEOGRAPHICAL DISTRIBUTION The tiger cowrie is distributed along the Indo-Pacific region, from the eastern coast of Africa to Micronesia and Polynesia, the Coral Sea and around the Philippines. It is also found in Australia from northern New South Wales to northern Western Australia, Lord Howe Island. In India it is seen along the south-east coast and the Andaman and Nicobar Islands. HABITAT AND BIOLOGY They are found at a depth range of 10 and 40 m, often associated with live branching coral colonies, such as Acropora. They spend most of their time either hiding under rocks or dead corals on the reef. At night, it comes out in search for food. Even though it looks harmless, it preys using its many rows of teeth to crunch and scrape up food. -
Towards a Panbiogeography of the Seas
Biological Journal of the Linnean Society, 2005, 84, 675-723. Towards a panbiogeography of the seas MICHAEL HEADS* Biology Department, University of the South Pacific, PO Box 1168, Suva, Fiji Islands Received 6 October 2003; accepted for publication 28 June 2004 A contrast is drawn between the concept of spéciation favoured in the Darwin-Wallace biogeographic paradigm (founder dispersal from a centre of origin) and in panbiogeography (vicariance or allopatry). Ordinary ecological dis persal is distinguished from founder dispersal. A survey of recent literature indicates that ideas on many aspects of marine biology are converging on a panbiogeographic view. Panbiogeographic conclusions supported in recent work include the following observations: fossils give minimum ages for groups and most taxa are considerably older than their earliest known fossil; Pacific/Atlantic divergence calibrations based on the rise of the Isthmus of Panama at 3 Ma are flawed; for these two reasons most molecular clock calibrations for marine groups are also flawed; the means of dispersal of taxa do not correlate with their actual distributions; populations of marine species may be closed systems because of self-recruitment; most marine taxa show at least some degree of vicariant differentiation and vicariance is surprisingly common among what were previously assumed to be uniform, widespread taxa; man grove and seagrass biogeography and migration patterns in marine taxa are best explained by vicariance; the Indian Ocean and the Pacific Ocean represent major -
Mississippi Geology Office of Geology P
THE DEPARTMENT OF ENVIRONMENTAL QUALITY • • • • miSSISSIPPI geology Office of Geology P. 0 . Box 20307 Volume 11, Number 4 Jackson, Mississippi 39289-1307 June 1991 DETERIORATION AND RESTORATION OF THE GRANDE BATTURE ISLANDS, MISSISSIPPI Klaus J. Meyer-Arendt Department of Geology and Geography Mississippi State University and Karen A. Kramer James M. Montgomery, Consulting Engineers, Inc. Walnut Creek, CA 94598 ABSTRACT regimes for oyster production might also be re-established. Preliminary indications arc that the costs ofisland restoration The remnant shoals of the Grande Batture Islands com and periodic renourishment would be offset by the benefits prise the seaward margins of a late Pleistocene/Holocene derived. delta lobeofthePascagoula-Escatawpa fluvial system. Sedi ment discharge into Mississippi Sound via the Bayou Cum best INTRODUCilON distribuLary initiated phases of aggradation and progradation. As fluvial inputs decreased, wave action and longshore drift Barrier islands and marshes have been receiving much processes reworked the deltaic headland and produced the attention in recent years, both for their value as recreational Grande Batture Islands. Historically, these islands sheltered resources and also as integral components of estuarine eco the extensive nutrient-rich intertidal marshes as well as systems (Mitsch and Gosselink, 1986). Tidal marshes con productive oyster beds in Pt. aux Chenes Bay and Grand Bay. stitute nursery grounds for shrimp and finfish, and estuarine An 1853 survey delineated about450 acres of barrier island bays are valued for oyster production (Gosselink, 1984). complex extending over 5 miles in length, yet by the 1950s it Barrier island/tidal inlet complexes often shelter tidal marshes had been reduced to shoals. -
Register 2010-2019
Impressum Verantwortlich i.S.d.P.: Dr. MANFRED HERRMANN, Rosdorf und die Redaktion Herausgegeben vom Club Conchylia e.V., Öhringen, Deutschland Vorstand des Club Conchylia: 1. Vorsitzender 2. Vorsitzender Schatzmeister Dr. MANFRED HERRMANN, Ulmenstrasse 14 ROLAND GÜNTHER, Blücherstrasse 15 STEFFEN FRANKE, Geistenstraße 24 D-37124 Rosdorf D-40477 Düsseldorf D-40476 Düsseldorf Tel.: 0049-(0)551-72055; Fax. -72099 Tel.: 0049-(0)211-6007827 Tel 0049-(0)211 - 514 20 81 E-Mail: [email protected] E-Mail: [email protected] E-Mail: [email protected] Regionale Vorstände: Norddeutschland: Westdeutschland: Süddeutschland: Dr. VOLLRATH WIESE, Hinter dem Kloster 42 kommissarisch durch den 2. Vorsitzenden INGO KURTZ, Prof.-Kneib-Str. 10 D-23743 Cismar ROLAND GÜNTHER (siehe oben) D-55270 Zornheim Tel. / Fax: 0049-(0 )4366-1288 Tel.: 0049-(0)6136-758750 E-Mail: [email protected] E-Mail: [email protected] Ostdeutschland: Schweiz: PEER SCHEPANSKI, Am Grünen Hang 23 FRANZ GIOVANOLI, Gstaadmattstr. 13 D-09577 Niederwiesa CH-4452 Itingen Tel.: 0049 (0)1577-517 44 03 Tel.: 0041- 61- 971 15 48 E-Mail: [email protected] E-Mail: [email protected] Redaktion Conchylia + Acta Conchyliorum: Redaktion Club Conchylia Mitteilungen: KLAUS GROH ROLAND HOFFMANN Hinterbergstr. 15 Eichkoppelweg 14a D-67098 Bad Dürkheim D-24119 Kronshagen Tel.: 0049-(0)6322-988 70 68 Tel.: 0049-(0)431-583 68 81 E-Mail: [email protected] E-Mail: [email protected] Bank-Konto des Club Conchylia e.V.: Volksbank Mitte eG, Konto Nr. : 502 277 00, Bankleitzahl: 260 612 91; Intern. Bank-Acc.-Nr (IBAN): DE77 2606 1291 0050 2277 00 Bank Identifier Code (BIC): GENODEF1DUD; Club-home-page: www.club-conchylia.de (Dr. -
