Categories and Functors. Its New Language—Originally Called "General Abstract Nonsense" Even by Its Initiators—Spread Into Many Different Branches of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Categories and Functors. Its New Language—Originally Called CATEGORIES AND FUNCTORS This is Volume 39 in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: PAUL A. SMITH AND SAMUEL EILENBERG A complete list of titles in this series appears at the end of this volume CATEGORIES AND FUNCTORS Bodo Pareigis UNIVERSITY OF MUNICH MUNICH, GERM AN Y 1970 AC ADE MIC PRESS New York • London This is the only authorized English translation of Kategorien und Funktoren - Eine Einführung (a volume in the series "Mathematische Leitfäden,'* edited by Professor G. Rothe), orig- inally in German by Verlag B. G. Teubner, Stuttgart. 1969 COPYRIGHT © 1970, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. Berkeley Square House, London W1X 6BA LIBRARY OF CONGRESS CATALOG CARD NUMBER: 76-117631 PRINTED IN THE UNITED STATES OF AMERICA Contents Preface vii 1 • Prcliminary Notions 1.1 Definition of a Category 1 1.2 Functors and Natural Transformations 6 1.3 Representable Functors 10 1.4 Duality 12 1.5 Monomorphisms, Epimorphisms, and Isomorphisms .... 14 1.6 Subobjects and Quotient Objects 20 1.7 Zero Objects and Zero Morphisms 22 1.8 Diagrams 24 1.9 DifTerence Kernels and DifTerence Cokernels 26 1.10 Sections and Retractions 29 1.11 Products and Coproducts 29 1.12 Intersections and Unions 33 1.13 Images, Coimages, and Counterimages 34 1.14 Multifunctors 39 1.15 The Yoneda Lemma 41 1.16 Categories as Classes 48 Problems 49 2* Adjoint Functors and Limits 2.1 Adjoint Functors 51 2.2 Universal Problems 56 2.3 Monads 61 2.4 Reflexive Subcategories 73 2.5 Limits and Colimits 77 2.6 Special Limits and Colimits 81 2.7 Diagram Categories 89 v vi CONTENTS 2.8 Constructions with Limits 97 2.9 The Adjoint Functor Theorem 105 2.10 Generators and Cogenerators 110 2.11 Special Cases of the Adjoint Functor Theorem 113 2.12 Füll and Faithful Functors 115 Problems 118 3* Universal Algebra 3.1 Algebraic Theories 120 3.2 Algebraic Categories 126 3.3 FreeAlgebras 130 3.4 Algebraic Functors 137 3.5 Examples of Algebraic Theories and Functors 145 3.6 Algebras in Arbitrary Categories 149 Problems 156 4* Abelian Categories 4.1 Additive Categories 158 4.2 Abelian Categories 163 4.3 Exact Sequences 166 4.4 Isomorphism Theorems 172 4.5 The Jordan-Hölder Theorem 174 4.6 Additive Functors 178 4.7 Grothendieck Categories 181 4.8 The Krull-Remak-Schmidt-Azumaya Theorem 190 4.9 Injective and Projective Objects and Hulls 195 4.10 Finitely Generated Objects 204 4.11 Module Categories 210 4.12 Semisimple and Simple Rings 217 4.13 Functor Categories 221 4.14 Embedding Theorems 236 Problems 244 Appendix. Fundamentals of Set Theory 247 Bibliography 257 Index 259 Thinking—is it a social function or one of the brains ? Stanislaw Jerzy Lee Preface In their paper on a "General theory of natural equivalences" Eilenberg and MacLane laid the foundation of the theory of categories and functors in 1945. It took about ten years before the time was ripe for a further development of this theory. Early in this Century studies of isolated mathematical objects were predominant. Düring the last decades, however, interest proeeeded gradually to the analysis of admissible maps between mathematical objects and to whole classes of objects. This new point of view is appropriately expressed by the theory of categories and functors. Its new language—originally called "general abstract nonsense" even by its initiators—spread into many different branches of mathematics. The theory of categories and functors abstracts the coneepts "object" and "map" from the underlying mathematical fields, for example, from algebra or topology, to investigate which Statements can be proved in such an abstract strueture. Then these Statements will be true in all those mathematical fields which may be expressed by means of this language. Of course, there are trends today to render the theory of categories and functors independent of other mathematical branches, which will certainly be fascinating if seen for example, in connection with the foundation of mathematics. At the moment, however, the prevailing value of this theory lies in the fact that many different mathematical fields may be interpreted as categories and that the techniques and theorems of this theory may be applied to these fields. It provides the means of comprehension of larger parts of mathematics. It often occurs that certain proofs, for example, in algebra or in topology, use "similar" methods. With this new language it is possible to express these "simi- larities" in exaet terms. Parallel to this fact there is a unification. Thus it will be easier for the mathematician who has command of this language