View PDF Version

Total Page:16

File Type:pdf, Size:1020Kb

View PDF Version Volume 2 Number 4 August 2021 Pages 947–1302 RSC Chemical Biology rsc.li/rsc-chembio ISSN 2633-0679 REVIEW ARTICLE Mélanie Hall Enzymatic strategies for asymmetric synthesis RSC Chemical Biology View Article Online REVIEW View Journal | View Issue Enzymatic strategies for asymmetric synthesis ab Cite this: RSC Chem. Biol., 2021, Me´lanie Hall 2, 958 Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for Received 9th April 2021, (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond Accepted 28th May 2021 forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of DOI: 10.1039/d1cb00080b prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this Creative Commons Attribution 3.0 Unported Licence. review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure rsc.li/rsc-chembio chiral compounds are presented, with a focus on the reactions developed within the past decade. Introduction brewery, bakery and wine making was not conscious, advances mostly in the 20th century in neighboring disciplines such as Biocatalysis, which can be broadly defined as the use of biochemistry, enzymology, molecular biology, and more recently enzymes to catalyze chemical reactions, is found in diverse fields in protein crystallography, genetic engineering and computational This article is licensed under a of application. While its historical use by ancient civilizations in tools, contributed to a global and molecular understanding of enzymes and their modes of action. At the same time, scientists could finally produce, manipulate and modify enzymes on a Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria. Open Access Article. Published on 01 June 2021. Downloaded 9/23/2021 4:50:48 PM. demand, which participated in the establishment of modern E-mail: [email protected] 1,2 b Field of Excellence BioHealth – University of Graz, Austria biocatalysis. Theuseofenzymesinchemistryhasalong tradition, such as in the food, textile and detergent industry,3,4 however biocatalysis started to dramatically impact the fine Me´lanie Hall studied chemistry at chemical and pharmaceutical industry only recently at the turn the E´cole Nationale Supe´rieure de of the 21st century. Besides the strong motivation to develop Chimie de Rennes (ENSCR), environmentally more acceptable chemical processes, the faster France, and received her PhD in access to proteins and the ability to modify them largely contrib- chemistry from the University of uted to a mindset shift in industry.5,6 Enzymes can compete with Graz, Austria, under Prof. Kurt traditional chemical (catalytic) methods for a broad range of Faber (2007). After a postdoctoral chemical transformations, including those long considered non- research stay with Prof. Andreas natural. Exemplary is the identification of the catalytic activity of Bommarius at the Georgia aldoxime dehydratases in the Kemp elimination reaction7 –a Institute of Technology in Atlanta, base-catalyzed deprotonation of a benzisoxazole ring – for USA, she returned to the University which, besides chemical bases, only de novo designed proteins of Graz, where she obtained her were known to be active catalysts.8 Me´lanie Hall habilitation in organic chemistry Baeyer–Villiger monooxygenases (BMVOs) represent another (venia docendi) in 2016. She is beautiful example of how nature designs efficient enzymatic currently assistant professor for sustainable bioorganic synthetic machineries to catalyze difficult chemical reactions. Chemists chemistry at the Institute of Chemistry. Her research is dedicated to employ peracids or peroxides as oxidant in the eponymic the field of biocatalysis, with particular focus on asymmetric synthesis reaction for the insertion of oxygen between two carbon atoms. and enzymatic synthetic technologies. After attack of the carbonyl group of the substrate by the oxidant, 958 | RSC Chem. Biol., 2021, 2, 958–989 © 2021 The Author(s). Published by the Royal Society of Chemistry View Article Online Review RSC Chemical Biology the reaction proceeds through formation of the so-called Criegee 1. Stereoselective reactions involving intermediate. The collapse of this intermediate leads to migration transformations of sp2 carbons of one of the alkyl substituents of the substrate carbonyl to the oxygen atom derived from the oxidant, and eventually results in The biocatalytic stereoselective conversion of prochiral molecules the formation of the ester or lactone product. BVMOs simply use into chiral products often involves substrates bearing at least one molecular oxygen as oxidant in the enzymatic version of the sp2 hybridized carbon atom embedded in a double bond, such as reaction and rely on a reduced flavin cofactor to activate the CQC-, CQN- or CQO-bond. Transformations of these double oxygen. The resulting peroxyflavin is a powerful nucleophile that bonds include reduction reactions (stereoselective C–H bond can attack carbonyls, leading to a biological Criegee intermediate. formation), transamination and hydroamination (stereoselective Therestofthereactioncanbeconsideredanalogoustothe C–N-bond