ABSTRACT

TRACING MAGAMTIC PROCESS IN PLUTONIC ENVIRONMENTS: INSIGHT FROM APATITE AND RIFT-RELATED GRANITES

by Brydon J. Richard

As a common accessory phase in igneous rock suites, apatite has the potential to concentrate a significant proportion of a bulk samples’ trace and REE budget, allowing it to provide unique and fundamental insights into magmatic petrogeneses. This study presents new data from 270 apatites from A-type granites in the Rift, . This data set, along with apatites from previously characterized S- I-, and A-type granites from a range of settings, are used to evaluate the potential of apatite as a tracer of granitoid magma petrogenesis and propose a new series of chemical discrimination diagrams. For S, and I/A-type granites, a distinct chondrite-normalized REE profile exists. Apatites from S-type granites exhibit higher total HREEs at lower total LREEs, characteristic LREE depletion, slight MREE enrichment, and a prominent negative Eu-anomaly. This is in contrast to I/A-type granites which exhibit less prominent Eu-anomalies at higher total LREE contents. As a mineral which incorporates redox sensitive elements and the oxidation state of a magma having important implications for assessing the ore-bearing potential of a melt, apatite also has the potential to be applied as a mineral prospecting tool. From this work however, the lack of correlation in CeN/Ce* vs. EuN/Eu* likely indicates other factors are controlling the availability of trace elements to apatite in granitic environments. Nevertheless, the characteristic REE- signatures of apatites from S-, I- and A-type granites are shown to be distinct from metamorphic apatite and therefore validates the application of apatite as a provenance tool in the detrital rock record. TRACING MAGAMTIC PROCESS IN PLUTONIC ENVIRONMENTS: INSIGHT FROM APATITE AND RIFT-RELATED GRANITES

A Thesis

Submitted to the

Faculty of Miami University

in partial fulfillment of

the requirements for the degree of

Master of Science

Department of Geology and Environmental Earth Science

by Brydon J. Richard

Miami University

Oxford, Ohio

2019

Advisor: Dr. Claire McLeod

Reader: Dr. John Rakovan

Reader: Dr. Elizabeth Widom

©2019 Brydon J. Richard TRACING MAGAMTIC PROCESS IN PLUTONIC ENVIRONMENTS: INSIGHT FROM APATITE AND RIFT-RELATED GRANITES

A Thesis

Submitted to the

Faculty of Miami University

in partial fulfillment of

the requirements for the degree of

Master of Science

Department of Geology and Environmental Earth Science

by Brydon J. Richard

Miami University

Oxford, Ohio

2019

Advisor ______Dr. Claire McLeod

Reader ______Dr. John Rakovan

Reader ______Dr. Elizabeth Widom Table of Contents

List of Tables ...………………….……………………………………………....….... iv List of Figures………………………………………………………………………….v Acknowledgements…………………………………………………….…………..…. vi 1. Introduction ………………………………………………………………….….…… 1 2. Geosettings…………………………………………………………………………… 3 3. Samples ………………………………………………….…………………………... 4 3.1 Batholith……………………………………………………..…... 4 3.2 Finnemarka Batholith…….…………………………………………………..5 4. Analytical Methods…………….………………………………………………….…..6 4.1 Sample Preparation and Bulk Rock Analysis…………………...………..….6 4.2 LA-ICP-MS Analysis...……………………………………………………....6 5. Results……………………………………...………………………………………….7 5.1 Bulk Rock…………………………………………..………………………...7 5.2 Apatite REEs………………………………………………………………….9 6. Discussion ……………………………...…………………………………………….10 6.1 Granitoid Apatite Chemistry………………………………………………...10 6.2 Proposed Granite Discrimination Diagrams………………………………...11 6.3 Oxidation State Discrimination Diagrams……………………...…………...12 7. Conclusions…………………………………………………………………………...14 9. References…………………………………………………………………………….15 10. Appendices ……..………………………………………………………………..… 21

iii List of Tables (in the Appendix)

Table 1: Drammen and Finnemarka Mineralogy...... 41 Table 2: S-, I-, and A-Type Discrimination Table…………….………………………..42 Table 3: Sample ID, Rock Type, and Abbreviations…………………………...... 43 Table 4: Bulk Rock Major Elements………………………………………..………...... 44 Table 5: Bulk Rock Trace Elements ………………………………………………..…..45 Table 6: Apatite Trace Elements………...……………………………………..……...... 48

iv List of Figures

Figure 1: Geological Map of the Oslo Rift...... 22 Figure 2: Rb-Sr ages of the ORs main magmatic phases……………………………….23 Figure 3: Drammen and Finnemarka Batholiths Maps with Sample Locations...... 24 Figure 4: Sample Images…………………………………………………..…………... 25 Figure 5: Photomicrographs ………………………………………………………..…..26 Figure 6: Bulk Rock Major Element Data……………………………………….……..27 Figure 7: Granite Discrimination Diagrams………………….……………………..…. 28 Figure 8: Finnemarka Apatite Rare Earth Element Data……………………………… 29 Figure 9: Finnemarka Apatite Gd/Lu vs. La/Sm………………………..………..……. 30 Figure 10: Drammen Apatite Rare Earth Element Data………………….……..……...31 Figure 11: Apatite Eu* vs. EuN……………………….……………………….………. 32 Figure 12: Drammen and Finnemarka apatite Gd/Lu vs. La/Sm…..…………..……… 33 Figure 13: S-, I-, and A-type apatite REEs…………………..…………….…………...34 Figure 14: Eu-anomalies………………………………………………………………. 35 Figure 15: Apatite discrimination diagrams (Petrogenetic)……...………………..……36 Figure 16: Apatite discrimination diagrams (Petrogenetic)……….……………...... …. 37 Figure 17: Apatite discrimination diagrams (Oxidation).……………………………... 38 Figure 18: Apatite Ce- vs. Eu-Anomaly……………………………………………….. 39 Figure 19: Apatite discrimination diagrams (Oxidation)……....………..……………...40

v Acknowledgements

Thanks are owed to my committee members Dr. Claire McLeod, Dr. John Rakovan, and Dr. Elisabeth Widom for all of their help and feedback in the preparation of this project the past two years. In addition, thanks to all my co-authors and collaborators: Maureen Haley, Dr. Barry Shaulis, Dr. Kenny Brown, Dr. Reidar Trønnes, Dr. Amy Wolfe, Dr. Bill Hart, Dr. Kendell Hauer, and Dave Kuentz. Without the help of these various people, this project would not have been possible. It is because of their various efforts, insights, and words of encouragement that this project was able to be completed. A very special thanks to Dr. McLeod and Maureen Haley as they have been the best help throughout this project. As for my advisor, Dr. McLeod, her support, encouragement, and guidance, I have learned a lot about science and research. Because of her I am now a much better scientist. As my colleague and lab partner, Maureen was helpful in many ways such as being able to bounce ideas and tackle many problems together. Finally, thanks are owed to all my fellow graduate students and of course my family for their willingness to listen to various ups and downs that come with being a graduate student.

vi 1. INTRODUCTION The intermediate to evolved, granodioritic (bulk) to granitic (upper), composition of Earth’s continental crust distinguishes it from planetary crusts on other rocky, differentiated bodies in our Solar System where crustal lithologies are otherwise broadly basaltic in composition (e.g. Hawkesworth and Kemp, 2006; Taylor and McLennan, 2008). Constraining how Earth’s continental crust grows, recycles, and evolves, and the processes that contribute to the production of chemically evolved magmas, is thus essential and fundamental for models of Earth’s continental crustal growth (e.g. Sha et al., 1999; Lundstrom, 2009). Earth’s continental crust is a rich archive of our planets geological history (Allègre and Othman, 1980; Hoffman, 1988; Taylor and McLennan, 1995; Albarède, 1998; Hawkesworth et al., 2010; Cawood et al., 2013; Hawkesworth et al., 2013; 2017; Dhuime et al., 2018; Fisher and Vervoort, 2018). At approximately 86%, the majority of Earth’s upper continental crust is composed of granitoid and granite-related rock suites. These are therefore important mineralogical, chemical, and chronological recorders of Earth’s differentiation history and evolution (e.g. Wedepohl, 1991; Frost et al., 2001; White et al., 2006). Throughout the past half century ~20 separate classification schemes for granites and related rock suites have been proposed on the basis of either tectonic setting or petrogenesis, or a combination of both (e.g. Chappell and White, 1974; Barbarin 1990; 1999; Frost et al., 2001; Mondal and Hussain, 2011). This has led to the establishment of the so-called “granite alphabet” or “alphabet soup” (Mondal and Hussain 2011; Eby, 2014). It is not the purpose here to review the history of granite classification but instead to provide a framework (summarized in Table 1) in which results from this study will be considered. From a traditional petrographic perspective, granitoids can be classified based simply on the modal proportions of quartz, alkali, and plagioclase feldspar (Streckeisen, 1967). This is a widely applicable approach as it is descriptive and carries no genetic implication(s) (Frost et al., 2001). The first alphabetic classification of granites was presented in Chappell and White (1974) where “I-type” granites were inferred to have been derived from a “mafic, metaigneous” source whereas “S-type” granites were inferred to have been derived via partial melting of (meta)sedimentary protoliths. Following I-type and S-type was “A-type” proposed in Loiselle and Wones (1979). This nomenclature came from the observation that these granite types exhibited alkaline, anhydrous characteristics and were thus associated with anorogenic tectonic settings (traditionally continental extension, e.g. Eby, 1990, 1992; Frost and Frost, 1997). In addition, “M-type” and “C-type” granites were added to the so-called “granite alphabet” by White (1979) and Kilpatrick and Ellis (1992) respectively. Specifically, M-type were proposed to be indicative of island-arc, mantle-derived granites (or from melted subducted crust; Whalen et al., 1987; White, 1979; Pitcher, 1983; Whalen 1985) whereas C-type was associated with charnockitic granitoid magmas. The approach to granite classification summarized above (and provided in Table 1) provides a first order framework in which to consider the occurrence and generation of chemically evolved magmas. The reader is referred to Frost et al. (2001), Bonin (2007) and Frost and Frost (2011) for further discussion of approaches to granite classification. Within the context of granite petrogenesis, the mineralogical and chemical characteristics of S, I, and A type granites are further discussed here due to the availability of apatite data from these granite types in the literature. This therefore serves as a framework for later discussion. The S-type granites typically have Al-rich minerals and are usually peraluminous (Al2O3 > +3 +2 CaO+Na2O+K2O), exhibit higher Ni and Cr contents, but lower Sr, CaO, Na2O, and Fe /Fe , compared to I-type granites which contain hornblende and are mostly metaluminous (Al2O3 <

1 CaO+Na2O+K2O and Al2O3 > Na2O+K2O) to slightly peraluminous with lower Ni and Cr, but +3 +2 higher Sr, CaO, Na2O, and Fe /Fe (Chappell and White, 1992). In contrast, A-type granites are typically characterized by higher K2O/Na2O, FeOT/MgO, high REE, and low Al2O3 and CaO (Eby, 1990). Accessory minerals concentrate a significant proportion of a bulk samples’ trace and rare earth element (REE) budget which allows them to provide unique and fundamental insights into mineral and magmatic petrogenesis. In addition, they (particularly apatite) are relatively common accessory phases in magmatic systems further allowing them to be utilized as petrogenetic tracers and recorders (e.g. Exley, 1980, Watson and Harrison, 1984; Sawka, 1988; Bacon, 1989; Wark and Miller, 1993; Sha and Chappell, 1999; Piccoli et al., 2000; McLeod et al., 2011; Cao et al., 2012; Mao et al., 2016; Bruand et al., 2016; 2017). In particular, a number of recent studies have demonstrated the utility of apatite (Ca5(PO4)3(OH)) as a reliable recorder of magmatic processes inherent to the chemical evolution of chemically evolved, (alkaline), intrusive igneous suites (e.g. Cao et al., 2012; Miles et al., 2013; Bruand et al., 2014; Ding et al., 2015; Zirner et al., 2015; Ladenburger et al., 2016; Pan et al., 2016; Bruand et al., 2017; Jiang et al., 2018; Yang et al., 2018). Apatite has the ability to incorporate petrogenetically important trace element and REE that are sensitive to changes in the magmatic system that it crystallized from (Belousova et al., 2001). The general chemical formula of apatite can be expressed as A5(XO4)3Z, where the A site in the crystal structure can be accommodated by any of the following large cations: Ca2+, Pb2+, Ba2+, Sr2+, Mn2+, Mg2+, Fe2+, Eu2+, REE3+; Cd2+; Na+ (Sha and Chappell, 1992; Piccoli and Candela, 2002). For the X and Z site, the X site is typically occupied by P+5 which can accommodate highly charged but small cations (V+5, Si+4, S+6, etc.) and -the Z site is taken up by halogens such as Cl- , F- , and OH- (Sha and Chappell, 1992; Piccoli and Candela, 2002). Within the context of this study, the REE substitution mechanisms warrant consideration. Previous work by Corgne and Wood (2005) and Prowatke and Klemme (2006) state that the mechanism by which various trace elements are incorporated into apatites structure, will also influence their associated partition coefficients. For substitution mechanisms in apatite to be applicable, charge balancing is essential in order to maintain electrostatic neutrality. Multiple studies express important mechanisms for trivalent cation substitutions (Prowatke and Klemme, 2006):

(1.) REE3+ + Si+4 = Ca2+ + P+5 (e.g. Watson and Green, 1981; Ronsbo 1989);

(2.) REE3+ + Na+ = 2Ca2+ (e.g. Ronsbo, 1989);

(3.) 2REE3+ + [v] = 3Ca2+ (e.g. Chen et al., 2002; Fleet and Pan, 2003).

When considering REE with multiple valence states, Eu and Ce are both elements that can substitute into apatite. The Eu2+ ion can substitute for Ca2+ without having to compensate for electrostatic neutrality, however apatite will preferentially incorporate Eu3+ over Eu2+ making the latter substitution mechanisms important (Sha and Chappell, 1999). With Ce4+ entering the system there will need to be another mechanism to charge balance. From Sha and Chappell (1999), the Ce4+ plus a vacancy can replace 2Ca2+. Through evaluation of the absolute and relative abundance of trace elements in apatite, the origins of not only the apatite, but its magmatic host can be chemically fingerprinted. In addition, the oxidation state of the apatites host magma during crystallization can also be assessed (Evans

2 and Hanson, 1993; Sha and Chappell, 1999; Belousova et al., 2001). Both of these approaches to utilizing apatite as a geochemical tracer of process therefore have the potential to advance our understanding of granitoid magma petrogenesis, ore mineralization, and a provenance tool. The purpose of this study is two-fold: 1) To evaluate the potential of trace element signatures, particularly the REE, in apatite as petrogenetic tracers of granitoid magmatism; 2) To assess the ability of apatite to record the oxidation state of its crystallizing environment and to consider how this could aid in the assessment of the economic potential of chemically evolved intrusive bodies. In order to investigate these research objectives, two extensive, lithologically diverse, granitic batholiths will be studied. The bulk chemical signatures of these batholiths, along with the in-situ chemistry of their apatite populations, will be used to evaluate the origin of these voluminous granitoid magma bodies in Earth’s upper crust. More broadly, the application of apatite as a petrogenetic tool in the study of chemically evolved magmatic systems will be discussed in addition to apatites role as both an indicator of ore mineralization and as a potential provenance tool.

2. GEOLOGICAL SETTING The two batholiths which form the basis of this research are located in the Permo- Carboniferous Oslo Rift (OR) of southeastern Norway (Fig. 1). The rift system developed within the Sveconorvegian Province which constitutes part of the southwestern portion of the 1800-1550 Ma Precambrian Baltic (or Fennoscandian) Shield (Skjernaa and Pedersen, 1982; Neumann et al., 1992; Pedersen et al., 1994). From the late Carboniferous into the early Cretaceous, the crust of Northwestern Europe experienced multiple extensional events, which ultimately led to the formation of a complex intra-continental rift system in northern Europe (Ziegler, 1986). The OR represents the largest of these and can be subdivided into the southern Vestfold Graben and the northern Graben (Fig. 1). Rift-related magmatism in the Oslo region began ~305 Ma and continued for ~65 Ma into the late Permian (Sundvoll et al., 1990; Neumann et al., 1992). This prolonged period of activity led to the production of a wide array of petrographically and geochemically distinct plutonic and volcanic rocks (Neumann et al., 1992), the youngest complex being dated at ~241 Ma (Ramberg 2008). A summary of the chronology associated with the ORs magmatic rock record (both volcanic and plutonic) is provided in Figure 2 and is briefly discussed below. For a more comprehensive review of the ORs geological history the reader is referred to the reviews of Neumann et al. (1992, 2004), the field guide of Larsen et al. (2008) and the book “The Making of a Land – The Geology of Norway” by Ramberg et al. (2008). From previous work, the c. 65Myr geological history of the Oslo Rift can be classified into 6 stages: 1) Proto-Rift, 2) Initial Basalt stage, 3) Main Plateau-Lava and Rift Valley stage, 4) Central Volcanics and Graben-fill stage, 5) Syenitic Batholith Intrusion stage, and 6) Rift Termination (Sundvoll et al., 1990; Olaussen et al, 1994; Corfu et al., 2008). The first stage, the proto-rift stage (300-312 Ma) is characterized by the deposition of the group sedimentary sequence and its 3 formations: the Kolsaås Formation, the Tanum Formation and the Skaugum Formation (the latter which was deposited during the second stage of rifting: Olaussen et al, 1994; Larsen et al., 2008; Corfu et al., 2010). Stage 2, the initial basalt stage (304-291 Ma), is characterized by the eruption of basaltic lavas. These basalts are locally known as the B1 basalts and their alkalinity and thickness decrease northward (Weigand, 1975). During stage 3, the main plateau-lava and rift valley stage (294-276 Ma), there was an onset of a new style of volcanism:

3 the eruption of rhomb porphyry lavas, along with some alkaline basalt flows (Olaussen et al., 1994; Larsen et al., 2008). Stage 4, the central volcanoes and graben fill stage (280-243 Ma), is dominated by the formation of new central rift volcanoes (Ramberg et al, 2008). These central volcanic centers formed along the OR axis, and erupted alkaline basalt to basaltic compositions, oldest in the south to younger in the north (Larsen et al, 2008). Over time, the erupted products petrologically matured to silicic lavas and intrusions in the form of central domes and ring-dykes (Neumann et al., 2002). Stage 5, batholith emplacement (273-241 Ma), is dominated by the emplacement of 3 large batholith complexes of monzonitic to granitic composition. The Skrim- Mykle and Siljan-Hvarnes complexes in the southwest, the voluminous Drammen and Finnemarka complexes in the central area (Fig. 1), and the Nordmarka-Hurdalen in the northern section of the rift (Ramberg and Larsen 1976, Trønnes and Brandon 1992, Pedersen et al. 1995). The last stage of Permo-Carboniferous rifting, Stage 6, is characterized by minor granite intrusions in the northern region followed by rift termination. There is little field evidence of magmatic activity during this stage with outcrops limited to several small granitic intrusions in the Hurdal province and the Holmenkollen-Tryvann area. (Fig. 1, Ramberg et al., 2008). The Finnemarka and Drammen granitic batholiths of the central OR are the focus of this study. Mineralogically the batholiths consist primarily of granitic lithologies with the Finnemarka containing 7 petrographically distinct lithologies and the Drammen containing 9 (Fig. 3A, B). Rock types include coarse grained, glomeroporphyritic, biotite-bearing granites to microcrystalline porphyries and fine grained granites. These batholiths cover 150 km2 and 650 km2 respectively, with the Drammen representing the largest exposure of granitoid magmatism within the OR. Forty-six individual samples were collected from across the region, the locations of which are shown on the individual batholith maps in Figure 3A and 3B.

3. SAMPLES Twenty-five samples were collected from across the Drammen batholith (Fig. 3A) and 21 samples from the Finnemarka (Fig. 3B). Sampling locations were ultimately dictated by accessibility and the freshness of the outcrop. From each sampling locality, ~3kg of rock was collected for a total of ~140kg across the two batholiths. Sampling locations ranged from road cuts to quarries, to outcrops accessible only via forest road and the local permission of land owners. Figure 4 illustrates several of the sampling locations throughout the Drammen (Fig. 4A) and the Finnemarka (Fig. 4B) batholiths along with representative hand samples from four of the sampled lithologies. The batholiths, their units and their petrography are discussed in more detail below.

3.1 Drammen batholith The Drammen batholith outcrops around the Drammen Fjord (Fig. 1, 3A) and is the largest granitic batholith in the OR covering ~650 km2 (Trønnes and Brandon, 1992). Lithologically, the batholith is characterized by 9 different units, the mineralogy and petrographic features of which are summarized in Table 1. Figures 5A-5F summarize the dominant mineralogy of both the Drammen and Finnemarka units with sampled lithologies dominated by quartz, alkali feldspar, biotite, ± plagioclase, ± amphibole, ± magnetite, ± muscovite. Biotite is frequently chloritized and secondary fluorite and pyrite are often associated with later stage vein activity. The accessory mineral assemblage is dominated by titanite ± apatite ± zircon with the absolute abundances of each accessory phase varying between lithologies (Table 1). Figures 5a-5j show the variable abundances of apatite throughout the sampled lithologies.