to acquaint himself with the fundamentals of a new mathematical field if the fundamentals are given in a categorical language. vii viii PREFACE This book is meant to be an introduction to the theory of categories and functors for the mathematician who is not yet familiär with it, as well as for the beginning graduate Student who knows some first examples for an application of this theory. For this reason the first chapter has been written in great detail. The most important terms occurring in most mathematical branches in one way or another have been expressed in the language of categories. The reader should consider the examples—most of them from algebra or topology—as applications as well as a possible way to acquaint himself with this particular fleld. The second chapter mainly deals with adjoint functors and limits in a way first introduced by Kan. The third chapter shows how far universal algebra can be represented by categorical means. For this purpose we use the methods of monads (triples) and also of algebraic theories. Here you will find represented one of today's most interesting application of category theory. The fourth chapter is devoted to abelian categories, a very important generalization of the categories of modules. Here many interesting theorems about modules are proved in this general frame. The em- bedding theorems at the end of this chapter make it possible to transfer many more results from module categories to arbitrary abelian categories. The appendix on set theory offers an axiomatic foundation for the set theoretic notions used in the definition of categorical notions. We use the set of axioms of Gödel and Bernays. Furthermore, we give a formulation of the axiom of choice that is particularly suitable for an application to the theory of categories and functors. I hope that this book will serve well as an introduction and, moreover, enable the reader to proceed to the study of the original literature. He will find some important publications listed at the end of this book, which again include references to the original literature. Particular thanks are due to my wife Karin. Without her help in preparing the translation I would not have been able to present to English speaking readers the English version of this book. 1 Preliminary Notions The first sections of this chapter introduce the preliminary notions of category, functor, and natural transformation. The next sections deal mainly with notions that are essential for objects and morphisms in categories. Only the last two sections are concerned with functors and natural transformations in more detail. Here the Yoneda lemma is certainly one of the most important theorems in the theory of categories and functors. The examples given in Section 1.1 will be partly continued, so that at the end of this chapter—for some categories—all notions introduced will be known in their specific form for particular categories. The verifica- tion that the given objects or morphisms in the respective categories have the properties claimed will be left partly to the reader. Many examples, however, will be computed in detail. hl Definition of a Category In addition to mathematical objects modern mathematics investigates more and more the admissible maps defined between them. One familiär example is given by sets. Besides the sets, which form the mathematical objects in set theory, the set maps are very important. Much information about a set is available if only the maps into this set from all other sets are known. For example, the set containing only one dement can be characterized by the fact that, from every other set, there is exactly one map into this set. Let us first summarize in a definition those properties of mathematical objects and admissible maps which appear in all known applications. As a basis, we take set theory as presented in the Appendix. Let ^ be a class of objects A, B, C,... e Ob ^ together with (1) A family of mutually disjoint sets {Mor^(Ay B)} for all objects Ay Bs ff, whose elements /, g> A,... G MO%(^4, B) are called morphisms and 1 2 1. PRELIMINARY NOTIONS (2) a family of maps {Mor^, B) x Mor^S, C)3 (f,g)^gfe MorrfA, C)} for all A, By C e Ob ^, called cotnposttions. & is called a category if ^ fulfills the following axioms: (1) Associativity: For all ^4, £, C, Z> e Ob ^ and all fe Mor^, B), g G Mor^(5, C), and h e Mory(C, ß) we have %/) = (W (2) Identity: For each object E Ob ^ there is a morphism 1A e Mor^^i, A), called the identity, such that we have f\A =f and lAg =g for all B, C e Ob <T and all /e Mor^, 5) and ^ e Mor^(C, Therefore the class of objects, and the class of morphism sets, as well as the composition of morphisms, always belong to a category The compositions have not yet been discussed in our example of sets, whereas the morphisms correspond to the discussed maps.