formation), epoxidation (stereoselective C–O-bond for- chemical oxidation.9 A major advantage of the biological catalyst mation), and addition of nucleophilic carbon (stereoselective is the benign and nontoxic environment required for the C–C-bond formation). All these reactions proceed through selective oxygenation reaction: air, importantly seconded by high regio- substrate face recognition by the enzyme of interest and may lead to and enantioselectivity. the formation of up to two chiral centers (Scheme 1). The interest in using enzymes in asymmetric synthesis is Q Q Q motivated by the exquisite chemo, regio- and stereoselectivity of 1.1. C C-, C O-, C N-double bond reduction enzymes. Concepts underlying enzymatic strategies in asym- In biology, the reduction of double bonds is typically a formal metric reactions are similar to those found in organic synthesis: addition of [2H], which proceeds via a hydride addition/ – A prochiral compound can be transformed stereoselectively protonation sequence. The hydride added stereoselectively on into a chiral product in enantiopure form. Usually, such reactions the most electron-deficient (carbon) atom is derived from a involve nucleophilic attack onto sp2 hybridized carbon atoms molecule of nicotinamide cofactor NAD(P)H,27 and usually, the embedded in a CQC-, CQO-, or CQN-double bond, and imply final product is obtained by protonation – often catalyzed by an Creative Commons Attribution 3.0 Unported Licence. face recognition of the substrate molecular plane by the enzymes. acidic amino acid – through the reaction medium. – A prochiral sp3 hybridized atom can be converted into a 1.1.1. Alkene reduction. Several types of enzymes are active chiral center by the formal enantioselective replacement of one in the stereoselective reduction of CQC-double bonds.28 of the two enantiotopic groups, such as hydrogen atoms on Ene-reductases from the flavoprotein family of Old Yellow Enzymes carbon or electron lone pairs on sulfur. (OYEs) have become the golden standard for this reaction in – In case the chiral information is already present, a racemic biocatalysis owing to a broad substrate scope and large protein substrate can be converted enantioselectively according to the diversity.29,30 Bacterial enoate reductases from obligate anaerobes principles of kinetic resolution. are specific for a,b-unsaturated carboxylic acids (enoates). Due to – Finally, the case of atroposelective reactions deserves their dependence on an [Fe–S]-cluster, these enzymes are oxygen- This article is licensed under a attention. The chiral information is contained not in a center sensitive and therefore less suitable for practical applications in but in an axis that can be either formed or, if already existing, synthesis. Nicotinamide-dependent reductases from the NADP- resolved. dependent leukotriene B4 dehydrogenase subfamily of medium Open Access Article. Published on 01 June 2021. Downloaded 9/23/2021 4:50:48 PM. In this article, the major strategies relying on enzymes for chain dehydrogenases/reductases (MDR) are flavin-independent the key step of asymmetric synthesis are reviewed and classified enzymes found in plants and mammals, which have not yet in one of the following categories: (i) stereoselective reactions demonstrated generality through high stereoselectivity on a large involving transformations of sp2 hybridized carbon atoms, panel of substrates. Some of these alkene reductases have how- (ii) enantioselective reactions and (iii) atroposelective reactions. ever displayed sufficient
Recommended publications
  • Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria
    RESEARCH ARTICLE Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria Seiya Watanabe1,2*, Rui Sueda1, Fumiyasu Fukumori3, Yasuo Watanabe1 1 Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan, 2 Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan, 3 Faculty of Food and Nutritional Sciences, Toyo University, Itakura-machi, Gunma, Japan * [email protected] Abstract Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(P)H-dependent dehydrogenases (synthases), which catalyze the reduc- tive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti) plasmid. In addition to the reverse OPEN ACCESS oxidative reaction(s), the genes noxB-noxA and ooxB-ooxA are considered to be involved Citation: Watanabe S, Sueda R, Fukumori F, in opine catabolism as (membrane-associated) oxidases; however, their properties have Watanabe Y (2015) Characterization of Flavin- not yet been elucidated in detail due to the difficulties associated with purification (and pres- Containing Opine Dehydrogenase from Bacteria. ervation). We herein successfully expressed Nox/Oox-like genes from Pseudomonas PLoS ONE 10(9): e0138434. doi:10.1371/journal. putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits pone.0138434 encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the Editor: Eric Cascales, Centre National de la chromosome (OdhB-C-A), and exhibited dehydrogenase (but not oxidase) activity toward Recherche Scientifique, Aix-Marseille Université, FRANCE nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol.