4 The coarse grained granite is one of the most extensive units of the Drammen batholith outcropping on either side of the Drammen Fjord. Crystals in this unit are ubiquitously hypidiomorphic with feldspar and quartz crystals up to 1.3 cm and 1 cm, respectively. The remaining minerals are present at <3mm. Chloritization of the biotite has taken place throughout this sampled lithology. The cumulophyric coarse grained granite defines the southern extent of the Drammen batholith and is similar to the coarse grained granite lithology with predominantly perthitic feldspars and quartz. Samples of this unit also contain secondary pyrite (~1 mm crystals). The medium to coarse grained granite outcrops either side of the Drammen Fjord in the southern portion of the batholith. Samples are characterized by hypidiomorphic crystals and miarolitic textures defined by quartz and alkali feldspar (~2-6 mm), with quartz being the dominant phase. Minor amounts of fluorite and pyrite are also present. The medium to fine grained granite (mapped as a two mica granite, Fig. 3A) again has hypidiomorphic crystals, dominated by quartz and perthitic feldspar (~1-5 mm) with minor amounts of chloritized biotite. Outcrops of the aplitic quartz feldspar porphyry are restricted to the northeastern margin and the central west portion of the Drammen batholith. Samples are aphanitic, and cryptocrystalline with hypidiomorphic crystals. Biotite and muscovite are observed with little evidence of chloritization. Feldspar phenocrysts (5-8.5 mm) are found in the sample, but are uncommon. Notably, this is the only lithology in which molybdenite is observed. The microcrystalline quartz feldspar porphyry is also limited in outcrop, restricted to two small occurrences in the west and northwest. Samples exhibit porphyritic textures with allotriomorphic to hypidiomorphic crystal shapes and a seriate texture. Rare phenocrysts of plagioclase (~8 mm) can also be found. Outcrops of the fine grained quartz feldspar porphyry are limited to the eastern extent of the Drammen Caldera in the northern Drammen Fjord. Samples are characterized by hypidiomorphic crystals with plagioclase (6 mm) and alkali feldspar (1.3 cm), along with minor amounts of chloritized biotite. The rapakivi granite outcrops in the central portion of the Drammen batholith but only on the western side of the Fjord. Samples are characterized by porphyritic textures with altered alkali feldspars (up to ~7 mm) being hypidiomorphic to panidiomorphic. The coarse grained oligoclase granite is the northernmost unit of the Drammen batholith. Samples are allotriomorphic to hypidiomorphic in nature with both alkali and plagioclase feldspars present at ~1 cm. 3.2 Finnemarka batholith The Finnemarka batholith is located to the north-west of the Drammen (Fig. 1) and covers ~125 km2 (Trønnes and Brandon, 1992). Lithologically this batholith is characterized by 7 different granitic units, the mineralogy of which is summarized in Table 1. Mineralogically the units of the Finnemarka are similar to those of the Drammen but contain notably higher proportions of biotite, titanite, amphibole, and plagioclase. The medium to coarse grained granite unit dominates the Finnemarka batholith (Fig. 3B). Samples are characterized by hypidiomorphic crystals (~1-4 mm) of quartz and perthitic feldspar. The coarse grained granite of the Finnemarka outcrops to the south and contains cumulophyric mafic minerals (amphibole, biotite which is variably chloritized) and evidence of sericitization. Overall crystals are primarily hypidiomorphic with feldspars that are ~1.3 mm and euhedral. Secondary pyrite and fluorite can also be found. The aplitic porphyry unit outcrops in the south and south eastern portions of the batholith. Samples contain perthitic feldspars and are characterized by granophyric textures, with quartz (~8 mm) and alkali feldspar (~9 mm) crystals being hypidiomorphic. The remaining phases found in this lithology are <1 mm. The quartz monzodiorite defines the batholiths northwestern extent and outcrops as a thin unit at the margin. Quartz, alkali feldspar, and plagioclase are hypidiomorphic in nature and are accompanied by

5 cumulophyric biotite and amphibole. The microcrystalline quartz porphyry unit is dominated by quartz and alkali feldspar (~5 mm and ~7 mm respectively) with a porphyritic texture. Finer grained crystals (<1mm), tend to be allotriomorphic with the larger hypidiomorphic grains. Secondary pyrite is also present. The quartz monzosyenite unit (mapped as syenomonzonite) defines the north and northeast of the Finnemarka batholith while also outcropping to the west where it outcrops close to the quartz monzodiorite (mapped as in being adjacent). Samples contain hypidiomorphic quartz and feldspar with cumulophyric, euhedral amphibole and alkali feldspar (up to ~1.2 cm). The peralkaline granite (mapped as ekerite) outcrops in the vicinity of the quartz monzosyenite (to the north) and the medium to coarse grained granite (to the south). The one sample collected from this lithology is characterized by hypidiomorphic crystals of alkali feldspar, quartz, plagioclase and amphibole.

4. ANALYTICAL METHODS 4.1 Sample preparation and bulk rock analysis Each sample used in this study was cut using a standard diamond saw at Miami University. Each sample was then polished using abrasive paper (ISO/FEPA P180-82µm) so that any saw marks left over from the saw were removed and potential for metal contamination was eliminated. The sectioned samples were then bathed in an ultrasonic bath of distilled water for 30 minutes each. Once all samples were clean billets were sent to Spectrum Petrographics for thin and thick section preparation. The remaining sawed sections were used to generate powders for bulk compositional analysis. Bulk rock powders from each sampled location (Fig, 3C, D) were prepared in house at Miami University using standard preparation techniques (Jaw Crusher, Disc Mill, Shatterbox, automated Mortar and Pestle). Prepared powders were measured for their bulk major and trace elemental compositions at the Peter Hooper GeoAnalytical Lab, Washington State University. Major elements were measured via X-ray fluorescence (XRF) and prepared using a 2:1 ratio of spec pure dilithium tetraborate (Li2B4O7) to sample powder. Initially fused beads were crushed and refused for 5 minutes prior to analysis on the Thermo-ARL automated XRF instrument. For trace elements, a combined fusion-dissolution procedure was implemented. Samples were fused with Li2B4O7 in a 1:1 ratio prior to a sequence of dissolution steps in HNO3-HF-HCLO4H2OH2O2. Samples were analyzed using an Agilent 4500 ICP-MS with long-term precision reported at better than 5% (RSD) for the rare earth elements and 10% for the other reported trace elements. Further analytical details are given in Johnson et al. (1999). 4.2 LA-ICP-MS analysis In-situ analysis of apatites from the Drammen and Finnemarka were analyzed for their trace element compositions by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) using a Thermo-iCAP Q quadrupole mass spectrometer that was coupled with a New Wave/ESI 193nm laser ablation system at the University of Arkansas Trace Element and Radiogenic Isotope Laboratory (TRAIL). Laser ablation was performed using a 15 or 25 μm laser spot diameter. During all analysis a 10Hz repetition rate over 20s, a flow rate of 3 J/cm2, and a He carrier gas flow rate of 0.800 L/min was applied. NIST 612 was used for the calibration standard (Jochum et al., 2011) with 43Ca used as the internal standard all analyses. Standards NIST 610 and NIST 612 were run before and at the end of each analytical sessions, and were bracketed after every ten analyses during the analytical run. Analytes for apatite included 23Na, 24 Mg, 27Al, 39K, 43Ca, 44Ca, 45Sc, 48Ti, 52Cr, 55Mn, 85Rb, 88Sr, 89Y, 90Zr, 139La, 140Ce, 141Pr, 146Nd, 147Sm ,153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm,172Yb, 175Lu, 178Hf, 181Ta, 208Pb, 232Th, and 238U. Each spot

6 analysis was chosen based on prior petrographic studies and image analysis. Data reduction was performed using the lolite v3.63 Software package (Hellstrom et al., 2008; Paton et al., 2011) and the X_trace_element_IS data reduction scheme.

5. RESULTS 5.1 Bulk rock Bulk rock elemental data is reported for 45 samples collected throughout the Finnemarka and Drammen batholiths (Fig. 3, Table 3). All sample IDs, assigned lithological names and their associated abbreviations (which are used here) are provided in Table 3. In Figure 6, both the upper and lower panels, summarize the bulk rock major element characteristics of the Drammen and Finnemarka granitic units with respect to their silica contents (wt. % SiO2) and their total alkali contents (wt. % Na2O, wt. % K2O). The granitic units from the Finnemarka batholith range in bulk wt. % SiO2 content from 57 to 78 with the Q MD unit defining the lower end of this range (n=2 at 56.64 and 57.76) and the CG unit defining the upper end (n=3 at 72.70 to 75.83). The Q MD unit also exhibits the lowest wt. % Na2O + K2O at ~6.5 with the Q MS unit, which outcrops in close proximity, exhibiting the highest wt. % Na2O + K2O at 8.85 to 10.24 over a wide range of wt. % SiO2 (58.26 to 65.32; n=5). Spatially, the Q MD defines the outermost unit of the Finnemarka batholiths northwestern extent while the CG unit outcrops to the south and more extensively to the south east (Fig. 3B). In contrast, the units of the Drammen batholith define a considerably narrower range of wt. % SiO2 and corresponding wt. % Na2O + K2O. Bulk wt. % SiO2 contents range from 70.16 in the FG P (n=1) which outcrops around the Drammen caldera (Fig. 3A) to the M-F unit at 76.84 to 78.56 (n=3) which outcrops in the central batholith region. Corresponding wt. % Na2O + K2O ranges from 10.83 to 7.78-8.56 respectively. All other remaining Drammen lithologies plot in between these two units with respect to these compositional parameters. With respect to the TAS plot in Figure 6 all Drammen lithologies can be classified as (Alkali) Granites with the majority of samples (n=23) plotting below the alkali divide in the subalkaline field. This new dataset is entirely consistent with signatures of previously studied Drammen samples by Trønnes and Brandon (1992, also shown in Fig 6). With the exception of the Q MD and Q MS units, all Finnemarka units can be classified as subalkaline (Alkali) Granites and plot in the range of wt. % SiO2 vs. wt. % Na2O + K2O as defined by the Drammen units. The Q MD unit is also subalkaline in nature whereas the Q MS unit is demonstrably alkaline. The alkali nature of the Q MS unit is similar to the bulk rock TAS signatures of other intrusive rock suites found throughout the OR, the majority of which are alkaline in nature: up to 13.68 wt. % Na2O + K2O (~55 wt. % SiO2) in the case of larvikites which outcrop to the south (Fig. 1; Neumann, 1988). As shown, the granitic units of the Finnemarka and Drammen batholiths record the highest wt. % SiO2 contents of all intrusive rocks studied to date in the OR by ~10 wt. % (Fig. 6). The lower panel in Fig. 6 again highlights the high silica nature of the Finnemarka and Drammen batholiths. In this plot, bulk wt. % SiO2 is plotted against wt. % Na2O + K2O – CaO, also referred to as the “modified alkali-line index” (or MALI, after Frost et al., 2001 modified from Peacock 1931). This parameter is ultimately dictated by the abundances and associated compositions of a samples feldspar population as K-feldpsar and albite (+ nepheline) will produce rocks with the highest MALI values (Frost et al., 2001; Frost and Frost, 2008). For rocks with bulk wt. % SiO2, the corresponding MALI value is dictated by the compositions of the feldpsars (+ quartz) whereas below ~60 wt. % SiO2, crystallization of augite will leverage the MALI content in the residual melt (Frost and Frost, 2008). From the Q MD to the Q MS units of the Finnemarka there is a general increase in MALI with increasing wt.% SiO2. This trend of increasing MALI

7 with increasing bulk silica is observed in other co-magmatic igneous complexes, the calc-alkalic series of the Tuolumne batholith in the Sierra Nevadas of California, and the alkalic Bjerkreim- Sokndal intrusive complex in southwest Norway (data not shown in Fig 6, after Bateman and Chappell, 1979 and Duchesne and Wilmart, 1997 respectively). As shown in Fig. 6, the remaining units of the Finnemarka, and all units of the Drammen, define a decreasing MALI index with increasing wt. % SiO2, which to some extent is also observed within individual Drammen units (the M-C and M-F for example). From Frost and Frost (2008), fractional crystallization would result in geochemical trends parallel to the boundaries shown in the lower panel in Fig. 6. One process that could account for rock suites crossing these boundaries, and explain how magmas become increasingly calcic with increasing silica contents, is melt mixing. In this scenario a granitoid magma would assimilate surrounding wall rock and incorporate high silica melts. This has been observed in the Sybille intrusion where the compositional evolution of an alkalic magma to more calcic-rich compositions with increasing silica is attributed to crustal assimilation of surrounding gneisses (Scoates et al., 1996). In addition, this process of assimilation would promote the evolution of more siliceous melts to more peraluminous compositions (Scoates et al., 1996; Frost and Frost, 2008). Figure 7A summarizes the aluminum-saturation index (ASI after Shand, 1943) and the alkalinity index (AI, Shand 1947) of sampled Finnemarka and Drammen granitoids. Here, ASI refers to the molecular ratio Al/Ca – 1.67P + Na + K and AI refers to molecular Al-(K + Na). As shown, both metaluminous and peraluminous samples have AI > 0 whereas peralkaline samples have AI< 0. Peraluminous samples have ASI and AI values > 1 where as metaluminous samples have ASI < 1 and AI >1. From fig. 7A, the majority of Drammen samples are weakly peraluminous with the Q MD unit of the Finnemarka strongly metaluminous. The Q MS unit of the Finnemarka is also metaluminous at ASI values of 0.91 to 0.98 with several units from both batholiths plotting close to ASI = 1 and AI = 1. By definition, peraluminous rocks have excess Al, or Al that cannot otherwise be accommodated in feldspar. In weakly peraluminous samples, like those of the Drammen and Finnemarka, this excess Al is likely accounted for by Al-rich biotite (Frost and Frost, 2001). In the case of the metaluminous samples, Ca is in excess after Al is accounted for by feldspars. This means that metaluminous samples will contain more Ca-rich phases like hornblende (and augite, Frost and Frost, 2001). This is entirely consistent with the presence of greater proportions of hornblende in the Q MD and Q MS units. In Figure 7B, the AI index (calculated as Al-(Na+K), Frost and Frost, 2008) is plotted against the Feldspathoid saturation index (FSSI). The purpose of the FSSI is to determine whether sampled saturated or undersaturated with respect to silica. This is evaluated through calculation of the samples normative mineralogy where FSSI = Quartz – (Leucite + 2(Nepheline + Alkali Feldspar))/100 (Frost and Frost, 2008). The upper right hand quadrant with positive FSSI and AI are consistent with metaluminous or peraluminous granites (quartz normative) while the other quadrants are consistent with silica poor rocks. As expected, samples from the Finnemarka and Drammen batholiths plot with both positive FSSI and AI values. Figures 7C-F plot the bulk elemental (major and trace, see Tables 3 and 4) composition of the Finnemarka and Drammen samples on a series of classic granite classification diagrams that have been traditionally used to classify samples as a certain granite “type” (Fig. 7C) and to assign granitic samples to a specific tectonic affinity (Whalen, 1987; Pearce et al., 1984; Eby, 1992). In Fig. 7C, the majority of Finnemarka and Drammen samples can be classified as A-type with total Zr + Nb + Ce + Y (ppm) at >330 over a range of wt. % (Na2O + K2O)/CaO. Several samples plot close to the boundary with S, I and M type with total Zr + Nb + Ce + Y (ppm) from ~200 to 330. In Fig. 7D and 7E Y (ppm) vs. Nb (ppm) and Yb + Ta (ppm) vs. Rb (ppm) respectively are used

8 to discriminate granites from within-plate, ocean-ridge and volcanic arc/syn-collisional tectonic settings. Consistent with their occurrence in an intra-plate setting (the OR) the sampled granites of the Finnemarka and Drammen batholiths plot within the “within-plate” granite fields. In both cases several samples also exhibit a weak affinity to the “syn-collisional” granites field. As reported in Pearce et al. (1984), this could potentially be attributed to crustal assimilation and the incorporation of crustal-derived melts which would act to lower the values of Y (Fig. 7D) and Yb + Ta (Fig. 7E). The final discrimination diagram shown in Fig. 7F is exclusively for A-type granites (Fig. 7C, after Eby, 1992). As shown, the Finnemarka and Drammen samples are consistent with the A1-type anorogenic granite compositional field. The chemical signatures of the A1-type granites are similar to those observed in oceanic island basalts (OIBs). The source to A1 granites is therefore inferred to be similar to that of OIBs. Their emplacement is associated with continental rift settings and other intraplate settings. In contrast, A2-type granites are consistent with derivation from continental crust, underplated crust, or island-arc magmatism (Eby, 1992).

5.2 Apatite REEs Apatites from 4 units of the Finnemarka batholith and 7 units of the Drammen batholith, a total of 270 apatite grains, were analyzed for their trace element abundances via LA-ICP-MS. All data is reported in Table 6. Figures 8A-D summarize the chondrite-normalized REE signatures of apatites from the Q MS (n=83), Q MD (n=37), MCG (n=24) and the CG (n=13) units. All apatite normalized-REE profiles exhibit similar overall shapes with light rare earth element (LREE) enrichment, a negative Eu-anomaly, and relative heavy rare earth element (HREE) depletion. The Eu-anomalies recorded by Finnemarka apatites range from an average of 0.38 in the CG (n=13, ±0.12 at 2SD, the largest at 0.28) to an average of 0.52 in the Q MS (n=83, ±0.24 at 2SD, the smallest at 0.83). The Q MD and Q MS units exhibit the smallest degrees of LREE enrichment with La/Sm average values at 5.56 and 6.83 respectively. This is compared to 7.45 and 8.25 in the MCG and CG units respectively. The Q MD and Q MS units are also characterized by steeper middle rare earth element (MREE) to HREE patterns with average Gd/Lu at 45.48 and 42.15 respectively (although the Q MS unit is highly variable) compared to the generally flatter MREE/HREE profiles of the MCG and CG units at 17.78 and 23.65 respectively. These REE characteristics are summarized in Fig. 9 which is intended to highlight the slight differences in the nature of the REE signatures of apatites in the outer Q MD and Q MS units and the inner units of the MCG and CG (see map of the Finnemarka batholith in Fig. 3B).

Figures 10A-G summarize the chondrite-normalized REE signatures of apatites from the CG Eq (n=36), MP (n=13), Rap (n=4), FG P (n=6), M-F (n=17), Cm (n=13) and CG O (n=24). While apatite was observed in the MQ P and AQP units (Table 1) it was rare with no suitable grains identified for in-situ analysis. The majority of apatite normalized-REE profiles exhibit similar overall shapes with variable light rare earth element (LREE) enrichment, a variably negative Eu-anomaly, and slight depletion in the HREEs. Average Eu anomalies (Eu/Eu*= EuN/√[(SmN)*(GdN)]) in Drammen apatites are consistently lower than those in the Finnemarka with 6 of the units exhibiting average Eu anomalies <0.29. The one exception is the FG P unit where values are consistently higher from 0.47 to 0.57 for an average of 0.52. This is illustrated in Fig. 10D where the Eu-anomaly in this unit is notably less pronounced and similar in magnitude to apatites throughout the Q MS and Q MD units of the Finnemarka (Fig. 8A, B). The Eu- anomalies as recorded by sampled apatites from across the Finnemarka and Drammen batholiths is summarized in Fig. 11. The degree of LREE enrichment varies slightly between the apatites of

9 the Drammen units from an average LaN/SmN of 8.04 in the Cm unit to an average LaN/SmN of 3.59 in the Rap whereas the degree of MREE/HREE enrichment (GdN/LuN) is similar across all units with 6 units exhibiting averages between 1.95 (CG Eq) and 2.75 (FG P). The one exception to this is the Rap unit with an average GdN/LuN in apatite of 3.87. The degree of MREE/HREE enrichment in the Drammen apatites is notably less than that observed in the apatites of the Finnemarka the Q MS and Q MD units of 5.23 and 5.63 respectively. The apatite from the other 2 Finnemarka units, with respect to their GdN/LuN signatures are more similar to those of the Drammen apatites with averages at 2.17 for the MCG and at 2.92 for the CG. The REE characteristics of all of the sampled apatites is summarized in Fig. 12 where again the similarity of all Drammen apatites to the central units of the Finnemarka batholith (MCG and CG) is highlighted.