Recommended publications
  • Injective Modules: Preparatory Material for the Snowbird Summer School on Commutative Algebra
    INJECTIVE MODULES: PREPARATORY MATERIAL FOR THE SNOWBIRD SUMMER SCHOOL ON COMMUTATIVE ALGEBRA These notes are intended to give the reader an idea what injective modules are, where they show up, and, to a small extent, what one can do with them. Let R be a commutative Noetherian ring with an identity element. An R- module E is injective if HomR( ;E) is an exact functor. The main messages of these notes are − Every R-module M has an injective hull or injective envelope, de- • noted by ER(M), which is an injective module containing M, and has the property that any injective module containing M contains an isomorphic copy of ER(M). A nonzero injective module is indecomposable if it is not the direct • sum of nonzero injective modules. Every injective R-module is a direct sum of indecomposable injective R-modules. Indecomposable injective R-modules are in bijective correspondence • with the prime ideals of R; in fact every indecomposable injective R-module is isomorphic to an injective hull ER(R=p), for some prime ideal p of R. The number of isomorphic copies of ER(R=p) occurring in any direct • sum decomposition of a given injective module into indecomposable injectives is independent of the decomposition. Let (R; m) be a complete local ring and E = ER(R=m) be the injec- • tive hull of the residue field of R. The functor ( )_ = HomR( ;E) has the following properties, known as Matlis duality− : − (1) If M is an R-module which is Noetherian or Artinian, then M __ ∼= M.
    [Show full text]
  • The Isomorphism Theorems
    Lecture 4.5: The isomorphism theorems Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 4.5: The isomorphism theorems Math 4120, Modern Algebra 1 / 10 The Isomorphism Theorems The Fundamental Homomorphism Theorem (FHT) is the first of four basic theorems about homomorphism and their structure. These are commonly called \The Isomorphism Theorems": First Isomorphism Theorem: \Fundamental Homomorphism Theorem" Second Isomorphism Theorem: \Diamond Isomorphism Theorem" Third Isomorphism Theorem: \Freshman Theorem" Fourth Isomorphism Theorem: \Correspondence Theorem" All of these theorems have analogues in other algebraic structures: rings, vector spaces, modules, and Lie algebras, to name a few. In this lecture, we will summarize the last three isomorphism theorems and provide visual pictures for each. We will prove one, outline the proof of another (homework!), and encourage you to try the (very straightforward) proofs of the multiple parts of the last one. Finally, we will introduce the concepts of a commutator and commutator subgroup, whose quotient yields the abelianation of a group. M. Macauley (Clemson) Lecture 4.5: The isomorphism theorems Math 4120, Modern Algebra 2 / 10 The Second Isomorphism Theorem Diamond isomorphism theorem Let H ≤ G, and N C G. Then G (i) The product HN = fhn j h 2 H; n 2 Ng is a subgroup of G. (ii) The intersection H \ N is a normal subgroup of G. HN y EEE yyy E (iii) The following quotient groups are isomorphic: HN E EE yy HN=N =∼ H=(H \ N) E yy H \ N Proof (sketch) Define the following map φ: H −! HN=N ; φ: h 7−! hN : If we can show: 1.
    [Show full text]
  • Balanced Category Theory II
    BALANCED CATEGORY THEORY II CLAUDIO PISANI ABSTRACT. In the first part, we further advance the study of category theory in a strong balanced factorization category C [Pisani, 2008], a finitely complete category en- dowed with two reciprocally stable factorization systems such that M/1 = M′/1. In particular some aspects related to “internal” (co)limits and to Cauchy completeness are considered. In the second part, we maintain that also some aspects of topology can be effectively synthesized in a (weak) balanced factorization category T , whose objects should be considered as possibly “infinitesimal” and suitably “regular” topological spaces. While in C the classes M and M′ play the role of discrete fibrations and opfibrations, in T they play the role of local homeomorphisms and perfect maps, so that M/1 and M′/1 are the subcategories of discrete and compact spaces respectively. One so gets a direct abstract link between the subjects, with mutual benefits. For example, the slice projection X/x → X and the coslice projection x\X → X, obtained as the second factors of x :1 → X according to (E, M) and (E′, M′) in C, correspond in T to the “infinitesimal” neighborhood of x ∈ X and to the closure of x. Furthermore, the open-closed complementation (generalized to reciprocal stability) becomes the key tool to internally treat, in a coherent way, some categorical concepts (such as (co)limits of presheaves) which are classically related by duality. Contents 1 Introduction 2 2 Bicartesian arrows of bimodules 4 3 Factorization systems 6 4 Balanced factorization categories 10 5 Cat asastrongbalancedfactorizationcategory 12 arXiv:0904.1790v3 [math.CT] 27 Apr 2009 6 Slices and colimits in a bfc 14 7 Internalaspectsofbalancedcategorytheory 16 8 The tensor functor and the internal hom 20 9 Retracts of slices 24 2000 Mathematics Subject Classification: 18A05, 18A22, 18A30, 18A32, 18B30, 18D99, 54B30, 54C10.
