Equivalence Between a Time-Fractional and an Integer-Order Gradient flow: the Memory Effect Reflected in the Energy

Total Page:16

File Type:pdf, Size:1020Kb

Equivalence Between a Time-Fractional and an Integer-Order Gradient flow: the Memory Effect Reflected in the Energy Equivalence between a time-fractional and an integer-order gradient flow: The memory effect reflected in the energy Marvin Fritza, Ustim Khristenkoa, Barbara Wohlmutha aDepartment of Mathematics, Technical University of Munich, Germany Abstract Time-fractional partial differential equations are nonlocal in time and show an innate memory effect. In this work, we propose an augmented energy functional which includes the history of the solution. Further, we prove the equivalence of a time-fractional gradient flow problem to an integer-order one based on our new energy. This equivalence guarantees the dissipating character of the augmented energy. The state function of the integer- order gradient flow acts on an extended domain similar to the Caffarelli{Silvestre extension for the fractional Laplacian. Additionally, we apply a numerical scheme for solving time-fractional gradient flows, which is based on kernel compressing methods. We illustrate the behavior of the original and augmented energy in the case of the Ginzburg{Landau energy functional. Keywords: energy dissipation, time-fractional gradient flows, well-posedness, history energy, augmented energy, kernel compressing scheme, Cahn{Hilliard equation, Ginzburg{Landau energy 2020 MSC: 35A01, 35A02, 35B38, 35D30, 35K25, 35R11 1. Introduction In this work, we investigate the influence of the history on the energy functional of time-fractional gradient flows, i.e., the standard time derivative is replaced by a derivative of fractional order in the sense of Caputo. By definition, the system becomes nonlocal in time, and the history of the state function plays a significant role in its time evolution. Recently, time-fractional partial differential equations (FPDEs) became of increasing interest. Their innate memory effect appears in many applications, e.g., in the mechanical properties of materials [1], in viscoelasticity [2] and -plasticity [3], in image [4] and signal processing [5], in diffusion [6] and heat progression problems [7], in the modeling of solutes in fractured media [8], in combustion theory [9], bioengineering [10], damping processes [11], and even in the modeling of love [12] and happiness [13]. The theory of gradient flows is well-investigated in the integer case, e.g., see the book [14] and the work [15] regarding the analysis of the porous medium equation as a gradient flow. One of the most important properties of a gradient flow is its energy dissipation, which can be immediately derived from the variational formulation and by the chain rule. This relation is also called the principle of steepest descent. Typical applications are the heat equation with the underlying Dirichlet energy, and the Ginzburg{Landau energy, which results in the arXiv:2106.10985v1 [math.AP] 21 Jun 2021 well-known Cahn{Hilliard [16] and Allen{Cahn equation [17] depending on the choice of the underlying Hilbert space. We also mention the Fokker{Planck [18], and the Keller{Segel equations [19], which can be written and analyzed as gradient flows. Some of their time-fractional counterparts have been investigated in the literature, e.g., the time-fractional gradient flows of type Allen{Cahn [20], Cahn{Hilliard [21], Keller{Segel [22], and Fokker{Planck [23] type. Up to now there is no unified theory for time-fractional gradient flows, and it is not yet known whether the dissipation of energy is fulfilled, see also the discussions in [24{27]. From a straightforward testing of the variational form as in the integer order setting, one can only bound the energy by its initial state but one cannot say whether it is dissipating continuously in time. Several papers investigated the dissipation law of time-fractional phase field equations numerically and proposed weighted schemes in order to fulfill the dissipation of the discrete energy, see [28{35]. ∗Corresponding author Preprint submitted to Elsevier June 22, 2021 Our main contribution is the well-posedness of time-fractional gradient flows and the introduction of a new augmented energy, which is motivated by the memory structure of time-fractional differential equations and therefore, includes an additional term representing the history of the state function. We show that the integer-order gradient flow corresponding to this augmented energy on an extended Hilbert space is equivalent to the original time-fractional