    [Show full text]
  • The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase
    Int. J. Mol. Sci. 2012, 13, 5375-5405; doi:10.3390/ijms13055375 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase Valerie J. Klema and Carrie M. Wilmot * Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-612-624-2406; Fax: +1-612-624-5121. Received: 6 April 2012; in revised form: 22 April 2012 / Accepted: 26 April 2012 / Published: 3 May 2012 Abstract: Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis.
    [Show full text]
  • C1 Assimilation in Obligate Methylotrophs and Restricted Facultative Methylotrophs by JOHN COLBY* and LEONARD J
    Biochem. J. (1975) 148, 513-520 513 Printed in Great Britain Enzymological Aspects ofthe Pathways for Trimethylamine Oxidation and C1 Assimilation in Obligate Methylotrophs and Restricted Facultative Methylotrophs By JOHN COLBY* and LEONARD J. ZATMAN Department ofMicrobiology, University ofReading, Reading RG1 5AQ, U.K. (Received8 January 1975) 1. Extracts of trimethylamine-grown W6A and W3A1 (type M restricted facultative methylotrophs) contain trimethylamine dehydrogenase whereas similar extracts of Bacillus PM6 and Bacillus S2A1 (type L restricted facultative methylotrophs) contain trimethylamine mono-oxygenase and trimethylamine N-oxide demethylase but no trimethylamine dehydrogenase. 2. Extracts oftherestricted facultatives and ofthe obligate methylotroph C2A1 contain hexulose phosphate synthase-hexulose phosphate isomerase activity; hydroxypyruvate reductase was not detected. 3. Neither the restricted facultatives nor the obligates 4B6 and C2A1 contain all the enzymes ofthe hexulose phos- phatecycleofformaldehyde assimilation as originallyproposed byKemp & Quayle (1967). 4. Organisms PM6 and S2A1 lack transaldolase and use a modified cycle involving sedoheptulose 1,7-diphosphate and sedoheptulose diphosphatase. 5. The obligates 4B6 and C2A1, and the type M organisms W6A and W3A1, use a different modification of the assimilatory hexulose phosphate cycle involving the Entner-Doudoroff-pathway enzymes phosphogluconate dehydratase and phospho-2-keto-3-deoxygluconate aldolase. Thelackoffructosediphosphatealdolaseandhexosediphosphataseintheseorganismsmay
    [Show full text]
  • Southwest Retort
    SOUTHWEST RETORT SIXTY-NINTH YEAR OCTOBER 2016 Published for the advancement of Chemists, Chemical Engineers and Chemistry in this area published by The Dallas-Fort Worth Section, with the cooperation of five other local sections of the American Chemical Society in the Southwest Region. Vol. 69(2) OCTOBER 2016 Editorial and Business Offices: Contact the Editor for subscription and advertisement information. Editor: Connie Hendrickson: [email protected] Copy Editor: Mike Vance, [email protected] Business Manager: Danny Dunn: [email protected] The Southwest Retort is published monthly, September through May, by the Dallas-Ft. Worth Section of the American Chemical Society, Inc., for the ACS Sections of the Southwest Region. October 2016 Southwest RETORT 1 TABLE OF CONTENTS Employment Clearing House………….......3 Fifty Years Ago……………………….….....6 ARTICLES and COLUMNS Schulz Award Winner Gale Hunt………….7 And Another Thing……………………….11 Around the Area………………………….14 Letter from the Editor….…..……….........17 SPECIAL EVENTS National Chemistry Week…………………9 NEWS SHORTS Former pesticide ingredient found in dolphins, birds and fish……………………8 Coffee-infused foam removes lead from contaminated water………………………10 Snake venom composition could be related to hormones and diet……………………..13 Detecting blood alcohol content with an electronic skin patch………………...……16 INDEX OF ADVERTISERS Huffman Laboratories……………....……..4 Contact the DFW Section Vance Editing…..…………….…….……….4 General: [email protected] UT Arlington………………………………..4 Education: [email protected] ANA-LAB……………………...….…...……5 Elections: [email protected] Facebook: DFWACS Twitter: acsdfw October 2016 Southwest RETORT 2 EMPLOYMENT CLEARING HOUSE Job applicants should send name, email, and phone, along with type of position and geographical area desired; employers may contact job applicants directly.