    [Show full text]
  • A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
    A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience.
    [Show full text]
  • THE UPPER BOUND of COMPOSITION SERIES 1. Introduction. a Composition Series, That Is a Series of Subgroups Each Normal in the Pr
    THE UPPER BOUND OF COMPOSITION SERIES ABHIJIT BHATTACHARJEE Abstract. In this paper we prove that among all finite groups of or- α1 α2 αr der n2 N with n ≥ 2 where n = p1 p2 :::pr , the abelian group with elementary abelian sylow subgroups, has the highest number of composi- j Pr α ! Qr Qαi pi −1 ( i=1 i) tion series and it has i=1 j=1 Qr distinct composition pi−1 i=1 αi! series. We also prove that among all finite groups of order ≤ n, n 2 N α with n ≥ 4, the elementary abelian group of order 2 where α = [log2 n] has the highest number of composition series. 1. Introduction. A composition series, that is a series of subgroups each normal in the previous such that corresponding factor groups are simple. Any finite group has a composition series. The famous Jordan-Holder theo- rem proves that, the composition factors in a composition series are unique up to isomorphism. Sometimes a group of small order has a huge number of distinct composition series. For example an elementary abelian group of order 64 has 615195 distinct composition series. In [6] there is an algo- rithm in GAP to find the distinct composition series of any group of finite order.The aim of this paper is to provide an upper bound of the number of distinct composition series of any group of finite order. The approach of this is combinatorial and the method is elementary. All the groups considered in this paper are of finite order. 2. Some Basic Results On Composition Series.
    [Show full text]
  • Notes and Solutions to Exercises for Mac Lane's Categories for The
    Stefan Dawydiak Version 0.3 July 2, 2020 Notes and Exercises from Categories for the Working Mathematician Contents 0 Preface 2 1 Categories, Functors, and Natural Transformations 2 1.1 Functors . .2 1.2 Natural Transformations . .4 1.3 Monics, Epis, and Zeros . .5 2 Constructions on Categories 6 2.1 Products of Categories . .6 2.2 Functor categories . .6 2.2.1 The Interchange Law . .8 2.3 The Category of All Categories . .8 2.4 Comma Categories . 11 2.5 Graphs and Free Categories . 12 2.6 Quotient Categories . 13 3 Universals and Limits 13 3.1 Universal Arrows . 13 3.2 The Yoneda Lemma . 14 3.2.1 Proof of the Yoneda Lemma . 14 3.3 Coproducts and Colimits . 16 3.4 Products and Limits . 18 3.4.1 The p-adic integers . 20 3.5 Categories with Finite Products . 21 3.6 Groups in Categories . 22 4 Adjoints 23 4.1 Adjunctions . 23 4.2 Examples of Adjoints . 24 4.3 Reflective Subcategories . 28 4.4 Equivalence of Categories . 30 4.5 Adjoints for Preorders . 32 4.5.1 Examples of Galois Connections . 32 4.6 Cartesian Closed Categories . 33 5 Limits 33 5.1 Creation of Limits . 33 5.2 Limits by Products and Equalizers . 34 5.3 Preservation of Limits . 35 5.4 Adjoints on Limits . 35 5.5 Freyd's adjoint functor theorem . 36 1 6 Chapter 6 38 7 Chapter 7 38 8 Abelian Categories 38 8.1 Additive Categories . 38 8.2 Abelian Categories . 38 8.3 Diagram Lemmas . 39 9 Special Limits 41 9.1 Interchange of Limits .