model. Consequently, the augmented energy is monotonically decreasing in time. We note that the state function of the augmented gradient flow acts on an extended domain similar to the Caffarelli–Silvestre approach [36] of the fractional Laplacian using harmonic extensions. This technique of dimension extension has also be used in the analysis of random walks [37] and embeds a long jump random walk to a space with one added dimension. In Section 2, we state some preliminary results on fractional derivatives and Bochner spaces. Moreover, we state and prove a theorem of well-posedness of fractional gradient flows. We state the main theorem of the equivalence of the fractional and the extended gradient flows in Section 3 and give a complete proof. Afterwards, we give two corollaries, one stating the consequence of energy dissipation and the other concerning the limit case α = 1 in the fractional order. In Section 4, we present an algorithm to solve the time-fractional system based on rational approximations. Lastly, we illustrate in Section 5 some simulations in order to show the influence of the history energy. 2. Analytical Preliminaries and Well-Posedness of Time-Fractional Gradient Flows In the following, let H be a separable Hilbert space and X a Banach space such that it holds X ,, H, X0; ! ! where the embedding , is continuous and dense, and ,, is additionally compact. We apply the Riesz repre- ! ! sentation theorem to identify H with its dual. In this regard, (X; H; X0) forms a Gelfand triple, e.g., k k j k H (Ω);H − (Ω);H− (Ω) with k j > 0: ≥ The duality pairing in X is regarded as a continuous extension of the scalar product of the Hilbert space H in the sense u; v X X = (u; v)H u H; v X; h i 0× 8 2 2 We call a function Bochner measurable if it can be approximated by a sequence of Banach-valued simple functions and consequently, we define the Bochner spaces Lp(0;T ; X) as the equivalence class of Bochner measurable functions u : (0;T ) X such that t u(t) p is Lebesgue integrable. Note that L2(0;T ; X) is ! 7! k kX a Hilbert space if X is a Hilbert space, e.g., see [38]. The Sobolev{Bochner space W 1;p(0;T ; X) consists of functions in Lp(0;T ; X) such that their distributional time derivatives are induced by functions in Lp(0;T ; X). 2.1. Fractional derivative Let us introduce the linear continuous Riemann{Liouville integral operator L (L1(0;T ; X)) of order Iα 2 α (0; 1) of a function u L1(0;T ; X), defined by 2 2 u := g u; (2.1) Iα α ∗ where the singular kernel g L1(0;T ) is given by g (t) = tα 1=Γ(α), and the operator denotes the convolu- α 2 α − ∗ tion on the positive half-line with respect to the time variable. Note that the operator has a complementary Iα element in the sense α 1 αu = 1u = 1 u; (2.2) I I − I ∗ see [39]. Then, the fractional derivative of order α (0; 1) in the sense of Caputo is defined by 2 α @t u := g1 α @tu = 1 α@tu; (2.3) − ∗ I − see, e.g., [39, 40]. In the limit cases α = 0 and α = 1, we define @0u = u u and @1u = @ u, respectively. One t − 0 t t can write (2.3) as 1 t @ u(s) @αu(t) = s ds; t Γ(1 α) (t s)α − Z0 − 2 in X for a.e. t (0;T ). The infinite-dimensional valued integral is understood in the Bochner sense. We 2 note that the Caputo derivative requires a function which is absolutely continuous. But this definition can be generalized to a larger class of functions which coincide with the classical definition in case of absolutely continuous functions, see [21, 41]. Similar to before, we define the fractional Sobolev{Bochner space W α,p(0;T ; X) as the functions in Lp(0;T ; X) such that their α-th fractional time derivative is in Lp(0;T ; X). Let us remark that by (2.2) it follows α ( α@t u)(t) = α 1 α@tu = 1@tu(t) = u(t) u0: (2.4) I I I − I − As in the integer-order setting, there are continuous and compact embedding results [41{44]. In particular, provided that X is compactly embedded in H, it holds α,p p 1 1 W 0 (0;T ; X0) L (0;T ; X) , C([0;T ]; H); + = 1; α > 0; \ ! p p0 (2.5) α,1 p r W (0;T ; X) L (0;T ; X0) ,, L (0;T ; H); 1 r < p; α > 0: \ ! ≤ Moreover, it holds the following version of the Gr¨onwall{Bellman inequality in the fractional setting. 1 Lemma 1 (cf. [21, Corollary 1]). Let w; v L (0;T ; R 0), and a; b 0. If w and v satisfy the inequality 2 ≥ ≥ w(t) + g v(t) a + b (g w)(t) a.e. t (0;T ); α ∗ ≤ α ∗ 2 then it holds w(t) + v(t) a C(α; b; T ) for almost every t (0;T ). ≤ · 2 d d We mention the following lemma which provides an alternative to the classical chain rule dt f(u) = f 0(u) dt u to the fractional setting for λ-convex (or semiconvex) functionals f : X R with respect to H, i.e., x ! 7! f(x) λ x 2 is convex for some λ R.