6. DISCUSSION 6.1 Granitoid apatite chemistry A number of previous studies have highlighted the fundamental role that apatite plays in magmatic systems: as a major sink for the REEs (e.g. Roeder et al., 1987; O’Reilly et al., 1991; Sha and Chappell, 1999; Belousova, et al 2001; Chu et al., 2009; Xiao-Yan Jiang et al., 2018). The purpose of this discussion is to evaluate the potential of REE signatures in apatite as tracers of granitoid magma petrogenesis within the context of the traditional S, I and A-type granite classification, the utility of apatite as an indicator of the oxidation state of the magma from which the granites crystallize, and with that, assess the potential of apatite as a provenance tool and as a tracer of ore mineralization. Within the context of granitoid magma petrogenesis, Chappell and White (1992) demonstrated that the bulk REE concentrations of S-type and I-type granites were very similar yet the REE profiles of apatite-bearing S-type and I-type granites were distinctly different. The dissimilarity in REE abundances in apatites from S-type and I-type granites, as well as A-type, is derived from the fact that different REE-bearing minerals are also found and hence there is potentially more than one sink for the REEs in each type. For example, S-type granites typically also host monazite, xenotime, and zircon, with I/A-types also containing titanite, zircon, and allanite (in addition to apatite, Sha and Chappell, 1999). The absolute and relative REE abundances in apatite, and the remaining REE-bearing phases, are therefore dependent on mineral phase accumulation and their crystallization order, the associated partition coefficients, in other words, each minerals ability to compete for the REEs (Sha and Chappell, 1999; Pan et al., 2016). Data have been compiled from the Transimalayan granitoids in south Tibet (Chu et al., 2009), the Mt Isa Inlier in northwestern Queensland Australia (Belousova et al., 2001), the Lachlan Fold Belt in Australia (Sha and Chappell, 1999), and the Lower Yangtze River Belt in eastern China (Xiao-Yan Jiang et al., 2018). In Figure 14, the REE characteristics of apatites from S-type, I-type and A-type granites are summarized. As shown, variability between apatites associated with these different granite types exists. In S- type granites (data compiled from Sha and Chappell 2009, and Chu et al., 2009), one of the most striking features of the REE-chondrite normalized apatite profiles (n=65) is the prominent negative Eu-anomaly with an average of 0.08 from a range of 0.21 to 0.01 (median value of 0.09). In addition, relative LREE depletion is observed with LaN/SmN values ranging from 0.22 to 0.92 with an average of 0.53. The MREE-HREE profile illustrates relative HREE depletion with GdN/LuN ranging from 1.01 up to 5.28 (average of 2.27) with one apatite grain recording relative HREE enrichment with GdN/LuN at 0.68. In contrast, apatites from I and A-type granites (data compiled

10 from Sha and Chappell, 1999; Belousova et al, 2001; Chu et al., 2009; Jiang et al., 2018) are characterized by smaller Eu-anomalies: I-type average at 0.50, median of 0.43, over a range of values from 0.04 to 1.47, (n= 122) and A-type average at 0.25, median of 0.23, over a range of values from 0.04 to 0.46 (n=71). With respect to LREE-MREE profiles, both I-type and A-type granite apatites lack the relative LREE depletion observed in S-type granites. This is illustrated by LREE/MREE ratios >1 (6.00 average for LaN/SmN in I-type apatites, 4.33 for LaN/SmN A-type apatites). With respect to MREE/HREE signatures, I-type and A-type apatites are more similar to their S-type counterparts with average GdN/LuN ratios from 2.83 and 3.21 respectively. As was presented for the Finnemarka and Drammen apatites, the variation in Eu-anomalies between these 3 different granite types is summarized in Fig. 14A. Differences in the relative abundance of LREE, MREE and HREE between the 3 granite types are summarized in Fig. 14B. Apatite saturation in a magma of S-type chemical affinity will be delayed due to the relatively lower proportions of Ca that are present. Early crystallization of monazite however will occur and therefore accumulate the LREEs (Sha and Chappell, 1992). The early fractionation of monazite in the magmatic system will lead to relative depletion of the LREE as can be observed in the LaN/SmN, and GdN/LuN elemental ratios (Fig. 14B). The opposite is recorded in granitoid magmas which are I-type in character, where there is a relatively higher proportion of Ca in the melt allowing apatite to start crystallizing earlier, which in turn acts to deplete the melt of REEs and thus suspend the saturation of monazite. Hence in apatites from I-type granites, LREEs are typically enriched (Fig. 14B). In A-type magmas, the Ca content is lower than that in I-type magmas (Table 2), but since there is also no complementary early crystallization of other LREE- bearing minerals that would otherwise fractionate the LREE, apatites from both I- and A-type granites will exhibit LREE-enrichment. The MREE depletion that is observed in chondrite- normalized REE patterns in apatites from I and A-type granites can be attributed to the crystallization of titanite from the melt (Fig. 13). Crystallization of titanite would lead to a low Sm/Nd ratio in the melt due to the preferential partitioning of Sm over Nd into titanite (DSm at 204 compared to DNd at 152, from Luhr and Carmicheal, 1980). This depletion is not observed in the apatites from S-type magmas and titanite is not reported to be present. Hence apatites from S-type granites will accumulate more MREE, which manifests as a slight enrichment in the MREE (Fig. 14B) and higher SmN/NdN ratios. From the apatites in S-type granites in Fig. 14B, the SmN/NdN ratios range from 1.01 to 1.76 (with an average of 1.34, compared to averages of 0.52 and 0.53 in apatites from I-type and A-type granites). The depletion in HREEs that is observed in apatite from both S, I, and A-type granites is associated with fractionation of the HREE-bearing minerals. In an S-type magma, the minerals zircon and xenotime will fractionate the HREE. In an I/A-type magma, zircon and hornblende are the main HREE-bearing minerals accumulating the HREE causing the depletion observed in the chondrite-normalized REE pattern (Fig. 14B).

6.2 Proposed Granite discrimination diagrams In the following section, the apatite data discussed above is used in conjunction with new apatite data (n=270) from Oslo Rift A-type granites (Fig. 7C) in order to propose a new set of chemical discrimination diagrams which can be implemented as tools for evaluating the petrogenetic histories of granitoid magmas. In all figures discussed in the following section, the data that is presented includes all the apatite data from the OR samples (Figs. 8-11) along with the apatite data presented in Sha and Chappell, (1999, S and I-type), Belousova et al., (2001, I-type), Chu et al., (2009, S and I-type), and Jiang et al., (2018, A-type). The proposed discrimination diagrams are therefore based on 538 apatite analyses from several different S, I and A-type granites

11 with the OR apatites contributing significantly to the dataset available for apatites from A-type granites. Figure 15A illustrates the difference in HREE+Y (Yttrium is included here as a HREE) and LREE abundances in the apatites from different granite types, with the apatite from the S-type granites containing lower abundances of LREE at higher total HREE+Y abundances compared to the apatites from an I/A-type granites which exhibit characteristic enrichment in LREEs (Figs. 8, 10, 13), over a range of total HREE+Y. In Fig. 15B, the higher elemental ratio of Sm to Nd (up to 0.6) of the S-type apatites at lower abundances of LREEs defines the S-type apatite field in the upper left quadrant. The I/A-type apatite field is defined by lower Sm/Nd ratios (<0.32) at similar to higher abundances of LREE. In Fig. 16A the shape of the chondrite-normalized REE profile is utilized to define the S-type and I/A-type fields which provides one of the graphically clearest ways to discriminate between apatites from S-type granitoid magmas and those from I/A-type granitoid magmas, due to the relative depletion of the LREEs on S-type apatites (for reasons discussed earlier). In the apatite S-type field the values for both LaN/SmN and LaN/YN range from 0.1 to 2.0. Apatites associated with I/A-type granitic magmas are therefore defined by a compositional field in which both of these rations are >2. In fig. 16B the magnitude of the Eu- anomaly associated with S, I, and A-type apatites is utilized in the proposed discrimination diagram (y-axis) alongside SmN/NdN values. As with Fig. 16A, this approach provides an extremely clear distinction between S-type apatites and I/A-type apatites where relatively large Eu-anomalies (<0.4) at high SmN/NdN values (>1) define the S-type apatite field. Combined, the data collected by this study and the data previously reported for apatite in a range of granite types, have shown that apatites can be used as a petrogenetic tool during the evaluation of granitoid magma petrogenesis. During this study, the ability to discriminate between I and A-type was however unsuccessful. This is likely due to the similarity in their origin as partial melts of igneous protoliths (Table 2).

6.3 The oxidation state of granitoid magmas as recorded by apatite The oxidation state of a magma has important implications for assessing the ore-bearing potential of that melt. For example, Sn mineralization has been shown to be intrinsically associated with reduced I-type and S-type granites which have also experienced fraction crystallization while Cu, Au and Mo deposits have been shown to be closely associated with fractionated, oxidized granitic magmas (Blevin and Chappell, 1995; Belousova et al., 2002; Černý, et al. 2005). The abundances of several redox sensitive elements in apatite can therefore be used to help assess the redox state of the magma from which they crystallized: Eu, Mn, and Ce (e.g. Streck and Dilles, 1998; Sha and Chappell, 1999; Cao et al., 2012). In oxidizing conditions the proportions of Eu3+, Mn4+ and Ce4+ will increase relative to Eu2+, Mn2+ and Ce3+. From Pan et al., (2016), the Mn2+, Eu3+ and Ce3+ ions are preferred by apatite due to their substitution for Ca2+ in apatites crystal lattice (see substitution reactions stated earlier). In figure 17, fields inferred as being consistent with oxidized and reduced magmatic environments are presented. This discriminatory approach using trace element data in apatites was first suggested by Belousova et al., (2001) for a suite of both reduced and oxidized I-type granites. This is discussed in more detail below. Cerium has two valence states: Ce3+ and Ce4+. Apatite will preferentially incorporate Ce3+ over Ce4+ (see above). In oxidized environments, where Ce exists in the Ce4+ state in higher proportions, it can be expected that La/Ce ratios will be higher compared to apatites which are crystallizing in reduced magmatic environments (where Ce3+ is preferentially incorporated into

12 apatite). This is illustrated in figure 17 where La/Ce values are shown to be lower for apatites associated with oxidizing environments (after Belousova et al., 2001). Europium has two valence states: Eu2+ and Eu3+ and apatite will preferentially incorporate Eu3+ over Eu2+ (see substitution reactions stated earlier). The Eu2+/Eu3+ ratio, and therefore the oxidation state of Eu (and by inference the magma from which it is crystallizing) has fundamental implications for the Eu-chemistry of apatite: the Eu2+/Eu3+ ratio will be higher in reduced magmatic environments compared to oxidized magmatic environments (Sha, 1998; Sha and Chappell, 1999; Pan et al., 2016). Due to higher proportion of Eu2+ (compared to Eu3+), in reduced magmatic environments, a relatively limited amount of Eu3+ will therefore partition into an apatites crystal structure. This will work to generate a more significant Eu anomaly in apatites in reducing environments (as is observed in the apatites from the S-type granites summarized in Fig. 13). The Eu anomaly observed in apatites from the I/A-type granites records less of a depletion than is observed in the S-type granites. The Eu2+/Eu3+ ratio is inferred to be lower due to a higher proportion of Eu3+, which will work to produce a less significant Eu anomaly (Sha and Chappell, 1999). Figure 18 summarizes the Eu-anomaly and corresponding Ce-anomaly, for the apatites discussed in this work. The purpose of considering both parameters is because the elements Ce and Eu display opposite partitioning behaviors into apatite (e.g. Pan et al., 2016) but are both multi- variance. Therefore, by plotting two multi-variance elements together, the potential influence of magma oxidation state can be assessed. As shown, there is a significant lack of a correlation in the apatites from any of the rock suites considered here. This therefore implies that while the oxidation state of a granitoid magma has the potential to influence the signatures of apatite, it is clearly not be the only controlling factor. Within that context, and as a demonstration of the potential record of the role of magmatic oxidation state, Fig. 19A plots Ce (ppm) vs. Mn (ppm). Manganese exists in multiple valence states: Mn3+, Mn4+, and Mn6+. Apatite will preferentially partition Mn2+ as it is an easy substitute for Ca2+ due to its similar ionic radius (Hughes et al., 1991). Apatites crystallizing in a reduced magmatic environment therefore, will have higher concentrations of Mn than apatites from an oxidized environment. This is illustrated in Fig. 19A where apatites from reduced S-type and reduced I-type granites plot at higher Mn contents (up to 25000 ppm) compared to apatites from oxidized I/A-type at < ~10000 ppm Mn (with one outlier). In Fig. 19B, Ce (ppm) vs. Y (ppm) is for all apatites considered during this work after Belousova et al. (2001) where it was suggested that these two parameters could be used to discriminate between oxidized and reduced magmatic environments. Consistently, apatites from oxidized magmatic environments exhibit higher Ce (ppm) abundances than those from reduced environments. This would be inconsistent with apatite preferentially incorporating Ce3+ over Ce4+, as in oxidized environment a greater proportion of Ce4+ would be present in the magma. One scenario that could potentially explain the high Ce contents of oxidized apatites is the substitution of Ce4+ for 2Ca2+ ions in the apatite crystal lattice. However, it has already been noted that the lack of correlation between Eu and Ce-anomalies is indicative of additional processes controlling the availability of trace elements to crystallization apatite. While the oxidation stage of granitoid magmas has been shown to be related to the style of ore mineralization (Blevin and Chappell, 1995; Belousova et al., 2002; Černý, et al. 2005), from the discussion above, the parameters used to investigate this from the point of view of apatite have demonstrated that oxidation state alone is not solely controlling the apatite signatures observed. The Finnemarka and Drammen apatites display trace element signatures which are consistent with

13 oxidized signatures, based on previously suggested discrimination diagrams yet the lack of a correlation with the Ce anomaly indicates that other factors are contributing the geochemistry of apatite. Interestingly though, the Drammen batholith was once the site of a Molydenite mine. The above discussion highlights the utility of apatite as a tracer of granitoid petrogenesis. It is also noted here that the overall trace element abundances in magmatic apatites are orders of magnitude higher than those observed in metamorphic apatite. In addition, metamorphic apatites have diagnostic chondrite-normalized profiles with LREE-depletion, HREE-enrichment, and a notable lack of an Eu-anomaly. Chondrite normalized inter-element ratios are therefore also distinct. This demonstrated ability of apatite to record its environment of formation, and its commonality as an accessory phase in a wide range of compositionally diverse igneous and metamorphic rocks, permits it to be utilized as provenance tool in the detrital studies (Gillespie et al., 2018). With the sedimentary rock record covering 80% of Earth’s continental surface and the acknowledged potential bias in the detrital zircon record, apatite has the potential to be a powerful tracer of source (O’Sullivan et al., 2018). Although more susceptible to breakdown than zircon, if apatite can survive weathering and persist at least through the first-cycle of sedimentation (Zoleikhaei et al., 2016), as shown here, apatite has the potential to be applied as a tracer of ore- related mineralization and the petrogenesis of volumetrically significant, upper crustal granitoid suites.

7. CONCLUSIONS Two granitic batholiths in the central portion of the Permo-Carboniferous Oslo Rift, the Drammen and Finnemarka, provided new insights into the nature of granitic magmatism during continental rifting. Units from both batholiths can be broadly classified as weakly metaluminous to peraluminous, and alkaline to subalkaline in nature based on bulk rock major element signatures. From both bulk major and trace elemental abundances, these granites can be classified as A-type granites and are therefore consistent with their occurrence in a intra-continental rift, in addition to exhibiting Nb-Ce-Y signatures consistent with A1-type granites. This study has demonstrated the utility of the accessory phase apatite as a petrogenetic tracer of different granite types within the context of classical granite classification: S-, I-, and A- type. Chondrite-normalized REE patterns in apatites from the Drammen and Finnemarka were evaluated alongside apatites from well-characterized S-type, I-type, and A-type granites throughout the literature. In each case, for S, I , and A, a distinct chondrite-normalized REE profile exists with apatites from a S-type granites exhibiting characteristic LREE depletion, slight enrichment in MREE (SmN/NdN >1), with a slight depletion in the HREEs. The chondrite- normalized REE patterns associated with apatites from the I- and A-type apatites exhibit characteristic LREE enrichment with depletion in the MREEs (SmN/NdN <1) and the HREEs. The new dataset presented here for OR apatites, in conjunction with previously published data, are used to propose a series of new apatite-in-granite discrimination diagrams highlighting the fact that apatite from petrogenetically different granitic host rocks will plot in distinct chemical fields. In summary, signatures in the apatites from the S-type granites will exhibit higher total HREE concentrations (> 2000 ppm), lower total LREEs (<7000 ppm), higher Sm/Nd elemental ratios (0.32 to 0.6), and more pronounced negative Eu anomalies. The opposite signatures are illustrated in the I/A-type granites where apatites exhibit relative LREE enrichment compared to S-type apatites, (e.g. higher LaN/SmN), higher LaN/YN, and a less significant negative Eu anomaly. The apatite dataset used to construct the new discrimination diagrams was then evaluated for its potential to trace the oxidation state of the granitoid magma. This has potentially wide-

14 ranging significance as if possible, (detrital) apatite could be used to evaluate the potential for ore mineralization in the host rock. Apatite is a suitable tool in this endeavor as multiple redox sensitive elements that partition in apatite can be used to determine the oxidation state of the melt from which it crystallized (Eu, Mn, and Ce). Oxidized melts will result in higher La/Ce element ratios in apatite compared to reduced environments (where Ce3+ more readily partitions into the crystal lattice), a slight negative Eu-anomaly, and lower concentrations of Mn (whereas in reduced environments Mn2+ more readily partitions in apatite). However, the use of redox sensitive elements as tracers of oxidation state should be used with caution as the lack of correlation between two redox sensitive elements (in this case Ce and Eu) is likely indicative of a magmatic system where other factors are controlling the availability of trace elements to apatite. In conclusion, apatites chemical signatures prove to be useful in tracking the petrogenetic history of different types of granitoid magmas and have the potential to be used to determine the redox state of the crystallizing melt. Future work should continue to expand on the data available for apatite in known S, I, and A-type granites where ore mineralization has been documented.

8. REFERENCES Albarède, F., 1998. The growth of continental crust. Tectonophysics, v. 296, p. 1-14. Allègre, C.J., Othman, D.V., 1980. Nd-Sr isotopic relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. Nature, v. 286, p. 335-342. Bacon, C.R., 1989. Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. Geochimica et Cosmochimica Acta, v. 53, o. 1055-1066. Barbarin, B., 1990. Granitoids: main petrogenetic classification in relation to origin and tectonic setting. Geological Journal, v.25, p. 227-238. Barbarin, B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos, v. 46, p. 605-626. Bateman, P. C, and Chappell, B. W., 1979, Crystallization, fractionation and solidification of the Tuolumne intrusive series, Yosemite National Park, California: Bull. geol. Soc. Am., v. 90, p. 465-82. Belousova, E.A., Walters, S., Griffin, W.L., O’Reilly, S.Y., 2001, Trace-element signatures of apatites in granitoids from the Mt. Isa Inlier, northwestern Queensland: Aust. J. Sci., v. 48, p. 603 – 619. Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., Fisher, N.I., 2002, Apatite as an indicator mineral for mineral exploration: trace–element compositions and their relationship to host rock type: J Geochem Explor., v. 76, p. 45–69. Belvin, P.L., and Chappell, B.W., 1995, Chemistry, origin and evolution of mineralized granites in the Lachlan Fold Belt, Australia: the metallogeny of I- and S-type granites. Economic Geology v. 90, p. 1604–1619. Bonin, B., 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects: Lithos, v. 97, p. 1-29. Broska, I., Harlov, D., Tropper, P., Simand, P., 2007, Formation of magmatic titanite and titanite– ilmenite phase relations during granite alteration in the Tribec Mountains, Western Carpathians, Slovakia: Lithos, v. 95, p. 58–71. Bruand, E., Storey, C., Fowler, M., 2014. Accessory mineral chemistry of high Ba-Sr granites from northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, v. 55, p. 1619-1651.

15 Bruand, E., Storey, C., Fowler, M., 2016. Apatite inclusions within zircon and titanite as a window into the early Earth. Geology, v. 44, p. 91-94. Bruand, E., Storey, C., Fowler, M., Darling, J., 2017. Apatite trace element and isotope applications to petrogenesis and provenance. American Mineralogist, v. 102; p. 75-84. Cao, M., Li, G., Seitmuratova, E.Y., Liu, Y., 2012. Major and trace element characteristics of apatite in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, v. 62, p. 63-83. Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013, The continental record and the generation of continental crust: Geological Society of America Bulletin, v. 125, p. 14-32. Černý, P., Blevin, P.L., Cuney, M., London, D., 2005, Granite-related ore deposits: Econ. Geol., v. 100, p. 337-370. Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types: Pacific Geology, v. 8, p. 173- 174. Chappell, B.W., White, A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt: Transactions of the Royal Society of Edinburgh: Earth Sciences v. 83, p. 1-26. Chen, N., Pan, Y., Weil, J.A., Nilges, M.J., 2002, Electron paramagnetic resonance spectroscopic study of synthetic fluorapatite: Part II. Gd at the Ca1 site and association with vacancy at Ca2 site: Am. Miner. v. 87, p. 47–55. Chu, M.F., Wang, K.L., Griffin, W.L., Chung, S.L., O’Reilly, S.Y., Pearson, N.J., Iizuka, Y., 2009, Apatite composition: tracing petrogenetic processes in transhimalayan granitoids: J. Petrol., v. 50, p. 1829–1855. Corfu, F., and Dahlgren, S., 2008, Perovskite U-Pb ages and the Pb isotopic composition of alkaline volcanism initiating the Permo-Carboniferous Oslo Rift: Earth and Planetary Science Letters, v. 265, p. 256-269. Corfu, F., Svensen H., Neumann, E.R., Nakrem, H.A., and Planke, S. 2010, U-Pb and geochemical evidence for a Cryogenian magmatic arc in central Novaya Zemlya, Arctic Russia: Terra Nova, v. 22, p. 116–124. Corgne, A., Wood, B.J., 2005, Trace element partitioning and substitution mechanisms in calcium perovskites: Contrib. Mineral. Petrol., v. 149, p. 85– 97. Cox, K. G., Bell, J. D. and Pankhurst, R. J. 1979. The interpretation of igneous rocks. Boston, George Allen and Unwin London. DellaVentura, G., Bellatreccia, F., Williams, C. T., 1999, Zr- and LREE-rich titanite from Tre Croci, Vico Volcanic complex (Latium, Italy): Mineralogical Magazine, v. 63, p. 123-130. Ding, T., Dongsheng, M., Lu, J., Zhang, R., 2015. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: Implications for petrogenesis and metallogenesis. Ore Geology Reviews, v. 69, p. 104-117. Dhuime, B., Hawkesworth, C. J., Delavault, H., Cawood., 2018. Rates of generation and destruction of the continental crust: implications for continental growth. Philosophical Transactions of the Royal Society A, v. 376, p. 11. Duchesne, J.-C., Wilmart, E., 1997, Igneous charnockites and related rocks from the Bjerkreim- Sokndal layered intrusion (Southwest Norway): a jotunite (hypersthene monzodiorite)- derived A-type granitoid suite: J. Petrol., v. 38 (3), p. 337–369. Eby, G.N., 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis: Lithos, v. 26, p. 115-134. Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications, Geology, v. 20, p. 641-644.