    [Show full text]
  • A Subtle Introduction to Category Theory
    A Subtle Introduction to Category Theory W. J. Zeng Department of Computer Science, Oxford University \Static concepts proved to be very effective intellectual tranquilizers." L. L. Whyte \Our study has revealed Mathematics as an array of forms, codify- ing ideas extracted from human activates and scientific problems and deployed in a network of formal rules, formal definitions, formal axiom systems, explicit theorems with their careful proof and the manifold in- terconnections of these forms...[This view] might be called formal func- tionalism." Saunders Mac Lane Let's dive right in then, shall we? What can we say about the array of forms MacLane speaks of? Claim (Tentative). Category theory is about the formal aspects of this array of forms. Commentary: It might be tempting to put the brakes on right away and first grab hold of what we mean by formal aspects. Instead, rather than trying to present \the formal" as the object of study and category theory as our instrument, we would nudge the reader to consider another perspective. Category theory itself defines formal aspects in much the same way that physics defines physical concepts or laws define legal (and correspondingly illegal) aspects: it embodies them. When we speak of what is formal/physical/legal we inescapably speak of category/physical/legal theory, and vice versa. Thus we pass to the somewhat grammatically awkward revision of our initial claim: Claim (Tentative). Category theory is the formal aspects of this array of forms. Commentary: Let's unpack this a little bit. While individual forms are themselves tautologically formal, arrays of forms and everything else networked in a system lose this tautological formality.
    [Show full text]
  • N-Quasi-Abelian Categories Vs N-Tilting Torsion Pairs 3
    N-QUASI-ABELIAN CATEGORIES VS N-TILTING TORSION PAIRS WITH AN APPLICATION TO FLOPS OF HIGHER RELATIVE DIMENSION LUISA FIOROT Abstract. It is a well established fact that the notions of quasi-abelian cate- gories and tilting torsion pairs are equivalent. This equivalence fits in a wider picture including tilting pairs of t-structures. Firstly, we extend this picture into a hierarchy of n-quasi-abelian categories and n-tilting torsion classes. We prove that any n-quasi-abelian category E admits a “derived” category D(E) endowed with a n-tilting pair of t-structures such that the respective hearts are derived equivalent. Secondly, we describe the hearts of these t-structures as quotient categories of coherent functors, generalizing Auslander’s Formula. Thirdly, we apply our results to Bridgeland’s theory of perverse coherent sheaves for flop contractions. In Bridgeland’s work, the relative dimension 1 assumption guaranteed that f∗-acyclic coherent sheaves form a 1-tilting torsion class, whose associated heart is derived equivalent to D(Y ). We generalize this theorem to relative dimension 2. Contents Introduction 1 1. 1-tilting torsion classes 3 2. n-Tilting Theorem 7 3. 2-tilting torsion classes 9 4. Effaceable functors 14 5. n-coherent categories 17 6. n-tilting torsion classes for n> 2 18 7. Perverse coherent sheaves 28 8. Comparison between n-abelian and n + 1-quasi-abelian categories 32 Appendix A. Maximal Quillen exact structure 33 Appendix B. Freyd categories and coherent functors 34 Appendix C. t-structures 37 References 39 arXiv:1602.08253v3 [math.RT] 28 Dec 2019 Introduction In [6, 3.3.1] Beilinson, Bernstein and Deligne introduced the notion of a t- structure obtained by tilting the natural one on D(A) (derived category of an abelian category A) with respect to a torsion pair (X , Y).
    [Show full text]
  • Topics in Module Theory
    Chapter 7 Topics in Module Theory This chapter will be concerned with collecting a number of results and construc- tions concerning modules over (primarily) noncommutative rings that will be needed to study group representation theory in Chapter 8. 7.1 Simple and Semisimple Rings and Modules In this section we investigate the question of decomposing modules into \simpler" modules. (1.1) De¯nition. If R is a ring (not necessarily commutative) and M 6= h0i is a nonzero R-module, then we say that M is a simple or irreducible R- module if h0i and M are the only submodules of M. (1.2) Proposition. If an R-module M is simple, then it is cyclic. Proof. Let x be a nonzero element of M and let N = hxi be the cyclic submodule generated by x. Since M is simple and N 6= h0i, it follows that M = N. ut (1.3) Proposition. If R is a ring, then a cyclic R-module M = hmi is simple if and only if Ann(m) is a maximal left ideal. Proof. By Proposition 3.2.15, M =» R= Ann(m), so the correspondence the- orem (Theorem 3.2.7) shows that M has no submodules other than M and h0i if and only if R has no submodules (i.e., left ideals) containing Ann(m) other than R and Ann(m). But this is precisely the condition for Ann(m) to be a maximal left ideal. ut (1.4) Examples. (1) An abelian group A is a simple Z-module if and only if A is a cyclic group of prime order.