    [Show full text]
  • The Grand Challenges in the Chemical Sciences
    The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Jerusalem, June 3-7 2018 Biographies and Abstracts The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Participants: Jacob Klein Dan Shechtman Dorit Aharonov Roger Kornberg Yaron Silberberg Takuzo Aida Ferenc Krausz Gabor A. Somorjai Yitzhak Apeloig Leeor Kronik Amiel Sternberg Frances Arnold Richard A. Lerner Sir Fraser Stoddart Ruth Arnon Raphael D. Levine Albert Stolow Avinoam Ben-Shaul Rudolph A. Marcus Zehev Tadmor Paul Brumer Todd Martínez Reshef Tenne Wah Chiu Raphael Mechoulam Mark H. Thiemens Nili Cohen David Milstein Naftali Tishby Nir Davidson Shaul Mukamel Knut Wolf Urban Ronnie Ellenblum Edvardas Narevicius Arieh Warshel Greg Engel Nathan Nelson Ira A. Weinstock Makoto Fujita Hagai Netzer Paul Weiss Oleg Gang Abraham Nitzan Shimon Weiss Leticia González Geraldine L. Richmond George M. Whitesides Hardy Gross William Schopf Itamar Willner David Harel Helmut Schwarz Xiaoliang Sunney Xie Jim Heath Mordechai (Moti) Segev Omar M. Yaghi Joshua Jortner Michael Sela Ada Yonath Biographies and Abstracts (Arranged in alphabetic order) The Grand Challenges in the Chemical Sciences Dorit Aharonov The Hebrew University of Jerusalem Quantum Physics through the Computational Lens While the jury is still out as to when and where the impressive experimental progress on quantum gates and qubits will indeed lead one day to a full scale quantum computing machine, a new and not-less exciting development had been taking place over the past decade.
    [Show full text]
  • Opening a New Chapter in the Martian Chronicles
    California Institute of Technology Volume 2., No.• ~emlMr1"2 B•• ed on d.t. from the 1975 Viking ml ••lon , the Explore". Guide to MoIr • .... pon Arden Albee'. w a ll will be In for . ome updating once Ma ,. Ob.erve r be g in. It ••urv e v of the planet late ne xt vear. Albee ke ep. a replica of the .pacecraft In Caltech'. Office of Graduate Studle., w" .. e In addition to hi. role a. Ob.e rver project .clentl.t, he'. been dean . lnce1984. Opening a new chapter in the Martian Chronicles BV Heidi Aapaturlan Speaking this past August at a many Mars aficionados ever since the working in concert like an interplan­ "It's not cleat what sort of geologic NASA press conference called to herald Viking Lander's soil experimencs came etary one-man band, will monitor and dynamics might have produced this che upcoming launch of Mars Observer, up empty in 1975: has life ever map Mars with a sweep and precision dichotomy," says Albee, alchough he Cal tech Professor of Geology Arden evolved on Mars? Did the planet once that is expected to yield more informa­ suspects that the answer may start to Albee sounded ar rimes like a man who harbor a bacterial Atlantis that van­ tion abour the planer's composition, emerge once ic's determined whether had jusc been commissioned to write ished, along with its water, aeons ago? climate, geology, and evolutionary Mars, like Earth, has a magnetic field. the lyrics for the Marcian version of Although no one expects the Mars history than all previous miss ions co Currenc theory holds that a planet'S "America che Beauciful." "We know Observer, launched September 25 from Mars put together.
    [Show full text]
  • The Journal of Nutrition 1968 Volume 95 No.1
    THE JOURNAL OF NUTRITION* OFFICIAL ORGAN OF THE AMERICAN INSTITUTE OF NUTRITION R i c h a r d H . B a r n e s , Editor Graduate School of Nutrition Cornell University, Savage Hall Ithaca, New York H a r o l d H . W i l l i a m s E. N e i g e T o d h u n t e r Associate Editor Biographical Editor EDITORIAL BOARD S a m u e l J . F o m o n W i l l i a m N. P e a r s o n M . K . H o r w i t t P a u l M . N e w b e r n e F. H. K r a t z e r K e n d a l l W . K i n g B o y d L. O’D e l l H. N. M u n r o H e r b e r t P . S a r e t t H. E. S a u b e r l i c h D o r i s H o w e s C a l l o w a y G e o r g e G . G r a h a m R o s l y n B . A l f i n -S l a t e r J . M . B e l l W i l l i a m G . H o e k s t r a G e o r g e H .