16 Eby (2014). Classification and Origin of Granites: A Multi-faceted Question. https://www.researchgate.net/profile/Nelson_Eby/publication/271530645_Classification_and _origin_of_granites/links/54cc0c270cf29ca810f4b123/Classification-and-origin-of- granites.pdf Evans, O.C., Hanson, G.N., 1993, Accessory-mineral fractionation of rare-earth element (REE) abundances in granitoid rocks: Chem. Geol., v. 110, p. 69-93. Exley, R.A., 1980, Microprobe studies of REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems: Earth Planet. Sci. Lett., v. 48, p. 97- 110. Fisher, C. M., Vervoort, J. D., 2018. Using the magmatic record to constrain the growth of continental crust – The Eoarchean zircon Hf record of Greenland: Earth and Planetary Science Letters, v. 488, p. 79-91. Fleet, M.E., Pan, Y., 1995, Site preference of rare earth elements in fluoeapatite: Am. Miner. v. 80, p. 329–335.41 Frost, C.D., Frost, B.R., 1997. Reduced rapakivi-type granites: the tholeiite connection: Geology, v. 25, p. 647-650. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus. R.J., Ellis, D.J., and Frost, C.D., 2001. A Geochemical Classification for Granitic Rocks: Journal of Petrology, v. 42, p. 2033-2048. Frost, B. R. and Frost, C.D., 2008, A geochemical classification for feldspathic igneous rocks: Journal of Petrology, v. 49, p. 1955-1969. Frost, C.D., Frost, B.R., 2011. On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin. Journal of Petrology, v. 52, p. 39-53. Gillespie, J., Glorie, S., Khudoley, A., and Collins, A.S., 2018, Detrital apatite U-Pb and trace element analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia): Lithos, v. 314-315, p. 140-155. Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., Kinny, P. D., 2006, Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon: Nature, v. 439, p. 580- 583. Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., Storey, C.D., 2010. The generation and evolution of the continental crust. Journal of the Geological Society, v. 167, p. 229-248. Hawkesworth, C.J., Cawood, P.A., Dhuime, B., 2013. Continental growth and the crustal record. Tectonophysics, v. 609, p. 651-660. Hawkesworth, C.J., Cawood, P.A., Dhuime, B., Kemp, A.I.S., 2017, Earth’s continental lithosphere through time: Annu. Rev. Earth Planet. Sci., v. 45, p. 169–198. Hellstrom J, Paton C, Woodhead J, and Hergt J (2008) Iolite: Software for spatially resolved LA- (QUAD and MC)-ICP-MS Analysis. In: Sylvester P (ed) Laser ablation ICP-MS in the earth sciences: current practices and outstanding issues. Min. Ass. of Canada 40:343-348 Hoffman, A.W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, v. 90, p. 297-314. Hughes, J.M., Cameron, M., Crowley, K.D, 1991, Ordering of divalent cations in the apatite structure: crystal structure refinements of natural Mn- and Sr-bearing apatite: American Mineralogist, v. 76, p. 1857–1862. Jiang, X.Y., Li, H., Ding, X., Wu, K., Guo, J., Liu, J.Q., Sun, W.D., 2018. Formation of A-type granites in the Lower Yangtze River Belt: a perspective from apatite geochemistry. Lithos v. 304, p. 125–134.

17 Johnson, S., Tate, M.C., Fanning, C.M., 1999, New geologic mapping and SHRIMP U – Pb zircon data in the Peninsular Ranges batholith, Baja California: evidence for a suture?: Geology, v. 27 (8), p. 743 – 746. Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D., Enzweiler, J., 2011, Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, v. 35, p. 397–429. Kilpatrick, J.A., Ellis, D.J., 1992. C-type magmas: igneous charnockites and their extrusive equivalents. Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 83, p. 155- 164. Larsen, B. T., Olaussen, S., Sundvoll, B., and Heeremans, M., 2008, The Permo-Carboniferous OR through six stages and 65 million years: Episode, v. 31, p. 52-58. Ladenburger, S., Marks, M.A.W., Upton, B., Hill, P., Wenzel, T., Markl, G., 2016. Compositional variation of apatite from rift0related alkaline igneous rocks of the Gardar Province, South Greenland, v. 101, p. 612-626. Larsen, B., Olaussen, S., Sundvoll, B., Heeremans, M., 2008. The Permo-Carboniferous Oslo Rift through six stages and 65 million years, available online: http://folk.uio.no/rtronnes/OsloRift- excursion-articl/Episodes08-Larsen-OsloRift-rev.pdf Loiselle, M.C., Wones, D., 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, v. 11, p. 468. Luhr, J.F. and Carmichael, I.S.E., 1980, The Colima volcanic complex, Mexico. I: post-caldera andesites from Volcan Colima. Contributions to Mineralogy and Petrology, v. 71, p. 343-372. Lundstrom, C., 2009. Hypothesis for the origin of convergent margin granitoids and Earth’s continental crust by thermal migration zone refining: Geochimica et Cosmochimica Acta, v. 73, p. 5709-5729. Maniar, P. D., and Piccoli, P. M., 1989, Tectonic discrimination of granitoids: Geological Society of America Bulletin, v. 101, p. 635-643. Mao, M., Rukhlov, A.S., Rowins, S.M., Spence, J., Coogan, L.A., 2016, Apatite trace elements compositions: a robust new tool for mineral exploration: Econ. Geol., v. 111, p. 1187–1222. McLeod, G.W., Dempster, T.J., Faithfull, J.W., 2011, Deciphering magma-mixing processes using zoned titanite from the Ross of Mull granite, Scotland: Journal of Petrology, v. 52, p. 55–82. Miles, A.J., Graham, C.M., Hawkeswoth, C.J., Gillespie, M.R., Hinton, R.W., 2013, Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon. Contributions to Mineralogy and Petrology v. 166, p. 1-19. Miles, A.J., Graham, C.M., Hawkesworth, C.J., Gillespie, M.R., Hinton. R.W., Bromiley, G.D., EMMAC, 2014. Apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, v. 132, p. 101-119. Mondal, M.E.A., Hussain, M.F., 2011. Classification of granitic rocks: a march from alphabet soup to petrogenetic recipes: Current Science, v. 100(8), p. 1138-1140.Neumann, E. R., Olsen, K. H., Baldridge, W. S., and Sundvoll, B., 1992, The Oslo Rift: a review: Tectonophysics, v. 208, p. 1-18. Neumann, E.R., G.R. Tilton, and E. Tuen, 1988, Sr, Nd and Pb isotope geochemistry of the Oslo Rift igneous province, southeast Norway: Geochim. Cosmochim. Acta., v. 52, p. 1997-2007. Neumann, E.R., Olsen, K.H., Baldridge, W.S., and Sundvoll, B. 1992, The Oslo Rift: a review. In: ZIEGLER, P.A. (ed.) Geodynamics of Rifting, Volume I. Case History Studies on Rifts: Europe and Asia, Tectonophysics, v. 208, p. 1-18.

18 Neumann, E. R., Dunworth, E. A., Sundvoll, B. A., aTollefsrud, J. I., 2002, B1 basaltic lavas in Vestfold-Jeloya area, central OR: derivation from initial melts formed by progressive partial melting of an enriched mantle source: Lithos, v. 91, p. 21-53. Neumann, E.-R., Wilson, M., Heeremans, M., Spencer, E.A., Obst, K., Timmerman, M.J. and Kirstein, L., 2004, Carboniferous-Permian rifting and magmatuism in southern Scandinavia, the North Sea and northern : a review, in Permo-Carboniferous magmatism and Rifting in Europe: Geol. Soc. London, Spec. Publ. 223, 11–40. Olaussen, S., Larsen, B. T., and Steel, R., 1994, The Upper Carboniferous-Permian OR: basin fill in relation to tectonic development: Canadian Society of Petroleum Geologists, v. 17, p. 175-197. O’Reilly, S.Z., Griffin, W.L., Ryan, C.G., 1991, Residence of trace elements in metasomatised spinel lherzolite xenolith: a proton micoprobe study: Contrib. Mineral. Petrol., v. 109, p. 98–113. O'Sullivan, G. J., Chew, D. M., Morton, A. C., Mark, C., and Henrichs, I. A., 2018, An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis. Geochemistry, Geophysics, Geosystems, v. 19, p. 1309–1326. Pan L.C., Hu R.Z., Wang X.S., Bi X.W., Zhu J.J., Li C., 2016, Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: examples from four granite plutons in the Sanjiang region, SW China: Lithos, v. 254-255, p. 118–130. Paton C, Hellstrom J, Paul B, Woodhead J, and Hergt J (2011) Iolite: Freeware for the visualization and processing of mass spectrometric data. JAAS 12:2508-2518 Peacock, M.A., 1931, Classifcation of igneous rock seris: Journal of Geology, v. 39, p. 54-67. Pearce, J.A., N.B.W. Harris, A.G. Tindle, 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, p. 956-983. Pedersen, T., and van der Beek, P., 1994, Extension and magmatism in the OR, southeast Norway: No sign of a mantle plume: Earth and Planetary Sciences, v. 123, p. 317-329. Piccoli, P., Candela, P., and Rivers, M., 2000, Interpreting magmatic processes from accessory phases: titaniteça small-scale recorder of large-scale processes: Transactions of the Royal Society of Edinburgh Earth Sciences, v. 91, p. 257-267. Piccoli, P., Candela, P., and Rivers, M., 2000, Interpreting magmatic processes from accessory phases: titanites small-scale recorder of large-scale processes: Transactions of the Royal Society of Edinburgh Earth Sciences, v. 91, p. 257-267. Pitcher, W.S., 1983, Granite type and tectonic environment. In: Hsu K (ed) Mountain Building Processes: Academic Press, London, p. 19-40. Prowatke, S., and Klemme, S., 2003, Melt compositional controls on trace element partitioning: An experimental study of titanite/melt partitioning: Geochimica et Cosmochimica Acta., v. 67, p. 385. Prowatke, S., and Klemme, S., 2006, Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta, v. 70, p. 4513-4527. Ramberg, I. B., and Larsen, B. T., 1976, Gravity interpretation of the Oslo Graben and associated igneous rocks: Norges Geologiske Untersøkelse, v. 325, p. 194. Ramberg, I.B., Bryhni, I., Nøttvedt, and Rangnes, K., 2008, The Making of Land: Norway Geology: Geological Society of London Science p. 260-300. Roeder, P.L., MacArthur D., Ma X-P, Palmer G.R, Mariano A.N., 1987, Cathodoluminescence and microprobe study of rare-earth elements in apatite: Am Mineral. v. 72, p. 801-811.

19 Ronsbo, J.G., 1989, Coupled substitution involving REEs and Na and Si in apatites in alkaline rocks from the Illimaussaq intrusions, South Greenland, and petrological implications: Am. Miner. V. 74, p. 896–901. Sawka, W.N., 1988. REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California. Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 79, p. 157-168. Scoates, J. S., Frost, C. D., Mitchell, J. N., Lindsley, D. H., and Frost, B. R., 1996, Residual liquid origin for a monzonitic intrusion in a mid-Proterozoic anorthosite complex: The Sybille intrusion, Laramie Anorthosite Complex, Wyoming: Geological Society of America Bulletin, v. 108, p. 1357–1371. Skjernaa, L., and Pedersen, S., 1982, The effect of penetrative Sveconorwegian deformation on the Rb-Sr isotopic systems in the Rømskog--Høland area, SE Norway: Precambrian Research, v. 17, p. 15-243. Sha, L.K., 1998, Order-Disorder kinetics of atoms in crystals, and phosphorus geochemistry of granites, with implications for lunar rocks and meteorites: PhD dissertation, Australian National University. Sha, L.K., and Chappelle, B.W., 1999, Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis: Geochimica et Cosmochimica Acta., v. 63, p. 3861–3881. Shand, S. J., 1943, Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley & Sons, New York. Shand, S. J., 1943. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley & Sons, New York. Sigmond, E.M.O., Gustavson, M. and Roberts, D., 1984, Bedrock map of Norway, scale 1:1.000,000. Norw. Geol. Surv., Trondheim. Stenstrop, G., 1989, Anorogenic complexes associated with molybdenum mineralizations. Part I. Petrogenesis of the Finnemarka zoned complex and associated molybdenum mineralization. Masters Thesis, Aarhus University, Aarhus, Denmark. Streck, M.J., and Dilles, J.H., 1998, Fleet, M.E., Pan, Y., 1995. Site preference of rare earth elements in fluoeapatite: Am. Miner. v. 80, p. 329–335. Streckeisen, A.L., 1967. Classification and nomenclature of igneous rocks. (Final report of an inquiry): Neues Jahrbuch fur Mineralogie, Abhandlungen, v. 107, p. 144-240. Sun, S.S., McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: : A.D. Saunders, M.J. Norry (Eds.), Magmatism in the Ocean Basins, Geological Society, London, p. 313–345. Sundvoll, B., Neumann, E. –R., Larsen, B. T., and Tuen, E., 1990, Age relations among Oslo Rift magmatic rocks: implications for tectonic and magmatic modelling: Tectonophysics, v. 178, p. 67-87. Sundvoll, B. and Larsen, B.T., 1990. Rb-Sr isotope systematics in the Oslo Rift magmatic rocks. Nor. Geol. Unders., v. 418, p. 27-46. Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, v. 33, p. 241-265. Taylor, S.R., McLennan, S.M., 2008. Planetary Crusts Their Composition, Origin and Evolution. Cambridge University Press, 402pp. Tiepolo, M., Oberti, R., and Vannucci, R., 2002, Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients: Chemical Geology, v. 191,

20 p. 105-119. Trønnes, R. G., and Brandon, A. D., 1992, Mildly peraluminous high-silica granites in a continental rift: the Drammen and Finnemarka batholiths, OR, Norway: Contributions to Mineralogy and Petrology, v. 109, p. 275-294. Wark, D.A., Miller, C.G., 1993. Accessory mineral behavior during differentiation of a granite suite: monazite, Xenotime and zircon in the Sweetwater Wash pluton, southeastern California, U.S.A. Chemical Geology, v. 110, p. 49-67. Watson, E.B., Harrison, T.M., 1984. Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches. Physics of the Earth and Planetary Interiors, v. 35, p. 19-30. Watson, E.B. and Green, T.H., 1981, Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters, v. 56, p. 405-421. Whalen, J.B., 1985, Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, PNG: J Petrol., v. 26, p. 603-632. Whalen, J.B., Currie, K.L., Chappell, B.W., 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis: Contrib. Mineral. Petrol., v. 95, p. 407–419. Wilson, M., 1989, Igneous Petrogenesis: Harper Collins Academic, London, p. 466. Wedepohl, K. H., 1991, Chemical composition and fractionation of the continental crust: Geologische Rundschau, v. 80, p. 207-223. Weigand, P.W., 1975, Studies on the igneous rock complex of the Oslo Region, XXIV. Geochemistry of the Oslo basaltic rocks. Skr. Norske Vidensk.-Akad. Oslo, Mat.-Na- turv. Kl., Ny Ser., v. 34, p. 38. White, A.J.R., 1979, Sources of granite magmas: Geol. Soc. Am. Abst. Prog., v. 11, p. 539. White, S. M., Crisp, J. A., Spera, F. J., 2006, Long-term volumetric eruption rates and magma budgets: Geochemistry Geophysics Geosystems, v. 7, p. 3. Yang, J-H., Kang, L-F., Peng, J-T., Zhong, H., Gao, J-F., Liu, L., 2018. In-situ elemental and isotopic compositions of apatite and zircon from the Shuikoushan and Xihuashan granitic plutons: Implication ofr Jurassic granitoid-related Cu-Pb-Zn and W mineralization in the Nanling Range, South China: Ore Geology Reviews, v. 93, p. 382-403. Ziegler, P. A., 1986, Geological Atlas of Western and Central Europe: Elsevier, p. 130. Zirner, A., Marks, M., Wenzel, T., Jacob, D., Markl, G., 2015. Rare earth elements in apatite as a monitor of agmatic and metasomatic processes: The Ilimauusaq complex, South Greenland: Lithos, v. 228-229, p. 12-22. Zoleikhaei, Y., Frei, D., Morton, A., Zamanzadeh, S.M., 2016, Roundness of heavy minerals (zircon and apatite) as a provenance tool for unravelling recycling: a case study from the Sefidrund and Sarbaz rivers in N and SE Iran Sediment: Geol., v. 342, p. 106–117.

21 Figure 1

Figure 1: Simplified geological map of the Oslo Rift (OR) modified from Sigmond et al. (1984) and Trønnes and Brandon (1992). Both the plutonic and volcanic sequences associated with Permo-Carboniferous rifting are shown in addition to older Cambro-Silurian sedimentary units and the surrounding Precambrian basement. The batholiths of this study, the Drammen and the Finnemarka are located in the central OR in the northern portion of the Vestfold Graben. The black outlined box identifies the areas shown in more detail in Fig. 3.

22 Figure 2

Figure 2: Histogram showing the number of reported bulk rock Rb-Sr ages for the main magmatic phases as recorded in the Akershus Graben and Vestfold Graben (for both volcanic and plutonic rock suites; Neuman et al., 1992). Data summarized from Sundvoll and Larsen (1990) and Sundvoll et al., (1990).

23 Figure 3

Figure 3: Geological maps of the central ORs Drammen (A) and Finnemarka (B) batholiths which are the focus of this study. In each map, different granitic units are shown in different colors. Mapped unit names after Stenstrop (1989) and Trønnes and Brandon (1992). White dots on each map represent the sample locations. The Finnemarka batholith outcrops to the north of the Drammen (see Fig. 1).

24 Figure 4

Figure 4: Field photographs of outcrops in the Drammen (A.) and Finnemarka (B.) batholiths of the central OR. (A) Medium-Coarse Grained Granite; (B) Cumulophyric Granite, scale marker is 15cm in length. Photos C. to F. show selected hand samples: C. Cumulophyric Granite (Drammen), D. Peralkaline Granite (Finnemarka, mapped as Ekerite in Fig. 3B), E. Quartz Monzosyenite (Finnemarka, mapped as Syenomonzonite in Fig. 3B), and F. Coarse Grained (Equigranular) Granite (Drammen).

25 Figure 5

Figure 5: Photomicrographs of the common minerals found throughout the Drammen and Finnemarka Granites. The upper panels (A-E) summarize the major mineralogy. Panel F. highlights the presence of euhedral zircons which are common accessory minerals throughout the batholiths. The lower 4 panels (G-J) illustrate the common occurrence of apatite as an accessory phase throughout the batholiths. Abbreviations: Qtz, quartz; Plag, plagioclase; Ttn, titanite; Bt, Biotite; Fsp, alkali feldspar; Amp, amphibole; Zr, zircon; Ap, apatite.

26 Figure 6

Figure 6: Bulk rock major element data for 42 samples of the Drammen (n=25, colored circles) and Finnemarka (n=17, colored triangles) batholiths. Colors correspond to mapped lithologies in Figs. 3A and 3B. Upper panel: Total alkali vs silica plot (TAS, Cox et al., 1979; Wilson, 1989). Lower panel: Modified alkali-lime index (MALI) vs. silica (Frost et al., 2001). Solid grey symbols represent data from other OR intrusive suites.

27 Figure 7

Figure 7: Granite discrimination diagrams. Bulk rock major and trace element data for the Drammen and Finnemarka granites is shown. A. Alkalinity index (AI) vs. Aluminum saturation index (ASI) (Maniar and Piccoli, 1989). Colors and symbols as in Fig. 6A, B. B. AI vs. Feldspathoid silica- saturation index (FSSI) (Frost and Frost, 2008). C. Na2O+K2O/CaO vs. Zr+Nb+Ce+Y (Whalen, 1987). D, E. Nb vs Y and Rb vs. Yb+Ta (Pearce et al., 1984). F. Triangular plot Nb-Y-Ce to discriminate between A1 - and A2 -type granites (Eby, 1992).

28 Figure 8

Figure 8: Chondrite-normalized rare earth element (REE) patterns of sampled apatites from four of the Finnemarka units. Colored symbols on each plot represent apatite data. The black Y symbol on each graph illustrates the chondrite-normalized REE signature of the bulk rock from which those apatites were analyzed. Normalizing values from Sun and McDonough (1989).

29 Figure 9

Figure 9: Plot of LREE/MREE (La/Sm) vs. MREE/HREE (Gd/Lu) for Finnemarka apatites. The higher ratio of Gd to Lu in the Q MS and Q MD apatites (up to 79) is illustrated by the steeper MREE-HREE chondrite normalized profiles shown in Fig. 8. The degree of LREE enrichment in these two units is also (on average) less, particularly in the case of the Q MD unit where all apatites plot with La/Sm at <8.

30 Figure 10

Figure 10: Chondrite-normalized REE patterns of apatites from seven of the Drammen units. Colored symbols on each plot represent apatite data. The black Y symbol on each graph illustrates the chondrite-normalized REE signature of the bulk rock from which those apatites were analyzed. Normalizing values from Sun and McDonough (1989).

31 Figure 11

Figure 11: EuN vs. Eu* for all sampled apatites (Finnemarka and Drammen, n=270). As discussed in the main text and shown in Fig. 8A, B, the Q MS and Q MD units of the Finnemarka have notably smaller Eu anomalies than apatites from all other units (smaller Eu* where Eu* is the square root of SmNxGdN as reported in Table 6).

32 Figure 12

Figure 12: Plot of LREE/MREE (La/Sm) vs. MREE/HREE (Gd/Lu) for all sample apatites across the Finnemarka and Drammen batholith (n=270). Consistently the apatites of the Drammen and the Q MS and Q MD units of the Finnemarka are characterized by relatively lower Gd/Lu ratios across a comparable range of La/Sm ratios to those of the Q MS and Q MD units of the Finnemarka. As shown above, the La/Sm ratios exhibited by Q MS apatites in the Finnemarka cover almost the complete range of La/Sm ratios recorded in apatites from throughout the Drammen suite.