Recommended publications
  • Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces
    Axioms 2013, 2, 224-270; doi:10.3390/axioms2020224 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Article Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces Sergey Ajiev School of Mathematical Sciences, Faculty of Science, University of Technology-Sydney, P.O. Box 123, Broadway, NSW 2007, Australia; E-Mail: [email protected] Received: 4 March 2013; in revised form: 12 May 2013 / Accepted: 14 May 2013 / Published: 23 May 2013 Abstract: We introduce and study Clarkson, Dol’nikov-Pichugov, Jacobi and mutual diameter constants reflecting the geometry of a Banach space and Clarkson, Jacobi and Pichugov classes of Banach spaces and their relations with James, self-Jung, Kottman and Schaffer¨ constants in order to establish quantitative versions of Hahn-Banach separability theorem and to characterise the isometric extendability of Holder-Lipschitz¨ mappings. Abstract results are further applied to the spaces and pairs from the wide classes IG and IG+ and non-commutative Lp-spaces. The intimate relation between the subspaces and quotients of the IG-spaces on one side and various types of anisotropic Besov, Lizorkin-Triebel and Sobolev spaces of functions on open subsets of an Euclidean space defined in terms of differences, local polynomial approximations, wavelet decompositions and other means (as well as the duals and the lp-sums of all these spaces) on the other side, allows us to present the algorithm of extending the main results of the article to the latter spaces and pairs. Special attention is paid to the matter of sharpness. Our approach is quasi-Euclidean in its nature because it relies on the extrapolation of properties of Hilbert spaces and the study of 1-complemented subspaces of the spaces under consideration.
    [Show full text]
  • List of Reviews by Gianni Pagnini in Mathematical Reviews MR2145045
    List of reviews by Gianni Pagnini in Mathematical Reviews MR2145045 Saxena R.K., Ram J., Suthar D.L., On two-dimensional Saigo–Maeda frac- tional calculus involving two-dimensional H-transforms. Acta Cienc. Indica Math., 30(4), pp. 813–822 (2004) MR2220224 Nishimoto K., N-fractional calculus of a logarithmic function and generali- zed hypergeometric functions. J. Fract. Calc., 29(1), pp. 1–8 (2006) MR2224671 Saxena R.K., Ram J., Chandak S., On two-dimensional generalized Saigo fractional calculus associated with two-dimensional generalized H-transfroms. J. Indian Acad. Math., 27(1), pp. 167–180 (2005) MR2266353 Lin S.-D., Tu S.-T., Srivastava H.M., Some families of multiple infinite sums and associated fractional differintegral formulas for power and composite functions. J. Fract. Calc., 30, pp. 45–58 (2006) MR2286840 Biacino L., Derivatives of fractional orders of continuos functions. Ricerche di Matematica, LIII(2), pp. 231–254 (2004) MR2330471 Chaurasia V.B.L., Srivastava A., A unified approach to fractional calculus pertaining to H-functions. Soochow J. of Math., 33(2), pp. 211–221 (2007) MR2332241 Chaurasia V.B.L., Patni R., Shekhawat A.S., Applications of fractional deri- vatives of certain special functions. Soochow J. of Math., 33(2), pp. 325–334 (2007) MR2355703 Agrawal R., Bansal S.K., A study of unified integral operators involving a general multivariable polynomial and a product of two H¯ −functions. J. Rajasthan Acad. Phy. Sci., 6(3), pp. 289–300 (2007) MR2390179 Benchohra M., Hamani S., Ntouyas S.K., Boundary value problems for dif- ferential equations with fractional order. Surv.