    [Show full text]
  • Novel Amine Dehydrogenase from Leucine Dehydrogenase 19
    DEVELOPMENT OF AN AMINE DEHYDROGENASE A Dissertation Presented to The Academic Faculty by Michael J. Abrahamson In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemical and Biomolecular Engineering Georgia Institute of Technology December 2012 DEVELOPMENT OF AN AMINE DEHYDROGENASE Approved by: Dr. Andreas S. Bommarius, Advisor Dr. Jeffrey Skolnick School of Chemical & Biomolecular School of Biology Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Christopher W. Jones Dr. John W. Wong School of Chemical & Biomolecular Biocatalysis Center of Emphasis Engineering Chemical Research & Development Georgia Institute of Technology Pfizer Global Research & Development Dr. Yoshiaki Kawajiri School of Chemical & Biomolecular Engineering Georgia Institute of Technology Date Approved: August 13, 2012 To my parents, Joseph & Deborah ACKNOWLEDGEMENTS First and foremost, I would like to thank my parents Joseph and Deborah. Your guidance and unconditional support has been invaluable to my success throughout college. The encouragement from my entire family has been so helpful throughout graduate school. I would also like to thank my advisor, Prof. Andreas Bommarius for his direction, instruction, and patience over the last five years. Your input and optimism has kept me ‘plowing ahead’ and has been instrumental in my scientific development. I would like to thank my committee members; Prof. Christopher Jones, Prof. Yoshiaki Kawajiri, Prof. Jeffrey Skolnick, and Dr. John W. Wong. Thank you all for your time, encouragement, and support. All of the members of the Bommarius lab, past and present, have made my graduate career not only productive, but enjoyable. We have shared many great and unforgettable moments.
    [Show full text]
  • Phosphine Stabilizers for Oxidoreductase Enzymes
    Europäisches Patentamt *EP001181356B1* (19) European Patent Office Office européen des brevets (11) EP 1 181 356 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 9/02, C12P 7/00, of the grant of the patent: C12P 13/02, C12P 1/00 07.12.2005 Bulletin 2005/49 (86) International application number: (21) Application number: 00917839.3 PCT/US2000/006300 (22) Date of filing: 10.03.2000 (87) International publication number: WO 2000/053731 (14.09.2000 Gazette 2000/37) (54) Phosphine stabilizers for oxidoreductase enzymes Phosphine Stabilisatoren für oxidoreduktase Enzymen Phosphines stabilisateurs des enzymes ayant une activité comme oxidoreducase (84) Designated Contracting States: (56) References cited: DE FR GB NL US-A- 5 777 008 (30) Priority: 11.03.1999 US 123833 P • ABRIL O ET AL.: "Hybrid organometallic/enzymatic catalyst systems: (43) Date of publication of application: Regeneration of NADH using dihydrogen" 27.02.2002 Bulletin 2002/09 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 104, no. 6, 1982, pages 1552-1554, (60) Divisional application: XP002148357 DC US cited in the application 05021016.0 • BHADURI S ET AL: "Coupling of catalysis by carbonyl clusters and dehydrigenases: (73) Proprietor: EASTMAN CHEMICAL COMPANY Redution of pyruvate to L-lactate by dihydrogen" Kingsport, TN 37660 (US) JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 120, no. 49, 11 October 1998 (72) Inventors: (1998-10-11), pages 12127-12128, XP002148358 • HEMBRE, Robert, T. DC US cited in the application Johnson City, TN 37601 (US) • OTSUKA K: "Regeneration of NADH and ketone • WAGENKNECHT, Paul, S. hydrogenation by hydrogen with the San Jose, CA 95129 (US) combination of hydrogenase and alcohol • PENNEY, Jonathan, M.
    [Show full text]
  • Glutamate-Secretion-In-Cancer-Cell
    Biochemical and Biophysical Research Communications 495 (2018) 761e767 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion * Yukiko Takeuchi a, Yasumune Nakayama b, c, Eiichiro Fukusaki b, Yasuhiro Irino a, d, a The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan b Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan c Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan d Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan article info abstract Article history: Cancer cells rapidly consume glutamine as a carbon and nitrogen source to support proliferation, but the Received 9 November 2017 cell number continues to increase exponentially after glutamine is nearly depleted from the medium. In Accepted 13 November 2017 contrast, cell proliferation rates are strongly depressed when cells are cultured in glutamine-free me- Available online 14 November 2017 dium. How cancer cells survive in response to nutrient limitation and cellular stress remains poorly understood. In addition, rapid glutamine catabolism yields ammonia, which is a potentially toxic Keywords: metabolite that is secreted into the extracellular space. Here, we show that ammonia can be utilized for Ammonia glutamate production, leading to cell proliferation under glutamine-depleted conditions.