33 Figure 13

Figure 13: Summary of the REE characteristics of apatites from S-type, A-type, and I-type granites. Data sources S-type: Sha and Chappell (1999) and Chu et al., (2009). Data sources I- type: Sha and Chappell (1999), Belousova et al. (2001), Chu et al., (2009). Data sources A-type: Jiang et al., (2018).

34 Figure 14

Figure 14A: Summary of Eu-anomalies in S, I and A-type granites from apatites reported in Sha and Chappell (1999); Belousova et al. (2001), Chu et al., (2009) and Jiang et al., (2018). As shown, apatites from S-type granites exhibit relatively low EuN values (<500) and values of Eu* >100 and are therefore distinguished from I-type and A-type apatites. B. Summary of LREE/MREE (La/Sm) and MREE/HREE (Gd/Lu) signatures for apatites in S, I, and A-type granites (data sources as in A.). Consistently, S-type granite apatites exhibit very low La/Sm ratios (typically <1) at over a range of Gd/Lu (typically 10-30). In contrast, I and A-type apatites exhibit higher La/Sm ratios (typically >1, up to 27) over a broader range of Gd/Lu ratios (typically 10 to 40).

35 Figure 15

Figure 15A: Proposed S-type vs. I/A-type discrimination diagrams based on apatite chemistry. Summary of LREE and HREE abundances in S, I and A-type granites from apatites reported in Sha and Chappell (1999); Belousova et al. (2001), Chu et al., (2009) and Jiang et al., (2018). As shown, apatites from S-type granites exhibit lower total LREEs over similar ranges of HREEs. B. Summary of Sm/Nd ratios exhibited by apatites (relatively high) in S-type granites compared to those in I and A-type granites which are comparatively low (see also Fig. 13).

36 Figure 16

Figure 16: Proposed S-type vs. I/A-type discrimination diagrams based on apatite chemistry. A. LREE/HREE vs. LREE/MREE discriminates S-type apatites form I/A-type apatites on the basis of LREE chemistry (La used here as the LREE). B. SmN/NdN vs. Eu-anomaly with higher Sm/Nd ratios found in apatites with larger Eu-anomalies, consistent with apatites in S-type granites.

37 Figure 17

Figure 17: Proposed discrimination of oxidized vs. reduced magmatic environments proposed by Belousova et al. (2001). The above plot includes data from apatites from the S, I, and A-type granites presented throughout this work in addition to the apatites from the Finnemarka and Drammen OR batholiths. The apatites of Belousova et al. (2001) from I-type granites plot in both “reduced” and “oxidized” fields and were the basis for the original discrimination. For discussion see main text.

38 Figure 18

Figure 18: Ce-anomaly vs. Eu-anomaly for apatites discussed throughout this work. The apatites of the Finnemarka and Drammen cluster tightly with respect to the Ce-anomaly values (around 1) over a range of Eu-anomalies (as reported earlier). Apatites from the A-type magmas reported by Jiang et al., (2018) plot beneath the data from the OR apatites. The I-type apatites plot at similar Ce-anomaly values as the S-type apatites, but at higher EuN/Eu* values (consistent with previous discussions).

39 Figure 19

Figure 19: A. Ce (ppm). vs. Mn (ppm) for all apatites considered during this work. Apatites from reduced magmatic environments are inferred to plot at higher Mn contents due to the preferential incorporation of Mn2+ into apatites crystal structure. B. Ce. (ppm) vs. Y (ppm) for all apatites considered during this work. From Belousova et al. (2001), higher Ce contents were originally considered as being associated with oxidized magmatic environments. For discussion see main text.

40 Table 1

Lithology n Minerals Present Notable Textures Coarse Grained 5 Qtz, k-spar, plag, bt, flu, ttn, ap, Hypidiomorphic crystals Equigranular granite (D) zrc, opq, chl. Cumulophyric Granite 3 Qtz, k-spar, plag, bt, flu, ttn, ap, Hypidiomorphic crystals and (D) zrc, opq, chl, pyr, amp miarolitic textures Medium-Coarse Grained 3 Qtz, k-spar, Plag, Bt, flu, ttn, ap, Miarolitic texture granite (D) zrc, opq, pyr Medium-Fine Grained 3 Qtz, k-spar, plag, bt, flu, ap, zrc, Hypidiomorphic texture Granite (D)* opq, chl, pyr Aplitic Qtz-Fsp Porphyry 3 Qtz, k-spar, plag, bt, mt, ttn, ap, Cryptocrystalline with (D) zrc, opq, hypidiomorphic texture Microcrystalline Qtz-Fsp 3 Qtz, k-spar, plag, bt, mt, flu, ttn, Porphyritic texture and Porphyry (D) ap, zrc, opq, chl, pyr, myb allotriomorphic to hypidiomorphic with seriate texture Fined Grained Qtz-Fsp 1 Qtz, k-spar, plag, Bt, ap, zrc, opq, Hypidiomorphic crystals porphyry (D) chl Rapakivi Granite (D) 2 Qtz, k-spar, plag, bt, ttn, ap, zrc, Porphyritic texture opq, amp Coarse Grained Oligoclase 2 Qtz, k-spar, plag, bt, flu, ttn, ap, Allotriomorphic to Granite (D) zrc, opq, chl, amp hypidiomorphic crystals Medium Grained Granite 3 Qtz, k-spar, plag, bt, ttn, ap, zrc, Hypidiomorphic crystals (F) opq, chl, amp Coarse Grained Granite 4 Qtz, k-spar, plag, bt, flu, ttn, ap, Cumulophyric texture and (F) zrc, opq, chl, pyr, amp sericitic alteration Aplitic Granite 2 Qtz, k-spar, plag, bt, ap, zrc, opq, Perthitic and granophyric (F) chl textures Quartz Monzodiorite* 2 Qtz, k-spar, plag, bt, ttn, ap, zrc, Hypidiomorphic crystals and (F) opq, amp cumulophyric texture Microcrystalline Quartz 2 Qtz, k-spar, plag, bt, ap, zrc, opq, Porphyritic texture and Porphyry (F) amp, pyr hypidiomorphic crystals Quartz Monzosyenite* 4 Qtz, k-spar, plag, bt, ttn, ap, zrc, Hypidiomorphic crystals (F) opq, chl, pyr, amp Peralkaline Granite 1 Qtz, k-spar, plag, bt, ap, zrc, opq, Hypidiomorphic crystals (F) amp

Table 1: Summary of the mineralogy of sampled Drammen (D) and Finnemarka (F) units (see Fig. 3A and 3B for sample locations). A total of 46 samples were collected during the 2016 field season. Four of those samples were not part of this study. Mineral abbreviations: Qtz: Quartz; k- spar: alkali feldspar; plag: plagioclase feldspar; bt: biotite; ap: apatite; ttn: titanite; amp: amphibole; opq: opaques (predominantly magnetite); zrc: zircon; chl: chlorite; flu: fluorite; pyr: pyrite; myb: molybdenite. *these lithological sample names differ from the mapped unit names in Fig. 3A and 3B and were assigned based on petrographic study and discussion with Reidar Trønnes (University of Oslo).

41 Table 2: Differentiating between the different types of granites. Data taken from White and Chappell (1983), Clarke (1992), Whalen (1985).

*Molar Al2O3/(CaO+Na2O+K2O). 3+ 4+ Type SiO2 K2O/Na2O Ca, Sr A/(C+N+K)* Fe /Fe Cr, Ni Protolith

S-type 65-74% High Low Peraluminous Low High Melting of a Sedimentary source

I-type 53-76% Low High Metaluminous High Low Melting of an Igneous source

Melting of an Igneous (Continental A-type up to 77% High Low Peralkaline Variable Low Rift setting)

42 Table 3: List of Sample ID, rock type, and abbreviations for each sample Sample ID Rock Type Abbreviation Dr2 Microcrystalline Qtz-Fsp Porphyry MP (2) Dr3 Microcrystalline Qtz-Fsp Porphyry MP (3) Dr10 Microcrystalline Qtz-Fsp Porphyry MP (10) Dr1 Aplitic Qtz-Fsp Porphyry AQP (1) Dr9 Aplitic Qtz-Fsp Porphyry AQP (9) Dr15 Aplitic Qtz-Fsp Porphyry AQP (15) Dr4 Coarse Grained Oligoclase Granite CG O (4) Dr5 Coarse Grained Oligoclase Granite CG O (5) Dr6 Fine Grained Porphyry FG P (6) Dr7 CG Equigranular Granite CG Eq (7) Dr8 CG Equigranular Granite CG Eq (8) Dr17 CG Equigranular Granite CG Eq (17) Dr20 CG Equigranular Granite CG Eq (20) Dr23 CG Equigranular Granite CG Eq (23) Dr11 Medium-Fine Grained Granite M-F (11) Dr16 Medium-Fine Grained Granite M-F (16) Dr21 Medium-Fine Grained Granite M-F (21) Dr14 Medium-Coarse Grained Granite M-C (14) Dr22 Medium-Coarse Grained Granite M-C (22) Dr24 Medium-Coarse Grained Granite M-C (24) Dr12 Cumulophyric Granite Cm (12) Dr13 Cumulophyric Granite Cm (13) Dr25 Cumulophyric Granite Cm (25) Dr18 Rapakivi Granite Rap (18) Dr19 Rapakivi Granite Rap (19) F101 Microcrystalline Qtz Porphyry MQ P (101) F102 Microcrystalline Qtz Porphyry MQ P (102) F103 Medium-Coarse Grained Granite MCG (103) F104 Medium-Coarse Grained Granite MCG (104) F105 Medium-Coarse Grained Granite MCG (105) F107 Coarse Grained Granite CG (107) F108 Coarse Grained Granite CG (108) F109 Coarse Grained Granite CG (109) F110 Aplitic Granite AP (110) F111 Aplitic Granite AP (111) F112 Quartz Monzodiorite Q MD (112) F113 Quartz Monzodiorite Q MD (113) F114 Quartz Monzosyenite Q MS (114) F115a Quartz Monzosyenite Q MS (115a) F116 Quartz Monzosyenite Q MS (116) F118 Peralkaline Granite PA (118)

43 Table 4: Bulk rock major element data of the granites from the Drammen and Finnemarka batholiths. Abbreviations as in table 3. Analyses completed by XRF.

Sample: MP (2) MP (3) MP (10) AQP (1) AQP (9) AQP (15) CG O (4) CG O (5) FG P (6) CG Eq (7) CG Eq (8) CG Eq (17) CG Eq (20) CG Eq (23) M-F (11)

SiO2 76.60 76.55 74.83 76.78 76.22 76.37 74.95 75.29 70.16 74.78 74.79 75.15 74.67 74.88 76.84

TiO2 0.21 0.22 0.28 0.18 0.19 0.13 0.20 0.26 0.37 0.26 0.25 0.24 0.26 0.17 0.09

Al2O3 12.11 12.34 13.25 11.90 12.47 12.48 13.27 12.68 15.21 12.82 12.71 12.61 13.00 13.25 12.23 FeO* 0.94 0.97 1.12 0.70 1.08 0.64 0.48 1.10 1.97 1.26 1.18 1.23 1.26 0.78 0.72 MnO 0.03 0.02 0.04 0.03 0.04 0.04 0.03 0.03 0.05 0.03 0.05 0.05 0.05 0.04 0.02 MgO 0.11 0.05 0.12 0.03 0.06 0.04 0.13 0.21 0.14 0.21 0.18 0.21 0.23 0.09 0.01 CaO 0.27 0.19 0.26 0.60 0.27 0.53 0.77 0.59 0.14 0.68 0.53 0.61 0.75 0.50 0.32

Na2O 2.84 3.21 3.96 3.02 3.60 3.76 3.62 3.42 5.33 3.46 3.65 3.52 3.52 3.86 3.93

K2O 5.34 5.27 4.96 5.32 4.64 4.85 5.39 5.04 5.50 5.15 5.03 5.02 5.05 5.31 4.62

P2O5 0.02 0.02 0.04 0.01 0.02 0.01 0.02 0.03 0.04 0.03 0.03 0.03 0.03 0.02 0.00 Sum 98.47 98.85 98.87 98.56 98.59 98.85 98.86 98.64 98.90 98.68 98.41 98.67 98.82 98.90 98.79 LOI % 1.04 0.82 0.93 1.09 0.98 0.85 0.77 0.76 0.65 0.86 0.91 0.94 0.69 0.69 0.81 Sample: M-F (16) M-F (21) M-C (14) M-C (22) M-C (24) Cm (12) Cm (13) Cm (25) Rap (18) Rap (19) MQ P (101) MQ P (102) MCG (103) MCG (104) MCG (105)

SiO2 77.59 78.56 74.12 73.11 75.00 72.92 72.48 74.59 70.48 71.44 75.16 75.67 72.12 75.47 75.83

TiO2 0.13 0.11 0.31 0.24 0.29 0.33 0.37 0.27 0.34 0.40 0.22 0.23 0.44 0.27 0.25

Al2O3 11.79 11.48 13.00 13.79 12.70 13.41 13.57 12.80 14.57 14.14 12.98 12.66 13.00 12.23 12.23 FeO* 0.82 0.58 1.58 1.28 1.35 1.56 1.77 1.40 1.83 2.03 1.12 1.32 2.47 1.35 1.47 MnO 0.05 0.03 0.06 0.05 0.04 0.06 0.08 0.05 0.06 0.07 0.03 0.03 0.17 0.05 0.07 MgO 0.05 0.08 0.19 0.20 0.21 0.24 0.28 0.16 0.30 0.31 0.13 0.12 0.45 0.17 0.18 CaO 0.43 0.32 0.52 0.50 0.42 0.64 0.63 0.44 0.82 0.64 0.19 0.20 0.83 0.41 0.19

Na2O 3.48 3.16 3.82 3.84 3.76 4.27 4.21 4.08 4.54 4.30 4.20 4.08 4.81 4.11 4.18

K2O 4.47 4.62 5.10 5.41 5.04 5.07 5.15 4.93 5.04 5.08 4.70 4.60 4.26 4.61 4.59

P2O5 0.01 0.01 0.04 0.04 0.03 0.04 0.05 0.03 0.06 0.07 0.04 0.03 0.15 0.04 0.04 Sum 98.82 98.94 98.72 98.48 98.84 98.56 98.59 98.76 98.06 98.48 98.79 98.94 98.70 98.71 99.02 LOI % 0.80 0.87 0.75 0.97 0.78 0.79 0.79 0.84 1.52 1.03 0.91 0.73 0.81 0.80 0.66 Sample: CG (117) CG (107) CG (108) CG (109) AP (110) AP (111) Q MD (112) Q MD (112a) Q MD (113) Q MS (114) Q MS (114aF) Q MS (114M) Q MS (115a) Q MS (116) PA (118) SiO2 77.23 72.70 75.56 74.17 76.59 76.73 57.76 72.57 56.64 62.38 58.26 65.32 64.36 64.70 77.48 TiO2 0.117 0.354 0.277 0.277 0.132 0.108 1.836 0.429 1.992 1.076 1.208 0.868 0.883 0.931 0.128 Al2O3 11.54 13.56 12.46 13.07 12.33 12.32 14.86 13.27 15.18 16.19 17.26 15.40 15.91 15.53 11.33 FeO* 1.36 1.90 1.34 1.55 0.71 0.85 8.92 2.17 9.31 5.20 6.49 4.11 4.38 4.41 1.20 MnO 0.110 0.101 0.157 0.055 0.070 0.056 0.257 0.061 0.266 0.236 0.385 0.226 0.221 0.308 0.090 MgO 0.01 0.33 0.18 0.25 0.08 0.04 2.43 0.29 2.50 1.25 1.81 0.81 0.94 1.16 0.02 CaO 0.02 0.49 0.26 0.43 0.34 0.28 5.42 0.69 5.59 2.97 3.29 1.68 1.97 1.28 0.15 Na2O 4.10 4.55 4.05 4.36 3.88 4.19 4.29 3.22 4.53 6.00 7.17 5.95 6.05 6.38 4.00 K2O 4.36 4.44 4.63 4.57 4.56 4.39 2.31 5.95 2.13 3.13 1.67 3.50 3.35 3.87 4.35 P2O5 0.001 0.084 0.039 0.053 0.018 0.013 0.654 0.053 0.763 0.308 0.608 0.205 0.209 0.266 0.003 Sum 98.84 98.51 98.96 98.79 98.71 98.99 98.73 98.70 98.92 98.73 98.17 98.06 98.28 98.83 98.73 LOI % 0.67 0.90 0.69 0.77 0.94 0.72 0.40 0.76 0.44 0.73 1.02 1.26 0.88 0.73 0.72

44 Table 5: Bulk rock trace element data of the granites from the Drammen and Finnamarka batholiths. Abbreviations as in table 3. Analyses completed by ICP-MS. Sample MP (2) MP (3) MP (10) AQP (1) AQP (9) AQP (15) CG O (4) CG O (5) FG P (6) CG Eq (7) CG Eq (8) CG Eq (17) CG Eq (20) CG Eq (23) M-F (11) M-F (16) M-F (21) La 39.61 59.63 49.54 41.61 57.72 42.14 32.06 39.57 86.12 38.44 46.97 41.34 51.37 29.38 40.27 46.50 32.35 Ce 70.59 76.33 102.96 76.15 91.97 76.31 56.73 67.18 186.20 85.45 95.42 80.31 88.61 60.13 67.14 77.06 53.42 Pr 7.46 11.42 11.58 7.86 8.52 7.52 5.99 7.40 20.24 10.12 10.92 8.64 8.82 6.65 6.05 6.85 4.89 Nd 24.00 36.59 40.04 24.89 24.59 22.19 19.19 23.97 73.97 34.44 38.16 28.05 28.07 21.85 15.44 19.18 13.70 Sm 4.38 6.89 7.86 4.43 4.10 4.19 3.52 4.58 13.52 7.46 7.67 5.67 4.79 4.03 2.76 3.15 2.32 Eu 0.39 0.63 1.21 0.38 0.57 0.28 0.66 0.70 2.65 0.74 1.09 0.59 0.70 0.85 0.06 0.26 0.24 Gd 3.73 5.71 6.46 3.72 3.58 3.75 2.84 3.60 10.38 6.38 6.42 5.03 3.62 3.34 2.69 2.69 1.83 Tb 0.70 0.99 1.20 0.68 0.66 0.76 0.51 0.67 1.71 1.27 1.18 0.98 0.62 0.61 0.66 0.55 0.37 Dy 4.34 5.95 7.41 4.30 4.30 5.44 3.07 4.07 10.07 8.12 7.35 6.53 3.84 3.95 4.96 3.81 2.44 Ho 0.88 1.23 1.53 0.91 0.95 1.29 0.63 0.83 1.98 1.71 1.51 1.39 0.78 0.84 1.27 0.89 0.57 Er 2.62 3.47 4.46 2.66 3.13 4.58 1.85 2.51 5.56 5.20 4.32 4.33 2.27 2.52 4.85 3.23 1.97 Tm 0.43 0.55 0.68 0.43 0.56 0.87 0.28 0.41 0.83 0.80 0.67 0.71 0.37 0.41 0.98 0.60 0.37 Yb 2.89 3.72 4.46 2.96 4.29 6.90 1.95 2.84 5.43 5.25 4.39 5.03 2.58 2.78 7.63 4.91 3.04 Lu 0.45 0.59 0.68 0.45 0.78 1.23 0.31 0.46 0.84 0.79 0.66 0.80 0.39 0.45 1.37 0.90 0.56 Ba 221.94 294.98 400.68 143.56 135.94 49.10 495.93 425.92 137.26 245.41 285.05 219.05 438.71 289.50 12.80 42.70 56.87 Th 35.31 36.83 19.11 34.32 36.73 51.57 16.67 28.69 11.73 24.78 15.30 30.53 30.34 9.68 50.63 41.95 26.49 Nb 33.75 38.05 47.94 32.86 62.69 77.80 20.36 31.94 67.21 51.27 46.84 50.01 28.21 34.44 120.84 67.03 50.52 Y 25.14 36.29 41.75 26.22 32.71 46.80 18.18 24.63 50.98 50.18 41.34 42.11 22.05 24.03 49.19 31.38 18.84 Hf 5.39 5.56 7.30 4.81 7.77 7.71 3.59 5.84 15.83 5.87 6.54 6.51 5.32 3.99 7.87 5.82 4.18 Ta 3.63 4.43 3.82 3.57 4.46 7.14 2.14 3.41 4.33 4.75 3.70 4.62 2.96 2.66 9.21 6.28 5.14 U 6.83 7.03 3.70 7.80 6.44 12.76 3.83 7.20 2.04 5.89 4.69 7.06 5.97 3.06 7.00 10.81 5.97 Pb 16.58 15.51 25.87 14.31 116.25 20.75 21.76 17.31 14.03 15.79 20.00 13.63 21.55 17.07 26.78 17.09 16.70 Rb 259.17 230.86 222.74 234.62 301.08 376.05 233.26 240.77 159.92 240.27 227.84 280.85 239.00 222.21 516.45 424.43 383.77 Cs 6.07 3.96 3.95 3.59 4.19 1.77 5.80 6.26 2.50 7.33 4.20 5.28 16.54 5.32 4.63 9.64 7.35 Sr 54.05 68.20 88.08 40.90 28.03 16.33 117.97 98.37 21.04 76.81 66.23 73.58 98.72 72.32 5.88 14.90 20.63 Sc 1.71 1.86 2.51 1.67 3.08 2.87 1.73 2.40 5.05 2.27 2.43 2.81 2.25 1.44 2.03 3.69 2.44 Zr 156.38 157.57 238.24 135.70 201.69 168.22 115.49 182.45 678.31 170.70 209.37 182.22 173.87 121.01 134.87 130.52 90.63