Epibenthic Mobile Invertebrates Along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-21-2014 Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Ecology and Evolutionary Biology Commons, Other Education Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Netchy, Kristin, "Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5085 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure by Kristin H. Netchy A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Marine Science College of Marine Science University of South Florida Major Professor: Pamela Hallock Muller, Ph.D. Kendra L. Daly, Ph.D. Kathleen S. Lunz, Ph.D. Date of Approval: March 21, 2014 Keywords: Echinodermata, Mollusca, Arthropoda, guilds, coral, survey Copyright © 2014, Kristin H. Netchy DEDICATION This thesis is dedicated to Dr. Gustav Paulay, whom I was fortunate enough to meet as an undergraduate. He has not only been an inspiration to me for over ten years, but he was the first to believe in me, trust me, and encourage me. -
THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject. -
CONE SHELLS - CONIDAE MNHN Koumac 2018
Living Seashells of the Tropical Indo-Pacific Photographic guide with 1500+ species covered Andrey Ryanskiy INTRODUCTION, COPYRIGHT, ACKNOWLEDGMENTS INTRODUCTION Seashell or sea shells are the hard exoskeleton of mollusks such as snails, clams, chitons. For most people, acquaintance with mollusks began with empty shells. These shells often delight the eye with a variety of shapes and colors. Conchology studies the mollusk shells and this science dates back to the 17th century. However, modern science - malacology is the study of mollusks as whole organisms. Today more and more people are interacting with ocean - divers, snorkelers, beach goers - all of them often find in the seas not empty shells, but live mollusks - living shells, whose appearance is significantly different from museum specimens. This book serves as a tool for identifying such animals. The book covers the region from the Red Sea to Hawaii, Marshall Islands and Guam. Inside the book: • Photographs of 1500+ species, including one hundred cowries (Cypraeidae) and more than one hundred twenty allied cowries (Ovulidae) of the region; • Live photo of hundreds of species have never before appeared in field guides or popular books; • Convenient pictorial guide at the beginning and index at the end of the book ACKNOWLEDGMENTS The significant part of photographs in this book were made by Jeanette Johnson and Scott Johnson during the decades of diving and exploring the beautiful reefs of Indo-Pacific from Indonesia and Philippines to Hawaii and Solomons. They provided to readers not only the great photos but also in-depth knowledge of the fascinating world of living seashells. Sincere thanks to Philippe Bouchet, National Museum of Natural History (Paris), for inviting the author to participate in the La Planete Revisitee expedition program and permission to use some of the NMNH photos. -
Marine Mollusks from Bougainville and Florida, Solomon Islands
^^ FIELDIANA • ZOOLOGY 3 Published by CHICAGO NATURAL HISTORY MUSEUM Volume 39 October 17, 1958 No. 20 MARINE MOLLUSKS FROM BOUGAINVILLE AND FLORIDA, SOLOMON ISLANDS Alan Solem Assistant Curator, Division of Lower Invertebrates My checklist of the Solomon Island marine and fresh-water mol- lusks (Solem, 1953) was based on a large collection donated to Chicago Natural History Museum by Captain J. M. Ross and sup- plemented by a series of records in the literature. Two small collec- tions of marine shells given to the University of Michigan Museum of Zoology add to our knowledge of the fauna, and the additional data are reported below. I did not communicate with Dr. C. E. Fox, who presented the shells to Captain Ross, until after the checklist had been published. Dr. Fox then informed me that all the shells he gave to Captain Ross were found near Guadalcanal and Malaita Islands. The local- ity "Solomon Islands" cited by me (Solem, 1953) for the Fox col- lection should be restricted to "Guadalcanal and Malaita." Since September, 1952, when my manuscript (Solem, 1953) was submitted, the checklist of Kuroda and Habe (1952), the semi-pop- ular book of Kira (1955), and the ecological study of Demond (1957) have brought to my attention a number of nomenclatural changes affecting the names used by me (Solem, 1953) . These changes in no way alter the taxonomic position of the genera and species—only the names applied to the units. Both below, and in a report on the New Hebridean marine fauna (Solem, in press), a number of nomen- clatural changes are recorded.