    [Show full text]
  • A Novel Approach to Fractional Calculus -.:: Natural Sciences
    Progr. Fract. Differ. Appl. 4, No. 4, 463-478 (2018) 463 Progress in Fractional Differentiation and Applications An International Journal http://dx.doi.org/10.18576/pfda/040402 A Novel Approach to Fractional Calculus: Utilizing Fractional Integrals and Derivatives of the Dirac Delta Function Evan Camrud1,2 1 Department of Mathematics, Concordia College, Moorhead, MN, USA 2 Department of Mathematics, Iowa State University, Ames, IA, USA Received: 8 Jan. 2018, Revised: 28 Feb. 2018, Accepted: 2 Mar. 2018 Published online: 1 Oct. 2018 Abstract: While the definition of a fractional integral may be codified by Riemann and Liouville, an agreed-upon fractional derivative has eluded discovery for many years. This is likely a result of integral definitions including numerous constants of integration in their results. An elimination of constants of integration opens the door to an operator that reconciles all known fractional derivatives and shows surprising results in areas unobserved before, including the appearance of the Riemann Zeta function and fractional Laplace and Fourier transforms. A new class of functions, known as Zero Functions and closely related to the Dirac delta function, are necessary for one to perform elementary operations of functions without using constants. The operator also allows for a generalization of the Volterra integral equation, and provides a method of solving for Riemann’s complimentary function introduced during his research on fractional derivatives. Keywords: Fractional calculus, fractional differential equations, integral transforms, operations with distributions, special functions. 1 Introduction The concept of derivatives of non-integer order, commonly known as fractional derivatives, first appeared in a letter between L’Hopital and Leibniz in which the question of a half-order derivative was posed [1].
    [Show full text]
  • Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments
    KYUNGPOOK Math. J. 60(2020), 73-116 https://doi.org/10.5666/KMJ.2020.60.1.73 pISSN 1225-6951 eISSN 0454-8124 ⃝c Kyungpook Mathematical Journal Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments Hari Mohan Srivastava Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W3R4, Canada and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China and Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Ha- jibeyli Street, AZ1007 Baku, Azerbaijan e-mail : [email protected] Abstract. The subject of fractional calculus (that is, the calculus of integrals and deriva- tives of any arbitrary real or complex order) has gained considerable popularity and im- portance during the past over four decades, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of mathematical, physical, engineer- ing and statistical sciences. Various operators of fractional-order derivatives as well as fractional-order integrals do indeed provide several potentially useful tools for solving dif- ferential and integral equations, and various other problems involving special functions of mathematical physics as well as their extensions and generalizations in one and more variables. The main object of this survey-cum-expository article is to present a brief ele- mentary and introductory overview of the theory of the integral and derivative operators of fractional calculus and their applications especially in developing solutions of certain interesting families of ordinary and partial fractional “differintegral" equations. This gen- eral talk will be presented as simply as possible keeping the likelihood of non-specialist audience in mind.
    [Show full text]
  • What Is... Fractional Calculus?
    What is... Fractional Calculus? Clark Butler August 6, 2009 Abstract Differentiation and integration of non-integer order have been of interest since Leibniz. We will approach the fractional calculus through the differintegral operator and derive the differintegrals of familiar functions from the standard calculus. We will also solve Abel's integral equation using fractional methods. The Gr¨unwald-Letnikov Definition A plethora of approaches exist for derivatives and integrals of arbitrary order. We will consider only a few. The first, and most intuitive definition given here was first proposed by Gr¨unwald in 1867, and later Letnikov in 1868. We begin with the definition of a derivative as a difference quotient, namely, d1f f(x) − f(x − h) = lim dx1 h!0 h It is an exercise in induction to demonstrate that, more generally, n dnf 1 X n = lim (−1)j f(x − jh) dxn h!0 hn j j=0 We will assume that all functions described here are sufficiently differen- tiable. Differentiation and integration are often regarded as inverse operations, so d−1 we wish now to attach a meaning to the symbol dx−1 , what might commonly be referred to as anti-differentiation. However, integration of a function is depen- dent on the lower limit of integration, which is why the two operations cannot be regarded as truly inverse. We will select a definitive lower limit of 0 for convenience, so that, d−nf Z x Z xn−1 Z x2 Z x1 −n ≡ dxn−1 dxn−2 ··· dx1 f(x0)dx0 dx 0 0 0 0 1 By instead evaluating this multiple intgral as the limit of a sum, we find n N−1 d−nf x X j + n − 1 x = lim f(x − j ) dx−n N!1 N j N j=0 in which the interval [0; x] has been partitioned into N equal subintervals.