45 Table 5 (cont.): Bulk rock trace element data of the granites from the Drammen and Finnamarka batholiths. Abbreviations as in table 3. Analyses completed by ICP-MS. Sample M-C (14) M-C (22) M-C (24) Cm (12) Cm (13) Cm (25) Rap (18) Rap (19) MQ P (101) MQ P (102) MCG (103) MCG (104) MCG (105) CG (117) CG (107) La 47.81 40.37 54.83 65.54 70.65 48.83 56.73 72.76 51.56 51.94 57.13 46.08 49.20 26.23 102.39 Ce 103.35 79.30 113.91 130.88 144.38 105.89 100.71 128.33 108.17 104.04 131.65 96.42 107.93 41.68 167.73 Pr 12.52 9.19 13.68 15.15 16.99 12.85 10.25 13.48 12.75 11.82 16.32 11.10 12.85 3.86 23.35 Nd 45.15 31.95 48.55 53.58 60.45 46.80 32.68 42.76 45.04 41.17 62.32 39.51 45.26 9.60 82.14 Sm 9.57 6.40 9.91 10.90 12.14 9.73 5.64 7.01 9.72 8.78 14.04 8.88 9.95 1.78 15.86 Eu 1.27 1.18 1.19 1.66 1.78 1.33 1.04 1.10 1.57 1.31 3.02 1.44 1.66 0.18 2.84 Gd 8.52 5.41 8.75 9.00 10.34 8.45 4.21 5.49 8.15 7.62 13.01 8.03 8.65 1.60 13.22 Tb 1.57 0.96 1.57 1.61 1.86 1.53 0.72 0.93 1.52 1.48 2.42 1.58 1.61 0.39 2.32 Dy 9.87 6.04 9.80 9.62 11.26 9.45 4.16 5.52 9.53 9.24 15.06 9.97 10.14 2.86 13.93 Ho 2.05 1.24 2.02 1.93 2.25 1.91 0.82 1.11 1.96 1.96 3.12 2.05 2.05 0.70 2.71 Er 5.80 3.51 5.68 5.45 6.34 5.33 2.40 3.20 5.82 5.99 9.18 6.13 6.03 2.60 7.56 Tm 0.91 0.55 0.87 0.82 0.93 0.81 0.39 0.51 0.96 0.97 1.44 0.97 0.95 0.54 1.15 Yb 5.93 3.38 5.55 5.14 5.97 5.09 2.64 3.45 6.50 6.71 9.69 6.64 6.24 4.71 7.16 Lu 0.89 0.52 0.86 0.80 0.90 0.77 0.43 0.55 1.04 1.08 1.55 1.03 0.94 0.87 1.08 Ba 312.66 376.16 248.17 368.20 371.28 260.94 447.73 407.51 185.86 123.00 324.50 143.45 159.15 78.69 277.41 Th 19.15 12.46 19.93 16.13 19.85 17.26 28.65 36.34 24.54 26.73 20.45 17.56 13.04 19.91 13.76 Nb 61.01 35.25 59.63 54.15 62.30 55.59 60.90 74.18 138.61 160.86 159.02 149.14 119.90 260.92 122.81 Y 55.21 34.73 53.87 52.57 60.60 51.67 23.50 31.06 58.38 57.29 92.18 57.82 60.47 18.10 76.10 Hf 9.94 5.70 9.44 10.09 12.07 8.64 7.42 9.75 10.43 12.31 18.79 14.66 11.68 29.55 12.92 Ta 4.70 2.75 4.59 3.92 4.43 3.96 5.68 6.76 9.84 11.93 11.17 11.02 8.85 16.14 8.86 U 5.26 3.15 5.68 3.73 4.20 4.10 6.31 7.67 4.08 5.90 6.23 12.55 10.14 9.64 2.10 Pb 16.34 18.19 17.49 19.70 20.51 15.41 13.94 16.51 10.57 8.87 25.81 10.28 12.33 11.56 17.82 Rb 224.42 221.98 233.45 200.71 211.63 234.63 185.14 193.01 175.17 173.06 193.31 189.53 178.43 327.04 143.34 Cs 4.43 3.71 4.14 4.61 4.37 4.67 2.21 1.88 1.42 1.57 3.47 2.25 2.40 2.16 1.38 Sr 65.03 94.29 52.52 82.95 84.36 50.44 145.93 136.21 36.03 24.58 118.32 29.82 35.23 9.38 85.57 Sc 2.40 2.02 2.51 2.93 3.32 3.06 1.72 2.38 2.09 2.24 4.76 1.73 1.74 2.01 2.85 Zr 341.05 190.37 311.73 364.00 436.38 297.99 268.50 352.12 278.69 324.77 583.64 449.03 367.23 674.14 435.80

46 Table 5 (cont.): Bulk rock trace element data of the granites from the Drammen and Finnamarka batholiths. Abbreviations as in table 3. Analyses completed by ICP-MS. Sample: CG (108) CG (109) AP (110) AP (111) Q MD (112) Q MD (112a) Q MD (113) Q MS (114) Q MS (114aF) Q MS (114M) Q MS (115a) Q MS (116) PA (118) La 49.35 49.33 47.93 48.09 49.81 96.80 55.08 104.93 76.71 111.30 99.18 77.66 30.85 Ce 109.53 109.62 69.03 66.36 112.47 193.86 124.12 246.15 122.54 248.60 220.61 177.73 56.50 Pr 13.52 12.27 5.98 5.15 15.11 24.34 16.83 32.40 13.79 31.78 28.98 23.75 5.97 Nd 48.90 43.94 16.92 13.37 64.95 91.22 70.91 132.14 56.44 125.92 117.92 99.73 17.14 Sm 10.29 9.18 2.77 1.94 14.64 17.57 15.86 27.97 12.00 25.90 25.18 23.42 3.85 Eu 1.58 1.72 0.49 0.30 6.47 3.86 7.17 8.61 3.03 7.05 7.26 6.78 0.43 Gd 8.04 7.96 2.26 1.48 13.42 13.92 14.47 24.52 11.54 21.94 21.38 20.78 4.44 Tb 1.44 1.47 0.40 0.26 2.09 2.17 2.18 3.78 1.64 3.49 3.40 2.90 1.12 Dy 8.53 8.99 2.55 1.71 11.73 11.91 12.32 21.40 9.13 19.52 19.02 15.21 8.63 Ho 1.70 1.83 0.57 0.40 2.22 2.18 2.30 4.03 1.72 3.62 3.50 2.71 2.06 Er 4.94 5.21 1.92 1.44 5.83 5.54 5.84 10.52 4.34 9.43 8.96 6.52 6.99 Tm 0.75 0.81 0.34 0.30 0.82 0.77 0.80 1.46 0.58 1.30 1.21 0.80 1.22 Yb 4.92 5.49 2.86 2.76 4.96 4.78 4.82 8.97 3.70 7.91 7.25 4.86 8.68 Lu 0.75 0.85 0.56 0.57 0.76 0.73 0.75 1.37 0.62 1.19 1.07 0.79 1.44 Ba 155.91 216.90 69.77 32.61 725.17 637.75 802.85 729.79 265.32 635.39 724.61 601.19 10.03 Th 14.37 17.02 31.24 39.61 7.72 19.33 6.93 9.83 7.09 10.35 9.06 7.76 19.03 Nb 114.27 116.89 117.29 125.04 44.72 57.97 45.63 109.86 52.42 104.25 87.21 85.22 186.60 Y 44.77 49.51 21.28 14.35 56.00 52.66 57.64 101.61 42.54 91.63 86.79 67.11 65.18 Hf 11.39 10.76 7.47 7.78 11.92 15.96 13.79 24.38 19.47 23.17 22.11 20.59 15.15 Ta 8.87 8.10 7.71 7.92 3.18 3.11 2.94 6.37 1.09 6.40 5.15 3.30 12.81 U 6.77 3.38 10.20 8.14 3.03 3.36 2.58 2.68 3.72 2.91 2.31 2.53 9.06 Pb 19.42 25.55 13.89 12.09 12.18 17.36 12.20 11.30 8.25 12.34 22.08 10.06 14.87 Rb 157.69 172.36 250.90 272.43 73.36 169.44 57.12 75.09 85.57 81.43 65.79 87.40 250.52 Cs 1.86 2.32 2.81 1.80 2.22 2.08 2.52 1.40 3.21 1.74 1.22 1.87 3.00 Sr 37.02 66.91 21.91 11.23 533.86 147.74 568.47 562.82 582.84 379.36 469.02 264.28 13.73 Sc 2.18 2.33 1.73 1.49 20.24 7.00 20.62 11.78 13.52 9.17 9.00 11.70 2.08 Zr 355.13 339.44 171.76 169.74 536.96 592.96 654.97 1056.29 844.82 1017.86 963.84 974.63 405.64

47 Table 6: Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) CG Eq (7) Mn 1414 1223 869 884 862 939 1081 992 1243 1044 1031 1395 1570 Sr 62 50 47 46 53 45 45 42 46 45 42 50 50 Y 2180 1464 1948 2125 2382 1946 2240 1695 1857 1840 1682 4020 3931 La 1716 2870 1139 1561 1142 2550 3551 2926 3370 2970 2550 4210 6180

LaN 7241 12110 4806 6586 4819 10759 14983 12346 14219 12532 10759 17764 26076 Ce 4940 6360 3510 4370 3910 5720 7310 5700 7440 6530 5780 9650 12920 Pr 654 611 503 585 594 625 805 586 746 672 631 1038 1356 Nd 2170 1910 1805 2011 2126 1811 2548 1643 2320 1960 1900 3400 4297

NdN 4647 4090 3865 4306 4552 3878 5456 3518 4968 4197 4069 7281 9201 Sm 362 263 315 332 387 263 381 230 342 294 290 583 683

SmN 2366 1719 2061 2170 2529 1717 2491 1500 2235 1922 1895 3810 4464 Eu 24 17 17 18 21 16 21 15 20 16 17 43 51

EuN 414 291 285 304 360 269 370 252 341 272 290 738 883 Gd 365 290 315 339 371 270 397 245 359 304 303 537 616

GdN 1776 1411 1533 1650 1805 1314 1932 1190 1747 1479 1474 2613 2998 Tb 48 37 44 47 53 37 53 31 46 38 38 77 86 Dy 277 218 260 272 307 222 312 189 273 231 235 457 513 Ho 55 49 56 61 66 52 70 44 62 52 49 103 112 Er 172 150 159 173 185 166 207 142 189 164 149 318 329 Tm 23 22 21 24 25 25 30 22 27 25 21 46 46 Yb 152 144 133 154 157 179 200 157 183 179 145 312 301 Lu 21 22 19 22 21 28 30 25 28 27 22 48 44 Th 120 117 24 40 38 100 145 111 122 129 113 100 106 U 15.49 15.49 0.96 3.40 3.56 12.92 18.22 13.37 16.10 16.40 14.22 13.16 14.93 LREE 9866 12031 7289 8877 8180 10984 14617 11099 14238 12442 11168 18924 25487 HREE+Y 3293 2396 2955 3218 3567 2925 3539 2551 3023 2861 2645 5919 5978

LaN/SmN 3.06 7.04 2.33 3.04 1.91 6.27 6.02 8.23 6.36 6.52 5.68 4.66 5.84

LaN/YN 5.21 12.99 3.87 4.87 3.18 8.68 10.50 11.44 12.02 10.69 10.04 6.94 10.41 La/Ce 0.35 0.45 0.32 0.36 0.29 0.45 0.49 0.51 0.45 0.45 0.44 0.44 0.48 Sm/Nd 0.17 0.14 0.17 0.17 0.18 0.15 0.15 0.14 0.15 0.15 0.15 0.17 0.16

EuN/Eu* 0.20 0.19 0.16 0.16 0.17 0.18 0.17 0.19 0.17 0.16 0.17 0.23 0.24

SmN/NdN 0.51 0.42 0.53 0.50 0.56 0.44 0.46 0.43 0.45 0.46 0.47 0.52 0.49 La/Sm 4.74 10.91 3.61 4.70 2.95 9.71 9.32 12.75 9.85 10.10 8.79 7.22 9.05

48 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: CG Eq (7) CG Eqr (17) CG Eqr (17) CG Eqr (17) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) Mn 1522 182000 1642 1253 1102 1070 917 2450 1039 1162 913 Sr 50 243 40 39 77 47 26 10 30 28 22 Y 3130 2380 2520 2791 2026 2180 1624 10130 2145 1796 1418 La 5110 1890 2600 3210 2318 2820 3460 5210 2555 2511 2800

LaN 21561 7975 10970 13544 9781 11899 14599 21983 10781 10595 11814 Ce 11750 5140 6370 7830 5090 5660 5700 17900 4870 4710 4820 Pr 1160 547 620 764 685 730 623 2830 647 572 528 Nd 3360 1820 1991 2308 2530 2670 2040 10900 2508 2070 1646

NdN 7195 3897 4263 4942 5418 5717 4368 23340 5370 4433 3525 Sm 504 295 321 367 515 505 326 2310 520 394 249

SmN 3294 1928 2098 2399 3366 3301 2131 15098 3399 2575 1627 Eu 40 14 17 22 19 19 11 103 15 13 9

EuN 686 243 291 379 321 333 195 1776 264 227 162 Gd 436 285 287 336 479 484 312 1880 504 398 232

GdN 2122 1387 1397 1635 2331 2355 1518 9148 2453 1937 1129 Tb 60 43 42 50 67 67 42 309 69 55 33 Dy 356 253 261 302 383 391 241 2060 388 314 193 Ho 80 59 56 66 74 77 50 415 74 62 41 Er 251 175 171 202 196 204 148 1230 194 165 131 Tm 36 26 26 30 24 26 21 177 23 21 20 Yb 249 166 174 215 133 158 145 1130 133 120 144 Lu 38 24 25 32 16 20 23 123 17 16 22 Th 87 82 83 130 103 158 175 912 118 112 131 U 11.61 15.10 11.82 16.88 17.80 24.70 31.40 146 19 18 24 LREE 21924 9706 11919 14501 11157 12404 12160 39253 11115 10270 10052 HREE+Y 4637 3411 3562 4025 3398 3607 2606 17454 3548 2947 2234

LaN/SmN 7 4.14 5.23 5.65 2.91 3.60 6.85 1.46 3.17 4.11 7.26

LaN/YN 11 5.26 6.83 7.62 7.58 8.57 14.11 3.41 7.89 9.26 13.08 La/Ce 0.43 0.37 0.41 0.41 0.46 0.50 0.61 0.29 0.52 0.53 0.58 Sm/Nd 0.15 0.16 0.16 0.16 0.20 0.19 0.16 0.21 0.21 0.19 0.15

EuN/Eu* 0.26 0.15 0.17 0.19 0.11 0.12 0.11 0.15 0.09 0.10 0.12

SmN/NdN 0.46 0.49 0.49 0.49 0.62 0.58 0.49 0.65 0.63 0.58 0.46 La/Sm 10.14 6.41 8.10 8.75 4.50 5.58 10.61 2.26 4.91 6.37 11.24

49 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (20) CG Eq (23) CG Eq (23) Mn 1017 977 2075 2288 1683 2372 1071 1024 2205 1284 1388 Sr 38 31 11 11 29 5 56 45 34 64 48 Y 1603 1594 12320 13870 8580 6960 2215 1738 12300 1159 969 La 2787 2948 4500 4160 4030 4940 2909 2469 5290 2583 3670

LaN 11759 12439 18987 17553 17004 20844 12274 10418 22321 10899 15485 Ce 5170 5380 15870 15890 13200 14350 6210 5060 19350 4890 6650 Pr 624 619 2690 2928 2196 1826 765 613 3170 357 413 Nd 2117 2035 10940 12880 8910 5720 2816 2200 13360 1173 1211

NdN 4533 4358 23426 27580 19079 12248 6030 4711 28608 2512 2593 Sm 353 336 2580 3380 1993 888 522 388 3150 176 150

SmN 2307 2198 16863 22092 13026 5804 3412 2536 20588 1150 979 Eu 14 13 124 142 91 43 20 15 152 16 13

EuN 237 229 2140 2443 1572 741 350 265 2616 279 229 Gd 334 315 2271 3050 1670 748 501 371 2670 167 142

GdN 1625 1535 11051 14842 8127 3640 2438 1805 12993 815 692 Tb 45 43 392 529 282 127 68 50 447 24 19 Dy 262 255 2510 3300 1827 876 395 299 2780 150 112 Ho 54 52 492 623 339 201 79 59 532 31 26 Er 153 151 1377 1686 926 717 212 161 1453 100 83 Tm 21 21 189 218 126 123 27 20 194 15 13 Yb 125 133 1156 1267 738 914 162 126 1151 101 89 Lu 18 19 119 128 77 111 21 16 117 15 14 Th 112 126 828 727 568 694 172 113 1113 44 80 U 19 22 114 116 67 147 27 19 121 5 9 LREE 11065 11332 36704 39380 30420 27767 13242 10745 44472 9195 12107 HREE+Y 2614 2583 20826 24671 14565 10776 3678 2841 21644 1763 1467

LaN/SmN 5.10 5.66 1.13 0.79 1.31 3.59 3.60 4.11 1.08 9.48 15.82

LaN/YN 11.52 12.25 2.42 1.99 3.11 4.70 8.70 9.41 2.85 14.76 25.09 La/Ce 0.54 0.55 0.28 0.26 0.31 0.34 0.47 0.49 0.27 0.53 0.55 Sm/Nd 0.17 0.17 0.24 0.26 0.22 0.16 0.19 0.18 0.24 0.15 0.12

EuN/Eu* 0.12 0.12 0.16 0.13 0.15 0.16 0.12 0.12 0.16 0.29 0.28

SmN/NdN 0.51 0.50 0.72 0.80 0.68 0.47 0.57 0.54 0.72 0.46 0.38 La/Sm 7.90 8.77 1.74 1.23 2.02 5.56 5.57 6.36 1.68 14.68 24.50

50 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: CG Eq (23) CG Eq (23) CG Eq (23) CG Eq (23) CG Eq (23) MP (2) MP (2) MP (2) MP (2) MP (2) MP (2) MP (3) Mn 1443 5810 1402 1366 1322 649 920 835 1320 643 601 52000 Sr 76 15 59 37 41 570 101 39 44 36 36 58 Y 951 5490 930 1422 641 2130 2770 1618 3310 3505 3016 4100 La 1761 3690 2482 2700 2050 2620 2880 3380 2805 2920 2462 4830

LaN 7430 15570 10473 11392 8650 11055 12152 14262 11835 12321 10388 20380 Ce 3610 9900 4550 5460 3680 6170 6750 6000 6570 6960 5910 12090 Pr 273 1010 364 468 280 756 672 513 691 741 615 1690 Nd 968 3810 1224 1708 893 3120 2060 1545 2351 2429 2125 6080

NdN 2073 8158 2621 3657 1912 6681 4411 3308 5034 5201 4550 13019 Sm 154 800 185 299 122 629 376 248 453 473 415 1076

SmN 1008 5229 1207 1954 800 4111 2458 1621 2961 3092 2712 7033 Eu 13 96 15 18 9 30 17 11 19 21 19 58

EuN 222 1655 251 318 158 514 285 193 325 355 319 993 Gd 142 690 171 292 120 560 394 264 461 475 416 943

GdN 689 3358 833 1421 582 2725 1917 1286 2243 2311 2022 4589 Tb 20 120 24 39 16 77 56 36 68 72 61 125 Dy 121 790 140 217 90 409 339 213 414 437 380 747 Ho 25 169 30 46 20 77 75 47 90 95 81 151 Er 77 513 85 120 56 195 215 136 271 285 244 461 Tm 12 80 13 16 8 22 28 17 39 41 35 65 Yb 77 555 81 101 54 123 174 108 246 261 220 509 Lu 11 74 13 16 9 15 25 16 33 34 29 70 Th 7 208 25 24 11 174 156 110 160 182 145 920 U 2 61 4 4 3 20 42 36 48 70 65 536 LREE 6779 19306 8819 10653 7035 13325 12755 11697 12889 13544 11546 25824 HREE+Y 1436 8481 1486 2269 1013 3608 4077 2455 4932 5205 4482 7170

LaN/SmN 7.37 2.98 8.68 5.83 10.81 2.69 4.94 8.80 4.00 3.99 3.83 2.90

LaN/YN 12.27 4.45 17.68 12.58 21.19 8.15 6.89 13.84 5.61 5.52 5.41 7.80 La/Ce 0.49 0.37 0.55 0.49 0.56 0.42 0.43 0.56 0.43 0.42 0.42 0.40 Sm/Nd 0.16 0.21 0.15 0.18 0.14 0.20 0.18 0.16 0.19 0.19 0.20 0.18

EuN/Eu* 0.27 0.40 0.25 0.19 0.23 0.15 0.13 0.13 0.13 0.13 0.14 0.17

SmN/NdN 0.49 0.64 0.46 0.53 0.42 0.62 0.56 0.49 0.59 0.59 0.60 0.54 La/Sm 11.41 4.61 13.45 9.03 16.75 4.17 7.66 13.63 6.19 6.17 5.93 4.49

51 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: MP (3) MP (10) MP (10) MP (10) MP (10) MP (10) CG O (4) CG O (4) CG O (5) CG O (5) FG P (6) FG P (6) FG P (6) FG P (6) Mn 968 4620 3500 9120 6440 24700 818 3400 2700 4500 2180 1840 1898 1554 Sr 36 52 130 65 52 100 30 4 110 570 152 65 55 122 Y 1079 2370 3250 5220 7330 5320 1100 3132 6700 12000 1780 1516 1736 1010 La 4610 2680 373 1953 3141 2320 2710 4990 12000 17000 4950 4150 4480 4360