    [Show full text]
  • Solarbio Catalogue with PRICES
    CAS Name Grade Purity Biochemical Reagent Biochemical Reagent 75621-03-3 C8390-1 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS Ultra Pure Grade 1g 75621-03-3 C8390-5 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS 5g 57-09-0 C8440-25 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 25g 57-09-0 C8440-100 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 100g 57-09-0 C8440-500 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 500g E1170-100 0.5M EDTA (PH8.0) 100ml E1170-500 0.5M EDTA (PH8.0) 500ml 6381-92-6 E8030-100 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 100g 6381-92-6 E8030-500 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 500g 6381-92-6 E8030-1000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 1kg 6381-92-6 E8030-5000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 5kg 60-00-4 E8040-100 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 100g 60-00-4 E8040-500 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 500g 60-00-4 E8040-1000 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 1kg 67-42-5 E8050-5 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 5g 67-42-5 E8050-10 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 10g 50-01-1 G8070-100 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 100g 50-01-1 G8070-500 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 500g 56-81-5
    [Show full text]
  • United States Securities and Exchange Commission Washington, D.C. 20549 Form N-Px Annual Report of Proxy Voting Record of Registered Management Investment Companies
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C. 20549 FORM N-PX ANNUAL REPORT OF PROXY VOTING RECORD OF REGISTERED MANAGEMENT INVESTMENT COMPANIES INVESTMENT COMPANY ACT FILE NUMBER: 811-07175 NAME OF REGISTRANT: VANGUARD TAX-MANAGED FUNDS ADDRESS OF REGISTRANT: PO BOX 2600, VALLEY FORGE, PA 19482 NAME AND ADDRESS OF AGENT FOR SERVICE: ANNE E. ROBINSON PO BOX 876 VALLEY FORGE, PA 19482 REGISTRANT'S TELEPHONE NUMBER, INCLUDING AREA CODE: (610) 669-1000 DATE OF FISCAL YEAR END: DECEMBER 31 DATE OF REPORTING PERIOD: JULY 1, 2018 - JUNE 30, 2019 FUND: VANGUARD TAX-MANAGED CAPITAL APPRECIATION FUND --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ISSUER: 2U, Inc. TICKER: TWOU CUSIP: 90214J101 MEETING DATE: 6/26/2019 FOR/AGAINST PROPOSAL: PROPOSED BY VOTED? VOTE CAST MGMT PROPOSAL #1.1: ELECT DIRECTOR TIMOTHY M. HALEY ISSUER YES WITHHOLD AGAINST PROPOSAL #1.2: ELECT DIRECTOR VALERIE B. JARETT ISSUER YES WITHHOLD AGAINST PROPOSAL #1.3: ELECT DIRECTOR EARL LEWIS ISSUER YES FOR FOR PROPOSAL #1.4: ELECT DIRECTOR CORETHA M. RUSHING ISSUER YES FOR FOR PROPOSAL #2: RATIFY KPMG LLP AS AUDITORS ISSUER YES FOR FOR PROPOSAL #3: ADVISORY VOTE TO RATIFY NAMED EXECUTIVE ISSUER YES AGAINST AGAINST OFFICERS' COMPENSATION --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ISSUER: 3M Company TICKER: MMM CUSIP: 88579Y101 MEETING DATE: 5/14/2019 FOR/AGAINST PROPOSAL: PROPOSED BY VOTED? VOTE CAST MGMT PROPOSAL #1a: ELECT DIRECTOR THOMAS "TONY" K. BROWN ISSUER YES FOR FOR PROPOSAL #1b: ELECT DIRECTOR PAMELA J. CRAIG ISSUER YES FOR FOR PROPOSAL #1c: ELECT DIRECTOR DAVID B. DILLON ISSUER YES FOR FOR PROPOSAL #1d: ELECT DIRECTOR MICHAEL L. ESKEW ISSUER YES FOR FOR PROPOSAL #1e: ELECT DIRECTOR HERBERT L.
    [Show full text]