    [Show full text]
  • HEAT FLOW and QUANTITATIVE DIFFERENTIATION Contents 1
    HEAT FLOW AND QUANTITATIVE DIFFERENTIATION TUOMAS HYTONEN¨ AND ASSAF NAOR Abstract. For every Banach space (Y; k · kY ) that admits an equivalent uniformly convex norm we prove that there exists c = c(Y ) 2 (0; 1) with the following property. Suppose that n 2 N and that X is an n-dimensional normed space with unit ball BX . Then for every 1-Lipschitz function cn f : BX ! Y and for every " 2 (0; 1=2] there exists a radius r > exp(−1=" ), a point x 2 BX with x + rBX ⊆ BX , and an affine mapping Λ : X ! Y such that kf(y) − Λ(y)kY 6 "r for every y 2 x+rBX . This is an improved bound for a fundamental quantitative differentiation problem that was formulated by Bates, Johnson, Lindenstrauss, Preiss and Schechtman (1999), and consequently it yields a new proof of Bourgain's discretization theorem (1987) for uniformly convex targets. The strategy of our proof is inspired by Bourgain's original approach to the discretization problem, which takes the affine mapping Λ to be the first order Taylor polynomial of a time-t Poisson evolute of an extension of f to all of X and argues that, under appropriate assumptions on f, there must exist a time t 2 (0; 1) at which Λ is (quantitatively) invertible. However, in the present context we desire a more stringent conclusion, namely that Λ well-approximates f on a macroscopically large ball, in which case we show that for our argument to work one cannot use the Poisson semigroup. Nevertheless, our strategy does succeed with the Poisson semigroup replaced by the heat semigroup.
    [Show full text]
  • Regularization and Simulation of Constrained Partial Differential
    Regularization and Simulation of Constrained Partial Differential Equations vorgelegt von Diplom-Mathematiker Robert Altmann aus Berlin Von der Fakult¨atII - Mathematik und Naturwissenschaften der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat genehmigte Dissertation Promotionsausschuss: Vorsitzende: Prof. Dr. Noemi Kurt Berichter: Prof. Dr. Volker Mehrmann Berichterin: Prof. Dr. Caren Tischendorf Berichter: Prof. Dr. Alexander Ostermann Tag der wissenschaftlichen Aussprache: 29. 05. 2015 Berlin 2015 Contents Zusammenfassung . v Abstract . vii Published Papers. ix 1. Introduction . 1 Part A Preliminaries 5 2. Differential-algebraic Equations (DAEs) . 6 2.1. Index Concepts . 6 2.1.1. Differentiation Index. 7 2.1.2. Further Index Concepts. 8 2.2. High-index DAEs . 8 2.3. Index Reduction Techniques. 9 2.3.1. Index Reduction by Differentiation . 9 2.3.2. Minimal Extension . 9 3. Functional Analytic Tools . 11 3.1. Fundamentals . 11 3.1.1. Dual Operators and Riesz Representation Theorem . 11 3.1.2. Test Functions and Distributions . 12 3.1.3. Sobolev Spaces . 13 3.1.4. Traces . 14 3.1.5. Poincar´eInequality and Negative Norms . 15 3.1.6. Weak Convergence and Compactness . 17 3.2. Bochner Spaces . 17 3.3. Sobolev-Bochner Spaces . 20 3.3.1. Gelfand Triples . 20 3.3.2. Definition and Embeddings . 21 4. Abstract Differential Equations . 23 4.1. Nemytskii Mapping . 23 4.2. Operator ODEs . 24 4.2.1. First-order Equations . 25 4.2.2. Second-order Equations. 26 4.3. Operator DAEs . 27 i 5. Discretization Schemes . 29 5.1. Spatial Discretization . 29 5.1.1.