LaN 19451 11308 1574 8241 13253 9789 11435 21055 50633 71730 20886 17511 18903 18397 Ce 8020 6940 1636 5760 8630 5970 5570 13690 24000 41000 8920 8220 9040 7310 Pr 789 826 309 829 1294 797 502 1408 2200 4900 1079 997 1089 771 Nd 2378 2900 1633 3670 5470 3420 1560 4700 7300 20000 3750 3730 4050 2430

NdN 5092 6210 3497 7859 11713 7323 3340 10064 15632 42827 8030 7987 8672 5203 Sm 285 524 623 1122 1536 826 251 699 1300 3700 578 596 637 287

SmN 1862 3425 4072 7333 10039 5399 1641 4569 8497 24183 3778 3895 4163 1876 Eu 15 43 36 72 93 56 9 39 37 140 91 91 92 49

EuN 256 748 624 1245 1610 964 155 666 638 2414 1564 1562 1579 847 Gd 321 468 615 1137 1478 801 246 558 1300 3200 517 532 551 254

GdN 1564 2277 2993 5533 7192 3898 1197 2715 6326 15572 2516 2589 2681 1236 Tb 29 64 109 197 258 137 32 81 190 430 58 58 63 26 Dy 156 384 596 1162 1526 818 185 501 1100 2400 294 288 313 133 Ho 33 76 108 222 303 157 38 106 220 450 57 56 61 28 Er 106 227 275 593 795 447 103 315 620 1200 160 145 166 83 Tm 15 33 36 83 111 62 13 50 89 140 22 18 21 12 Yb 112 224 218 530 719 463 82 378 620 770 146 111 133 92 Lu 20 32 26 71 98 72 12 60 97 95 21 17 19 18 Th 240 66 56 190 132 95 80 326 560 720 51 32 37 39 U 69.70 7.14 11.09 33.10 19.40 11.40 19.10 251.70 110.00 110.00 - - - - LREE 16097 13913 4610 13406 20164 13389 10602 25526 46837 86740 19368 17784 19388 15207 HREE+Y 1871 3879 5234 9214 12618 8277 1812 5180 10936 20685 3054 2742 3064 1656

LaN/SmN 10.45 3.30 0.39 1.12 1.32 1.81 6.97 4.61 5.96 2.97 5.53 4.50 4.54 9.81

LaN/YN 28.30 7.49 0.76 2.48 2.84 2.89 16.32 10.55 11.86 9.38 18.42 18.13 17.10 28.60 La/Ce 0.57 0.39 0.23 0.34 0.36 0.39 0.49 0.36 0.50 0.41 0.55 0.50 0.50 0.60 Sm/Nd 0.12 0.18 0.38 0.31 0.28 0.24 0.16 0.15 0.18 0.19 0.15 0.16 0.16 0.12

EuN/Eu* 0.15 0.27 0.18 0.20 0.19 0.21 0.11 0.19 0.09 0.12 0.51 0.49 0.47 0.56

SmN/NdN 0.37 0.55 1.16 0.93 0.86 0.74 0.49 0.45 0.54 0.56 0.47 0.49 0.48 0.36 La/Sm 16.18 5.11 0.60 1.74 2.04 2.81 10.80 7.14 9.23 4.59 8.56 6.96 7.03 15.19

52 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: FG P (6) FG P (6) Cm (13) Cm (13) Cm (13) Cm (13) Cm (13) Cm (13) Cm (13) Cm (13) Cm (13) Cm (13) Cm (13) Cm (25) Mn 1730 1532 832 867 875 925 1153 1060 1061 1061 957 908 1050 1207 Sr 95 116 52 43 44 55 57 62 58 64 48 50 40 55 Y 1600 1207 372 414 337 513 1998 1830 2780 5070 1460 1620 1568 1460 La 5220 4109 1659 1735 1944 1711 3990 5080 3160 3380 4250 4358 5050 4910

LaN 22025 17338 7000 7321 8203 7219 16835 21435 13333 14262 17932 18388 21308 20717 Ce 10060 7670 2554 2592 2701 2700 7310 7600 7400 7610 7360 7880 8790 8040 Pr 1080 796 245 224 212 270 831 740 1030 1233 777 840 907 799 Nd 3870 2610 741 737 639 841 3090 2330 4140 5710 2470 2620 2740 2400

NdN 8287 5589 1587 1578 1368 1801 6617 4989 8865 12227 5289 5610 5867 5139 Sm 548 334 93 115 89 126 570 356 870 1346 353 390 390 326

SmN 3582 2183 609 750 584 822 3725 2327 5686 8797 2307 2549 2549 2131 Eu 88 59 9 9 9 11 38 38 59 84 33 36 33 28

EuN 1519 1021 157 156 160 187 653 648 1014 1450 576 617 572 488 Gd 484 296 88 128 94 125 602 365 770 1357 349 397 391 328

GdN 2355 1440 428 620 456 609 2929 1776 3747 6603 1698 1932 1903 1596 Tb 55 33 10 15 11 16 79 45 107 193 43 49 47 40 Dy 279 171 54 79 60 86 439 261 600 1070 235 275 253 222 Ho 57 37 12 16 12 18 87 53 123 202 51 57 54 47 Er 157 111 34 43 34 50 223 147 336 486 149 160 156 143 Tm 22 16 5 5 4 6 28 21 38 52 21 22 21 21 Yb 147 121 33 35 32 43 168 134 202 288 141 146 149 152 Lu 23 22 6 6 6 7 24 25 31 35 24 24 24 25 Th 39 80 8 10 11 15 71 189 110 123 86 82 85 81 U ------LREE 20866 15578 5302 5411 5595 5659 15829 16144 16659 19363 15243 16124 17910 16503 HREE+Y 2824 2014 613 741 590 863 3648 2881 4987 8753 2472 2750 2664 2439

LaN/SmN 6.15 7.94 11.49 9.77 14.04 8.79 4.52 9.21 2.34 1.62 7.77 7.21 8.36 9.72

LaN/YN 21.61 22.55 29.54 27.78 38.17 22.09 13.23 18.39 7.53 4.42 19.28 17.82 21.34 22.28 La/Ce 0.52 0.54 0.65 0.67 0.72 0.63 0.55 0.67 0.43 0.44 0.58 0.55 0.57 0.61 Sm/Nd 0.14 0.13 0.13 0.16 0.14 0.15 0.18 0.15 0.21 0.24 0.14 0.15 0.14 0.14

EuN/Eu* 0.52 0.58 0.31 0.23 0.31 0.26 0.20 0.32 0.22 0.19 0.29 0.28 0.26 0.26

SmN/NdN 0.43 0.39 0.38 0.48 0.43 0.46 0.56 0.47 0.64 0.72 0.44 0.45 0.43 0.41 La/Sm 9.53 12.30 17.80 15.13 21.74 13.61 7.00 14.27 3.63 2.51 12.04 11.17 12.95 15.06

53 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Cm (25) Cm (25) Cm (12) Cm (12) Cm (12) Cm (12) Cm (12) Cm (12) Cm (12) Cm (12) Cm (12) M-C (14) M-C (14) M-C (14) Mn 942 1241 986 2140 764 942 7100 902 945 1257 4310 1711 123000 1115 Sr 132 61 56 105 72 63 14 58 57 64 11 49 198 43 Y 1537 2230 951 1460 436 472 6080 532 925 2670 4890 2010 2380 705 La 2630 4300 4600 4700 1720 2011 5580 2234 4140 5600 6550 3400 4070 1572

LaN 11097 18143 19409 19831 7257 8485 23544 9426 17468 23629 27637 14346 17173 6633 Ce 5060 7980 7570 10620 2780 3270 16170 3840 6980 11360 17960 6580 7440 3098 Pr 608 1004 618 1215 219 272 1773 318 558 1144 1976 600 700 279 Nd 2090 3450 1693 4080 683 910 5760 1017 1619 3930 6100 2121 2330 959

NdN 4475 7388 3625 8737 1463 1949 12334 2178 3467 8415 13062 4542 4989 2054 Sm 323 566 194 562 95 128 923 137 200 654 889 393 366 157

SmN 2111 3699 1265 3673 621 838 6033 898 1307 4275 5810 2569 2392 1025 Eu 27 37 21 43 14 12 110 13 21 56 113 21 33 8

EuN 469 643 360 738 240 209 1903 229 369 971 1945 360 566 139 Gd 300 530 186 429 91 127 783 129 176 622 704 410 384 153

GdN 1460 2579 905 2088 441 617 3810 629 856 3027 3426 1995 1869 742 Tb 42 74 22 44 11 15 128 15 22 81 103 56 54 20 Dy 231 398 128 212 63 79 816 84 121 449 611 317 305 115 Ho 50 84 28 42 13 17 182 18 28 93 137 66 67 25 Er 141 234 92 124 39 46 591 52 87 248 463 181 211 66 Tm 20 32 13 18 5 6 94 7 13 31 78 24 28 8 Yb 135 202 99 132 39 41 686 45 96 196 598 152 184 50 Lu 22 32 17 22 7 6 89 7 17 27 81 22 29 7 Th 71 93 53 82 26 9 346 13 93 70 367 106 62 8 U - - 8.43 20.10 6.20 2.22 115.00 2.61 12.78 10.57 52.00 26.40 20.90 1.68 LREE 10738 17337 14696 21220 5511 6603 30316 7560 13518 22744 33588 13115 14939 6073 HREE+Y 2478 3814 1536 2482 704 809 9449 890 1483 4418 7666 3238 3642 1150

LaN/SmN 5.26 4.90 15.34 5.40 11.69 10.13 3.90 10.50 13.36 5.53 4.76 5.59 7.18 6.47

LaN/YN 11.34 12.77 32.04 21.33 26.13 28.22 6.08 27.82 29.65 13.89 8.87 11.21 11.33 14.77 La/Ce 0.52 0.54 0.61 0.44 0.62 0.61 0.35 0.58 0.59 0.49 0.36 0.52 0.55 0.51 Sm/Nd 0.15 0.16 0.11 0.14 0.14 0.14 0.16 0.14 0.12 0.17 0.15 0.19 0.16 0.16

EuN/Eu* 0.27 0.21 0.34 0.27 0.46 0.29 0.40 0.31 0.35 0.27 0.44 0.16 0.27 0.16

SmN/NdN 0.47 0.50 0.35 0.42 0.42 0.43 0.49 0.41 0.38 0.51 0.44 0.57 0.48 0.50 La/Sm 8.14 7.60 23.76 8.36 18.11 15.69 6.05 16.26 20.70 8.56 7.37 8.65 11.12 10.03

54 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: M-C (14) M-C (14) M-C (14) M-C (14) M-C (14) M-C (14) M-C (14) M-C (14) M-C (14) M-C (14) M-C (14) M-C (14) M-C (14) Mn 1065 1254 1351 1239 1136 1131 1262 59000 1447 1612 1501 1910 1115 Sr 40 42 45 42 48 96 175 161 48 43 55 63 49 Y 550 1915 2094 2185 600 765 554 4200 3450 2527 2950 3400 785 La 1484 3960 4670 4310 1973 1475 1343 3300 5700 6790 5420 3900 1831

LaN 6262 16709 19705 18186 8325 6224 5667 13924 24051 28650 22869 16456 7726 Ce 2788 7950 9310 8600 3340 2992 2580 7200 11550 12330 10580 7870 3470 Pr 235 708 837 807 248 279 240 790 1196 1052 996 714 313 Nd 781 2317 2540 2560 788 1062 849 2800 3990 2868 3080 2370 1039

NdN 1672 4961 5439 5482 1687 2274 1818 5996 8544 6141 6595 5075 2225 Sm 123 359 367 406 125 192 151 450 660 386 510 420 163

SmN 805 2346 2399 2654 818 1256 986 2941 4314 2523 3333 2745 1065 Eu 7 25 29 27 9 10 8 45 43 32 41 33 10

EuN 126 429 503 462 161 164 139 776 743 543 703 571 175 Gd 121 335 343 388 128 186 144 620 614 347 484 423 161

GdN 591 1630 1669 1888 625 903 698 3017 2988 1689 2355 2058 783 Tb 16 46 46 53 16 25 18 61 86 48 67 62 21 Dy 88 264 272 312 88 135 101 406 509 290 404 434 122 Ho 19 56 60 66 20 27 20 90 109 68 89 101 27 Er 53 166 179 190 53 70 53 250 307 221 246 321 72 Tm 7 22 26 26 7 8 6 38 40 33 34 60 9 Yb 41 145 169 162 47 51 41 240 248 230 231 470 57 Lu 6 21 26 23 8 8 6 30 36 36 35 76 9 Th 6 63 82 73 16 9 6 335 123 145 118 224 11 U 1.76 8.43 10.74 10.02 2.69 1.80 2.51 108.00 19.10 19.09 17.20 200.00 2.07 LREE 5419 15319 17753 16710 6483 6010 5171 14585 23139 23458 20627 15307 6826 HREE+Y 901 2970 3213 3404 967 1274 943 5935 5398 3800 4539 5347 1262

LaN/SmN 7.78 7.12 8.21 6.85 10.18 4.95 5.75 4.73 5.58 11.36 6.86 5.99 7.25

LaN/YN 17.87 13.70 14.77 13.07 21.78 12.77 16.06 5.20 10.94 17.80 12.17 7.60 15.45 La/Ce 0.53 0.50 0.50 0.50 0.59 0.49 0.52 0.46 0.49 0.55 0.51 0.50 0.53 Sm/Nd 0.16 0.15 0.14 0.16 0.16 0.18 0.18 0.16 0.17 0.13 0.17 0.18 0.16

EuN/Eu* 0.18 0.22 0.25 0.21 0.22 0.15 0.17 0.26 0.21 0.26 0.25 0.24 0.19

SmN/NdN 0.48 0.47 0.44 0.48 0.48 0.55 0.54 0.49 0.50 0.41 0.51 0.54 0.48 La/Sm 12.05 11.03 12.72 10.62 15.77 7.67 8.90 7.33 8.64 17.59 10.63 9.29 11.23

55 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: M-C (14) Rap (18) Rap (18) Rap (18) Rap (18) Rap (18) Rap (18) Rap (18) Rap (19) Rap (19) Rap (19) Rap (19) Rap (19) Mn 1819 1022 1025 478 1020 973 8200 1033 248000 1410 1082 1114 891 Sr 60 154 124 84 126 134 117 127 307 175 116 133 96 Y 1858 1431 2167 673 2088 2162 2210 2186 7710 2210 2149 1311 2239 La 3490 2423 4230 1135 3800 4000 3940 4290 2130 4180 3486 2337 3456

LaN 14726 10224 17848 4789 16034 16878 16624 18101 8987 17637 14709 9861 14582 Ce 7270 5660 9800 2760 9060 9560 9600 10090 5460 8540 7250 4880 7060 Pr 665 615 1149 298 1032 1079 1068 1178 770 1130 950 615 962 Nd 2306 2250 3950 1125 3740 3730 3870 4000 3060 3850 3504 2202 3544

NdN 4938 4818 8458 2409 8009 7987 8287 8565 6552 8244 7503 4715 7589 Sm 378 416 680 208 628 653 673 682 830 666 638 402 673

SmN 2471 2719 4444 1361 4105 4268 4399 4458 5425 4353 4170 2627 4399 Eu 27 41 35 10 29 31 32 32 183 25 27 16 27

EuN 464 698 603 178 496 529 559 553 3155 429 457 271 465 Gd 358 342 549 178 517 534 545 569 940 566 552 333 587

GdN 1742 1664 2672 866 2516 2599 2652 2769 4574 2754 2686 1620 2856 Tb 49 46 72 24 68 74 75 75 154 77 76 46 79 Dy 286 262 394 127 388 395 419 408 960 436 412 244 441 Ho 60 51 72 23 70 71 76 71 221 80 76 46 79 Er 166 136 184 59 176 182 203 185 820 208 194 116 203 Tm 22 18 22 7 21 23 26 23 126 25 24 14 25 Yb 139 121 128 40 121 131 157 128 1060 142 136 78 141 Lu 20 17 15 5 15 15 20 15 161 16 16 9 17 Th 48 140 145 19 111 125 203 134 14500 121 95 34 120 U 9.25 254.00 20.73 3.69 16.39 19.32 52.00 19.92 24400.00 15.60 12.21 5.56 16.06 LREE 14136 11405 19844 5537 18289 19053 19183 20272 12433 18391 15855 10452 15722 HREE+Y 2957 2424 3604 1136 3465 3586 3731 3660 12152 3760 3634 2197 3810

LaN/SmN 5.96 3.76 4.02 3.52 3.91 3.95 3.78 4.06 1.66 4.05 3.53 3.75 3.32

LaN/YN 12.44 11.22 12.93 11.17 12.06 12.26 11.81 13.00 1.83 12.53 10.75 11.81 10.23 La/Ce 0.48 0.43 0.43 0.41 0.42 0.42 0.41 0.43 0.39 0.49 0.48 0.48 0.49 Sm/Nd 0.16 0.18 0.17 0.19 0.17 0.18 0.17 0.17 0.27 0.17 0.18 0.18 0.19

EuN/Eu* 0.22 0.33 0.18 0.16 0.15 0.16 0.16 0.16 0.63 0.12 0.14 0.13 0.13

SmN/NdN 0.50 0.56 0.53 0.56 0.51 0.53 0.53 0.52 0.83 0.53 0.56 0.56 0.58 La/Sm 9.23 5.82 6.22 5.45 6.05 6.13 5.85 6.29 2.57 6.28 5.46 5.81 5.14

56 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Rap (19) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Mn 848 498 473 468 56 56 59 61 59 54 Sr 106 310 252 381 34 34 35 37 36 35 Y 2156 557 511 587 81 76 77 81 81 73 La 3480 1192 1214 1375 152 143 143 156 149 153

LaN 14684 5030 5122 5802 641 605 603 659 630 643 Ce 7040 2950 2745 3270 352 342 358 381 372 357 Pr 938 309 285 344 39 38 39 42 41 38 Nd 3488 1250 1131 1382 161 158 162 169 170 155

NdN 7469 2677 2422 2959 346 338 347 363 364 333 Sm 643 217 182 227 30 28 29 31 31 28

SmN 4203 1418 1188 1482 193 183 190 199 201 181 Eu 27 26 29 36 3 3 3 3 3 3

EuN 460 454 508 619 52 50 52 55 56 50 Gd 557 190 163 190 26 26 26 27 27 24

GdN 2710 925 792 925 129 125 126 132 132 117 Tb 75 22 19 22 3 3 3 3 3 3 Dy 421 112 100 114 16 16 16 17 17 15 Ho 74 20 18 21 3 3 3 3 3 3 Er 196 50 46 54 7 7 7 7 7 7 Tm 24 6 5 6 1 1 1 1 1 1 Yb 138 31 31 38 4 4 4 4 4 4 Lu 16 4 4 5 1 1 1 1 1 1 Th 128 13 16 24 2 1 1 1 2 1 U 15.90 10.45 7.18 8.99 1.24 0.48 0.41 0.25 0.99 0.92 LREE 15616 5944 5586 6634 736 712 734 782 766 734 HREE+Y 3656 991 898 1036 142 135 137 144 145 130

LaN/SmN 3.49 3.55 4.31 3.91 3.32 3.30 3.18 3.31 3.13 3.55

LaN/YN 10.69 14.18 15.74 15.52 12.48 12.56 12.31 12.82 12.17 13.78 La/Ce 0.49 0.40 0.44 0.42 0.43 0.42 0.40 0.41 0.40 0.43 Sm/Nd 0.18 0.17 0.16 0.16 0.18 0.18 0.18 0.18 0.18 0.18

EuN/Eu* 0.14 0.40 0.52 0.53 0.33 0.33 0.34 0.34 0.34 0.34

SmN/NdN 0.56 0.53 0.49 0.50 0.56 0.54 0.55 0.55 0.55 0.54 La/Sm 5.41 5.49 6.68 6.06 5.15 5.12 4.92 5.12 4.85 5.51

57 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Q MD (113) Mn 52 581 568 498 494 451 480 534 459 511 Sr 35 277 275 295 287 284 255 293 292 280 Y 67 582 573 479 502 432 484 474 433 542 La 142 1246 1305 1133 984 1104 1111 1126 1107 1275

LaN 597 5257 5506 4781 4152 4658 4688 4751 4671 5380 Ce 333 3010 3030 2530 2360 2590 2480 2800 2620 3019 Pr 36 315 315 266 250 258 263 280 258 312 Nd 145 1290 1242 1085 1011 977 1044 1090 1018 1208

NdN 311 2762 2660 2323 2165 2092 2236 2334 2180 2587 Sm 25 223 214 187 177 162 176 179 168 199

SmN 166 1458 1397 1221 1158 1056 1148 1173 1097 1302 Eu 3 28 29 26 24 25 25 26 26 28

EuN 47 479 500 452 409 426 424 442 441 488 Gd 23 196 192 167 160 139 155 160 143 176

GdN 110 952 934 811 780 674 752 777 693 857 Tb 3 23 22 19 19 17 18 19 17 20 Dy 14 116 115 100 99 85 91 93 84 107 Ho 2 21 21 18 18 15 17 17 16 19 Er 6 53 51 44 44 38 41 42 38 49 Tm 1 6 6 5 5 4 5 5 4 6 Yb 4 32 32 28 29 25 27 27 25 31 Lu 0 4 4 4 4 3 4 4 3 4 Th 1 8 8 7 6 4 9 9 8 16 U 0.58 4.32 2.65 3.04 3.42 1.75 3.39 6.34 4.79 11.30 LREE 684 6112 6135 5227 4806 5115 5098 5501 5197 6041 HREE+Y 120 1032 1017 864 881 758 839 840 762 955