    [Show full text]
  • Nilpotent Elements Control the Structure of a Module
    Nilpotent elements control the structure of a module David Ssevviiri Department of Mathematics Makerere University, P.O BOX 7062, Kampala Uganda E-mail: [email protected], [email protected] Abstract A relationship between nilpotency and primeness in a module is investigated. Reduced modules are expressed as sums of prime modules. It is shown that presence of nilpotent module elements inhibits a module from possessing good structural properties. A general form is given of an example used in literature to distinguish: 1) completely prime modules from prime modules, 2) classical prime modules from classical completely prime modules, and 3) a module which satisfies the complete radical formula from one which is neither 2-primal nor satisfies the radical formula. Keywords: Semisimple module; Reduced module; Nil module; K¨othe conjecture; Com- pletely prime module; Prime module; and Reduced ring. MSC 2010 Mathematics Subject Classification: 16D70, 16D60, 16S90 1 Introduction Primeness and nilpotency are closely related and well studied notions for rings. We give instances that highlight this relationship. In a commutative ring, the set of all nilpotent elements coincides with the intersection of all its prime ideals - henceforth called the prime radical. A popular class of rings, called 2-primal rings (first defined in [8] and later studied in [23, 26, 27, 28] among others), is defined by requiring that in a not necessarily commutative ring, the set of all nilpotent elements coincides with the prime radical. In an arbitrary ring, Levitzki showed that the set of all strongly nilpotent elements coincides arXiv:1812.04320v1 [math.RA] 11 Dec 2018 with the intersection of all prime ideals, [29, Theorem 2.6].
    [Show full text]
  • Basic Category Theory and Topos Theory
    Basic Category Theory and Topos Theory Jaap van Oosten Jaap van Oosten Department of Mathematics Utrecht University The Netherlands Revised, February 2016 Contents 1 Categories and Functors 1 1.1 Definitions and examples . 1 1.2 Some special objects and arrows . 5 2 Natural transformations 8 2.1 The Yoneda lemma . 8 2.2 Examples of natural transformations . 11 2.3 Equivalence of categories; an example . 13 3 (Co)cones and (Co)limits 16 3.1 Limits . 16 3.2 Limits by products and equalizers . 23 3.3 Complete Categories . 24 3.4 Colimits . 25 4 A little piece of categorical logic 28 4.1 Regular categories and subobjects . 28 4.2 The logic of regular categories . 34 4.3 The language L(C) and theory T (C) associated to a regular cat- egory C ................................ 39 4.4 The category C(T ) associated to a theory T : Completeness Theorem 41 4.5 Example of a regular category . 44 5 Adjunctions 47 5.1 Adjoint functors . 47 5.2 Expressing (co)completeness by existence of adjoints; preserva- tion of (co)limits by adjoint functors . 52 6 Monads and Algebras 56 6.1 Algebras for a monad . 57 6.2 T -Algebras at least as complete as D . 61 6.3 The Kleisli category of a monad . 62 7 Cartesian closed categories and the λ-calculus 64 7.1 Cartesian closed categories (ccc's); examples and basic facts . 64 7.2 Typed λ-calculus and cartesian closed categories . 68 7.3 Representation of primitive recursive functions in ccc's with nat- ural numbers object .
    [Show full text]
  • A Small Complete Category
    Annals of Pure and Applied Logic 40 (1988) 135-165 135 North-Holland A SMALL COMPLETE CATEGORY J.M.E. HYLAND Department of Pure Mathematics and Mathematical Statktics, 16 Mill Lane, Cambridge CB2 ISB, England Communicated by D. van Dalen Received 14 October 1987 0. Introduction This paper is concerned with a remarkable fact. The effective topos contains a small complete subcategory, essentially the familiar category of partial equiv- alence realtions. This is in contrast to the category of sets (indeed to all Grothendieck toposes) where any small complete category is equivalent to a (complete) poset. Note at once that the phrase ‘a small complete subcategory of a topos’ is misleading. It is not the subcategory but the internal (small) category which matters. Indeed for any ordinary subcategory of a topos there may be a number of internal categories with global sections equivalent to the given subcategory. The appropriate notion of subcategory is an indexed (or better fibred) one, see 0.1. Another point that needs attention is the definition of completeness (see 0.2). In my talk at the Church’s Thesis meeting, and in the first draft of this paper, I claimed too strong a form of completeness for the internal category. (The elementary oversight is described in 2.7.) Fortunately during the writing of [13] my collaborators Edmund Robinson and Giuseppe Rosolini noticed the mistake. Again one needs to pay careful attention to the ideas of indexed (or fibred) categories. The idea that small (sufficiently) complete categories in toposes might exist, and would provide the right setting in which to discuss models for strong polymorphism (quantification over types), was suggested to me by Eugenio Moggi.
    [Show full text]