    [Show full text]
  • Fractional Calculus
    faculty of mathematics and natural sciences Fractional Calculus Bachelor Project Mathematics October 2015 Student: D.E. Koning First supervisor: Dr. A.E. Sterk Second supervisor: Prof. dr. H.L. Trentelman Abstract This thesis introduces fractional derivatives and fractional integrals, shortly differintegrals. After a short introduction and some preliminaries the Gr¨unwald-Letnikov and Riemann-Liouville approaches for defining a differintegral will be explored. Then some basic properties of differintegrals, such as linearity, the Leibniz rule and composition, will be proved. Thereafter the definitions of the differintegrals will be applied to a few examples. Also fractional differential equations and one method for solving them will be discussed. The thesis ends with some examples of fractional differential equations and applications of differintegrals. CONTENTS Contents 1 Introduction4 2 Preliminaries5 2.1 The Gamma Function........................5 2.2 The Beta Function..........................5 2.3 Change the Order of Integration..................6 2.4 The Mittag-Leffler Function.....................6 3 Fractional Derivatives and Integrals7 3.1 The Gr¨unwald-Letnikov construction................7 3.2 The Riemann-Liouville construction................8 3.2.1 The Riemann-Liouville Fractional Integral.........9 3.2.2 The Riemann-Liouville Fractional Derivative.......9 4 Basic Properties of Fractional Derivatives 11 4.1 Linearity................................ 11 4.2 Zero Rule............................... 11 4.3 Product Rule & Leibniz's Rule................... 12 4.4 Composition............................. 12 4.4.1 Fractional integration of a fractional integral....... 12 4.4.2 Fractional differentiation of a fractional integral...... 13 4.4.3 Fractional integration and differentiation of a fractional derivative........................... 14 5 Examples 15 5.1 The Power Function......................... 15 5.2 The Exponential Function.....................
    [Show full text]
  • Amit Chouhan
    INVESTIGATION INTO FRACTIONAL DIFFERINTEGRAL OPERATORS, AND THEIR APPLICATION INTO VARIOUS DISCIPLINES A THESIS Submitted for the Award of Ph.D. degree of University of Kota, Kota (Mathematics-Faculty of Science) by AMIT CHOUHAN Under the supervision of Dr. Satish Saraswat (M.Sc., Ph.D. ) Lecturer Department of Mathematics Government College Kota, Kota – 324001(India) UNIVERSITY OF KOTA, KOTA (2013) Dr. Satish Saraswat Lecturer, (M.Sc., Ph.D.) Department of Mathematics Govt. College Kota, Kota -324001. CERTIFICATE I feel great pleasure in certifying that the thesis entitled “INVESTIGATION INTO FRACTIONAL DIFFERINTEGRAL OPERATORS, AND THEIR APPLICATION INTO VARIOUS DISCIPLINES”, embodies a record of the results of investigations carried out by Mr. Amit Chouhan under my guidance. I am satisfied with the analysis of data, interpretation of results and conclusions drawn. He has completed the residential requirement as per rules. I recommend the submission of thesis. Date : (Dr. Satish Saraswat) Research Supervisor DECLARATION I hereby declare that the (i) The thesis entitled “ INVESTIGATION INTO FRACTIONAL DIFFERINTEGRAL OPERATORS, AND THEIR APPLICATION INTO VARIOUS DISCIPLINES ” submitted by me is an original piece of research work, carried out under the supervision of Dr. Satish Saraswat. (ii) The above thesis has not been submitted to this university or any other university for any degree. Date: Signature of Candidate (Amit Chouhan) ACKNOWLEDGEMENTS I express my heartful gratitude to the “ ALMIGHTY GOD ” for his blessing to complete this piece of work. I wish to express my unfeigned indebtedness to my research supervisor Dr. Satish Saraswat , Department of Mathematics, Government College, Kota for his constant inspiration, supervision and able guidance in making this endeavor a success.
    [Show full text]
  • 1 FRACTIONAL DERIVATIVE ANALYSIS of HELMHOLTZ and PARAXIAL-WAVE EQUATIONS A. J. T U R S K I , B. a T a M a N I U K and E. T
    View metadata, citation and similar papers at core.ac.uk 1 brought to you by CORE provided by CERN Document Server FRACTIONAL DERIVATIVE ANALYSIS OF HELMHOLTZ AND PARAXIAL-WAVE EQUATIONS A.J.TURSKI,B.ATAMANIUKandE.TURSKA Depatment of Theory of Continuous Mechanics Institute of Fundamental Technological Research, PAS Fundamental rules and definitions of Fractional Differintegrals are outlined. Factorizing 1-D and 2-D Helmholtz equations four semi-differential eigenfunctions are determined. The functions exhibit incident and reflected plane waves as well as diffracted incident and reflected waves on the half-plane edge. They allow to construct the Sommerfeld half-plane diffraction solutions. Parabolic-Wave Equation (PWE, Leontovich-Fock) for paraxial propagation is fac- torized and differential fractional solutions of Fresnel-integral type are determined. We arrived at two solutions, which are the mothers of known and new solutions. 1 Introduction The mathematical theory of the fractional calculus and the theory of ordinary frac- tional differential equations is well developed and there is a vast literature on the subject [1], [2], [3], [4], [5] and [6]. The theory of partial fractional differential equations is a recently investigated problem and the theory mainly concerns fractional diffusion-wave equations [7], [8], [9], [10] and [11]. The main objectives of this paper is a factorization of the Helmholtz equation to ob- tain four semidifferential eigenfunctions allowing to construct the well known half-plain diffraction problem. Factorizing the Leontovich-Fock equation, we determine semidiffer- ential Green functions, which allow to find paraxial solutions for a given beam boundary conditions. The article is organized as follows.
    [Show full text]
  • Functional Fractional Calculus for System Identification and Controls
    Shantanu Das Functional Fractional Calculus for System Identification and Controls With 68 Figures and 11 Tables 4y Springer Contents 1 Introduction to Fractional Calculus 1 1.1 Introduction 1 1.2 Birth of Fractional Calculus 1 1.3 Fractional Calculus a Generalization of Integer Order Calculus 2 1.4 Historical Development of Fractional Calculus 3 1.4.1 The Popular Definitions of Fractional Derivatives/Integrals in Fractional Calculus 7 1.5 About Fractional Integration Derivatives and Differintegration 9 1.5.1 Fractional Integration Riemann-Liouville (RL) 9 1.5.2 Fractional Derivatives Riemann-Liouville (RL) Left Hand Definition (LHD) 10 1.5.3 Fractional Derivatives Caputo Right Hand Definition (RHD) .. 10 1.5.4 Fractional Differintegrals Grunwald Letnikov (GL) 12 1.5.5 Composition and Property 14 1.5.6 Fractional Derivative for Some Standard Function 15 1.6 Solution of Fractional Differential Equations 16 1.7 A Thought Experiment...." 16 1.8 Quotable Quotes About Fractional Calculus 17 1.9 Concluding Comments 18 2 Functions Used in Fractional Calculus 19 2.1 Introduction 19 2.2 Functions for the Fractional Calculus 19 2.2.1 Gamma Function 19 2.2.2 Mittag-Leffler Function .*> 22 2.2.3 Agarwal Function 27 2.2.4 Erdelyi's Function 27 2.2.5 Robotnov-Hartley Function 27 2.2.6 Miller-Ross Function 27 2.2.7 Generalized R Function and G Function 28 2.3 List of Laplace and Inverse Laplace Transforms Related to Fractional Calculus .. /: 30 2.4 Concluding Comments 33 xiv Contents 3 Observation of Fractional Calculus in Physical System Description ..
    [Show full text]
  • On Application of Fractional Differintegral Operator to the K4- Function
    Bol. Soc. Paran. Mat. (3s.) v. 30 1 (2012): 91–97. c SPM –ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i1.13365 On Application of Fractional Differintegral Operator to the K4- Function Kishan Sharma abstract: The object of this paper is to introduce a new function called K4- function defined by the author in terms of some special functions, which is an extension of the G-function defined by Lorenzo and Hartley [4] and demonstrate how K4-function is closely related to another special functions, namely Lorenzo- Hartleyâ’s R-function, Robotnov and Hartleyâ’s F-function, Mittag-Leffler function, generalized Mittag-Leffler function, Exponential function. The differintegration of that function is also investigated. As special cases most of the results obtained in this paper are believed to be new and include some of the results given earlier by other authors. Key Words: Differintegration, Fractional calculus, R- and G-functions of Lorenzo- Hartley(L-H) Contents 1 Introduction and Definitions 91 2 A New Special Function 93 3 Differintegration of the K4-Function 94 4 Conclusion 96 1. Introduction and Definitions Fractional Calculus is a field of applied mathematics that deals with derivatives and integrals of arbitrary orders. During the last three decades Fractional Calculus has been applied to almost every field of Mathematics like Special Functions etc., Science, Engineering and Technology. Many applications of Fractional Calculus can be found in Turbulence and Fluid Dynamics, Stochastic Dynamical System, Plasma Physics and Controlled Thermonuclear Fusion, Non-linear Control Theory, Image Processing, Non-linear Biological Systems and Astrophysics.
    [Show full text]