LaN/SmN 3.60 3.61 3.94 3.92 3.58 4.41 4.08 4.05 4.26 4.13

LaN/YN 13.93 14.18 15.09 15.67 12.99 16.93 15.21 15.74 16.94 15.58 La/Ce 0.42 0.41 0.43 0.45 0.42 0.43 0.45 0.40 0.42 0.42 Sm/Nd 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.16 0.16 0.16

EuN/Eu* 0.35 0.41 0.44 0.45 0.43 0.50 0.46 0.46 0.51 0.46

SmN/NdN 0.53 0.53 0.53 0.53 0.53 0.50 0.51 0.50 0.50 0.50 La/Sm 5.57 5.59 6.11 6.07 5.55 6.83 6.32 6.28 6.59 6.40

58 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MD (113) Q MD (112) Q MD (112) Q MD (112) Q MD (112) Q MD (112) Q MD (112) Q MD (112) Q MD (112) Q MD (112) Mn 522 965 907 715 808 743 770 881 927 840 Sr 311 492 420 430 405 444 436 517 463 488 Y 507 1241 905 746 734 875 869 991 970 954 La 1082 2120 1960 1896 1915 1708 1699 2231 2116 2040

LaN 4565 8945 8270 8000 8080 7207 7169 9414 8928 8608 Ce 2680 4410 3980 3750 3890 3850 3570 4690 4520 4500 Pr 281 601 500 456 451 485 444 547 524 519 Nd 1147 2720 2110 1814 1800 2030 1870 2123 2082 2097

NdN 2456 5824 4518 3884 3854 4347 4004 4546 4458 4490 Sm 196 516 385 291 283 379 359 387 400 378

SmN 1280 3373 2516 1902 1850 2477 2346 2529 2614 2471 Eu 24 44 41 40 40 42 42 50 44 44

EuN 422 759 707 690 693 719 719 866 760 764 Gd 176 441 363 257 242 322 318 332 327 322

GdN 856 2146 1766 1251 1178 1567 1547 1616 1591 1567 Tb 20 56 40 30 29 35 35 36 39 37 Dy 103 272 203 147 142 171 183 184 190 177 Ho 18 43 37 27 27 31 32 35 36 35 Er 45 101 83 73 67 75 75 90 89 80 Tm 5 12 8 8 8 8 8 11 10 9 Yb 28 62 48 45 44 45 45 56 58 57 Lu 4 7 6 6 6 6 6 8 8 7 Th 6 16 16 19 16 14 16 28 17 12 U 2.70 ------LREE 5410 10411 8976 8247 8379 8494 7984 10028 9686 9578 HREE+Y 907 2235 1694 1339 1299 1569 1571 1743 1728 1677

LaN/SmN 3.57 2.65 3.29 4.21 4.37 2.91 3.06 3.72 3.42 3.48

LaN/YN 14.14 11.32 14.35 16.84 17.28 12.93 12.95 14.91 14.45 14.17 La/Ce 0.40 0.48 0.49 0.51 0.49 0.44 0.48 0.48 0.47 0.45 Sm/Nd 0.17 0.19 0.18 0.16 0.16 0.19 0.19 0.18 0.19 0.18

EuN/Eu* 0.40 0.28 0.34 0.45 0.47 0.36 0.38 0.43 0.37 0.39

SmN/NdN 0.52 0.58 0.56 0.49 0.48 0.57 0.59 0.56 0.59 0.55 La/Sm 5.53 4.11 5.09 6.52 6.77 4.51 4.73 5.76 5.29 5.40

59 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MD (112) Q MD (112) Q MD (112) Q MD (112) Q MD (112) Q MD (112) Q MD (112) Q MS (114) Q MS (114) Q MS (114) Mn 823 949 836 820 746 762 1046 179 188 183 Sr 494 431 479 448 434 467 266 45 48 51 Y 965 1029 1004 861 757 831 1547 289 167 349 La 2027 1560 2121 1943 1793 1771 1860 219 347 380

LaN 8553 6582 8949 8198 7565 7473 7848 924 1464 1603 Ce 4400 4510 4580 4320 3830 3850 4280 561 726 874 Pr 522 525 547 493 453 479 580 69 78 108 Nd 2041 2010 2140 1873 1694 1854 2220 327 303 463

NdN 4370 4304 4582 4011 3627 3970 4754 700 649 991 Sm 388 433 382 327 285 334 442 89 59 116

SmN 2536 2830 2497 2137 1863 2183 2889 580 388 756 Eu 44 36 45 42 38 42 22 14 9 19

EuN 752 616 776 716 655 728 384 233 156 334 Gd 320 342 315 292 248 312 408 94 55 119

GdN 1557 1664 1534 1421 1205 1518 1985 456 268 577 Tb 36 43 37 33 29 34 52 12 7 14 Dy 177 200 185 165 149 169 273 63 33 71 Ho 34 39 37 33 29 32 55 11 6 12 Er 83 96 84 78 71 79 140 24 14 28 Tm 10 10 10 9 8 8 18 2 2 3 Yb 55 60 60 55 48 48 123 11 8 15 Lu 7 6 8 7 7 6 16 1 1 2 Th 12 13 21 17 15 11 15 1 5 3 U ------0.18 3.14 0.44 LREE 9422 9074 9815 8998 8093 8330 9404 1279 1523 1960 HREE+Y 1689 1824 1740 1534 1345 1519 2632 506 291 613

LaN/SmN 3.37 2.33 3.58 3.84 4.06 3.42 2.72 1.59 3.77 2.12

LaN/YN 13.91 10.04 13.99 14.95 15.69 14.12 7.96 5.02 13.79 7.21 La/Ce 0.46 0.35 0.46 0.45 0.47 0.46 0.43 0.39 0.48 0.43 Sm/Nd 0.19 0.22 0.18 0.17 0.17 0.18 0.20 0.27 0.20 0.25

EuN/Eu* 0.38 0.28 0.40 0.41 0.44 0.40 0.16 0.45 0.48 0.51

SmN/NdN 0.58 0.66 0.54 0.53 0.51 0.55 0.61 0.83 0.60 0.76 La/Sm 5.22 3.60 5.55 5.94 6.29 5.30 4.21 2.47 5.84 3.29

60 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Mn 153 187 145 184 1382 1406 1502 1207 1225 1327 Sr 53 49 51 52 396 365 314 301 372 343 Y 207 436 212 387 2640 2700 4460 2210 1658 3880 La 316 404 278 429 3110 3010 3610 1701 1442 2680

LaN 1333 1705 1171 1810 13122 12700 15232 7177 6084 11308 Ce 661 971 581 977 7040 6780 8650 4370 3590 6800 Pr 71 124 66 122 829 836 1144 562 455 933 Nd 304 568 310 534 3580 3530 5290 2730 2092 4380

NdN 651 1216 663 1143 7666 7559 11328 5846 4480 9379 Sm 70 141 75 132 827 858 1333 727 533 1167

SmN 457 924 490 859 5405 5608 8712 4752 3484 7627 Eu 12 24 13 22 137 138 221 117 90 195

EuN 211 410 220 372 2362 2379 3809 2017 1550 3364 Gd 73 143 78 130 861 884 1405 739 561 1193

GdN 353 698 380 634 4190 4302 6837 3596 2730 5805 Tb 8 17 9 16 103 106 176 92 69 150 Dy 41 90 44 81 526 531 889 451 344 785 Ho 7 16 8 14 94 95 159 77 60 142 Er 16 35 18 32 216 217 361 166 131 319 Tm 2 4 2 3 22 23 38 16 12 32 Yb 9 19 9 18 121 121 195 77 57 157 Lu 1 3 1 2 18 17 26 10 7 20 Th 2 3 2 4 26 20 39 9 4 25 U 0.38 0.48 0.29 0.57 3.40 2.89 5.10 2.27 0.87 3.77 LREE 1434 2232 1322 2216 15523 15152 20248 10207 8202 16155 HREE+Y 365 763 382 684 4601 4694 7709 3836 2900 6678

LaN/SmN 2.92 1.85 2.39 2.11 2.43 2.26 1.75 1.51 1.75 1.48

LaN/YN 10.12 6.14 8.66 7.34 7.80 7.39 5.36 5.10 5.76 4.58 La/Ce 0.48 0.42 0.48 0.44 0.44 0.44 0.42 0.39 0.40 0.39 Sm/Nd 0.23 0.25 0.24 0.25 0.23 0.24 0.25 0.27 0.25 0.27

EuN/Eu* 0.53 0.51 0.51 0.50 0.50 0.48 0.49 0.49 0.50 0.51

SmN/NdN 0.70 0.76 0.74 0.75 0.71 0.74 0.77 0.81 0.78 0.81 La/Sm 4.52 2.86 3.70 3.26 3.76 3.51 2.71 2.34 2.71 2.30

61 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Mn 154 1259 235 1176 1458 1588 1595 1525 1279 1688 Sr 41 298 57 444 354 437 488 481 605 262 Y 474 1864 539 1707 2928 2740 2190 2535 2182 4030 La 325 1479 437 2930 2267 3850 2690 2733 2400 3220

LaN 1371 6241 1844 12363 9565 16245 11350 11532 10127 13586 Ce 915 3840 1080 5650 5930 8200 6040 6210 4980 7840 Pr 130 498 140 598 766 942 672 762 572 1034 Nd 573 2316 628 2540 3460 3770 2960 3300 2621 4630

NdN 1227 4959 1345 5439 7409 8073 6338 7066 5612 9914 Sm 128 616 165 550 893 845 686 830 659 1190

SmN 837 4026 1081 3595 5837 5523 4484 5425 4307 7778 Eu 26 98 26 112 154 167 145 138 107 200

EuN 450 1684 445 1926 2657 2878 2500 2383 1838 3453 Gd 122 635 167 557 921 850 706 852 706 1239

GdN 591 3090 814 2710 4482 4136 3436 4146 3436 6029 Tb 17 80 21 64 116 102 85 103 87 160 Dy 92 399 111 323 601 525 439 518 446 829 Ho 17 71 20 59 107 97 77 94 81 150 Er 40 151 45 138 244 228 182 213 186 336 Tm 4 14 5 15 24 24 19 22 19 35 Yb 22 68 23 87 127 134 110 114 96 174 Lu 2 9 3 14 16 20 16 16 14 23 Th 2 5 4 32 16 31 35 32 22 30 U 0.32 1.25 0.54 5.13 2.65 6.36 16.70 5.60 4.76 4.04 LREE 2097 8847 2476 12380 13470 17774 13193 13973 11339 18114 HREE+Y 789 3290 934 2964 5085 4720 3824 4467 3817 6975

LaN/SmN 1.64 1.55 1.71 3.44 1.64 2.94 2.53 2.13 2.35 1.75

LaN/YN 4.54 5.26 5.37 11.37 5.13 9.31 8.14 7.14 7.29 5.29 La/Ce 0.36 0.39 0.40 0.52 0.38 0.47 0.45 0.44 0.48 0.41 Sm/Nd 0.22 0.27 0.26 0.22 0.26 0.22 0.23 0.25 0.25 0.26

EuN/Eu* 0.64 0.48 0.47 0.62 0.52 0.60 0.64 0.50 0.48 0.50

SmN/NdN 0.68 0.81 0.80 0.66 0.79 0.68 0.71 0.77 0.77 0.78 La/Sm 2.54 2.40 2.64 5.33 2.54 4.56 3.92 3.29 3.64 2.71

62 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Q MS (114) Mn 1475 1592 1604 172 1299 1335 1601 1682 1786 1333 Sr 518 367 336 44 477 479 448 385 388 421 Y 2950 3222 2813 267 4460 4630 2100 2670 3000 3023 La 3184 2966 2900 333 2774 3440 2690 2770 3170 2780

LaN 13435 12515 12236 1405 11705 14515 11350 11688 13376 11730 Ce 6870 6870 6560 690 7510 8960 5250 5830 7070 6770 Pr 869 888 794 80 1063 1206 613 728 880 868 Nd 3680 3930 3470 360 4970 5620 2700 3230 3880 3795

NdN 7880 8415 7430 771 10642 12034 5782 6916 8308 8126 Sm 922 981 867 86 1293 1364 672 821 978 903

SmN 6026 6412 5667 562 8451 8915 4392 5366 6392 5902 Eu 154 166 143 14 222 231 109 139 166 145

EuN 2660 2855 2460 241 3834 3986 1879 2397 2859 2503 Gd 952 1014 908 88 1343 1393 715 847 1016 918

GdN 4633 4934 4418 428 6535 6779 3479 4122 4944 4467 Tb 118 131 112 11 173 179 89 108 123 116 Dy 600 663 579 56 892 926 450 549 623 599 Ho 109 121 104 10 160 167 80 97 112 108 Er 246 273 234 23 369 386 182 222 253 247 Tm 26 28 24 2 38 40 19 23 26 26 Yb 134 141 127 13 196 215 96 118 136 132 Lu 19 19 17 2 25 28 14 16 18 18 Th 34 26 24 5 33 43 22 30 29 31 U 7.11 4.04 3.24 1.24 4.93 6.26 3.02 4.31 4.49 6.02 LREE 15679 15801 14734 1563 17832 20821 12034 13518 16144 15261 HREE+Y 5153 5612 4918 473 7656 7964 3744 4650 5308 5187

LaN/SmN 2.23 1.95 2.16 2.50 1.39 1.63 2.58 2.18 2.09 1.99

LaN/YN 7.15 6.10 6.83 8.26 4.12 4.92 8.49 6.87 7.00 6.09 La/Ce 0.46 0.43 0.44 0.48 0.37 0.38 0.51 0.48 0.45 0.41 Sm/Nd 0.25 0.25 0.25 0.24 0.26 0.24 0.25 0.25 0.25 0.24

EuN/Eu* 0.50 0.51 0.49 0.49 0.52 0.51 0.48 0.51 0.51 0.49

SmN/NdN 0.76 0.76 0.76 0.73 0.79 0.74 0.76 0.78 0.77 0.73 La/Sm 3.45 3.02 3.34 3.87 2.15 2.52 4.00 3.37 3.24 3.08

63 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MS (114) Q MS (114) Q MS (115a) Q MS (115a) Q MS (115a) Q MS (115a) Q MS (115a) Q MS (115a) Q MS (115a) Q MS (115b) Mn 1291 1214 2240 2060 2630 2460 858 2560 2380 1576 Sr 307 516 320 335 318 307 1008 295 348 196 Y 1627 2080 1676 1032 735 1320 571 732 764 1114 La 1868 2330 1737 1920 2455 4140 723 2670 2860 1921

LaN 7882 9831 7329 8101 10359 17468 3051 11266 12068 8105 Ce 4249 5180 4050 3510 3670 7140 1244 4480 4040 3680 Pr 506 642 563 445 366 740 132 448 411 408 Nd 2300 2890 2870 2100 1440 2650 495 1674 1614 1745

NdN 4925 6188 6146 4497 3084 5675 1060 3585 3456 3737 Sm 549 715 639 419 266 419 83 261 258 349

SmN 3588 4673 4176 2739 1739 2739 542 1706 1686 2281 Eu 88 106 42 38 39 58 15 34 41 44

EuN 1521 1819 731 657 671 993 253 579 707 764 Gd 574 725 608 404 235 381 95 214 225 367

GdN 2793 3528 2959 1966 1141 1854 460 1042 1095 1786 Tb 69 84 75 48 29 45 13 26 27 47 Dy 351 415 395 253 150 242 82 136 139 245 Ho 61 74 69 46 28 48 20 26 26 46 Er 137 165 158 100 64 126 51 65 66 113 Tm 14 17 16 10 8 16 6 9 8 12 Yb 68 91 79 49 43 106 37 57 53 66 Lu 9 13 10 6 7 17 7 9 9 9 Th 6 20 9 12 25 28 3 9 23 3 U 1.04 7.40 ------LREE 9560 11863 9901 8432 8236 15147 2691 9567 9224 8147 HREE+Y 2910 3664 3086 1949 1298 2301 882 1274 1316 2020

LaN/SmN 2.20 2.10 1.75 2.96 5.96 6.38 5.63 6.60 7.16 3.55

LaN/YN 7.61 7.42 6.87 12.32 22.13 20.78 8.39 24.16 24.80 11.42 La/Ce 0.44 0.45 0.43 0.55 0.67 0.58 0.58 0.60 0.71 0.52 Sm/Nd 0.24 0.25 0.22 0.20 0.18 0.16 0.17 0.16 0.16 0.20

EuN/Eu* 0.48 0.45 0.21 0.28 0.48 0.44 0.51 0.43 0.52 0.38

SmN/NdN 0.73 0.76 0.68 0.61 0.56 0.48 0.51 0.48 0.49 0.61 La/Sm 3.40 3.26 2.72 4.58 9.23 9.88 8.72 10.23 11.09 5.50

64 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MS (115b) Q MS (115b) Q MS (115b) Q MS (115b) Q MS (115b) Q MS (115b) Q MS (115b) Q MS (115b) Q MS (115b) Mn 1666 1630 1579 2061 1715 2003 1507 1683 2051 Sr 180 171 198 202 181 167 183 171 177 Y 475 1037 1840 2897 1631 3740 809 1462 4680 La 1593 1564 4250 6150 2493 3262 1541 2050 2869

LaN 6722 6599 17932 25949 10519 13764 6502 8650 12105 Ce 2740 3160 7200 11290 5040 7720 2746 3970 7920 Pr 270 366 763 1128 569 993 306 471 1178 Nd 1010 1558 3110 4420 2370 4540 1288 2090 5770

NdN 2163 3336 6660 9465 5075 9722 2758 4475 12355 Sm 166 319 587 800 481 1058 249 446 1410

SmN 1086 2085 3837 5229 3144 6915 1625 2915 9216 Eu 24 41 82 109 63 139 32 53 179

EuN 421 712 1419 1884 1084 2388 555 907 3091 Gd 165 349 615 821 507 1099 256 473 1391

GdN 804 1698 2993 3995 2467 5348 1243 2302 6769 Tb 19 45 77 108 66 155 33 62 194 Dy 92 231 400 570 346 815 171 327 1030 Ho 18 44 76 111 65 153 32 62 185 Er 47 105 183 285 160 369 78 148 436 Tm 5 11 21 34 18 41 8 16 48 Yb 31 59 114 200 97 213 45 87 246 Lu 5 8 17 30 14 27 7 12 29 Th 5 2 14 15 4 7 2 3 7 U ------LREE 5804 7008 15992 23897 11016 17712 6162 9080 19326 HREE+Y 858 1889 3343 5055 2903 6611 1439 2649 8239

LaN/SmN 6.19 3.17 4.67 4.96 3.35 1.99 4.00 2.97 1.31

LaN/YN 22.22 9.99 15.30 14.06 10.13 5.78 12.62 9.29 4.06 La/Ce 0.58 0.49 0.59 0.54 0.49 0.42 0.56 0.52 0.36 Sm/Nd 0.16 0.20 0.19 0.18 0.20 0.23 0.19 0.21 0.24

EuN/Eu* 0.45 0.38 0.42 0.41 0.39 0.39 0.39 0.35 0.39

SmN/NdN 0.50 0.62 0.58 0.55 0.62 0.71 0.59 0.65 0.75 La/Sm 9.58 4.90 7.24 7.69 5.18 3.08 6.20 4.60 2.03

65 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Mn 942 1466 6900 1455 1283 5480 1282 1578 1368 1190 Sr 281 263 245 266 276 253 261 259 269 426 Y 408 702 616 569 860 811 349 1876 843 791 La 1545 3010 3201 2498 1600 1533 2032 4700 3470 3010

LaN 6519 12700 13506 10540 6751 6468 8574 19831 14641 12700 Ce 2560 4690 5520 3800 2950 2880 3010 7770 5110 5040 Pr 234 433 527 338 333 332 258 785 483 507 Nd 853 1530 1797 1206 1410 1400 868 3066 1753 1820

NdN 1827 3276 3848 2582 3019 2998 1859 6565 3754 3897 Sm 128 228 234 175 280 285 115 562 266 263

SmN 836 1490 1531 1143 1830 1863 748 3673 1739 1719 Eu 25 47 50 37 40 41 29 88 52 59

EuN 428 809 857 638 693 705 507 1516 895 1016 Gd 123 212 201 169 257 274 104 593 251 231

GdN 598 1032 979 821 1251 1333 504 2886 1221 1124 Tb 15 25 22 20 34 35 12 76 30 27 Dy 79 129 112 103 178 186 62 402 158 146 Ho 15 25 21 20 32 34 12 78 31 29 Er 38 66 51 53 77 79 34 191 79 75 Tm 4 8 6 6 9 9 4 22 10 9 Yb 26 51 34 39 46 44 26 124 58 59 Lu 4 9 6 6 6 6 5 19 10 10 Th 4 9 5 13 7 5 7 8 8 9 U ------LREE 5345 9938 11329 8054 6613 6471 6312 16971 11134 10699 HREE+Y 711 1228 1068 986 1499 1478 607 3380 1470 1377

LaN/SmN 7.80 8.52 8.82 9.22 3.69 3.47 11.46 5.40 8.42 7.39

LaN/YN 25.09 28.40 34.42 29.08 12.32 12.52 38.57 16.60 27.27 25.21 La/Ce 0.60 0.64 0.58 0.66 0.54 0.53 0.68 0.60 0.68 0.60 Sm/Nd 0.15 0.15 0.13 0.15 0.20 0.20 0.13 0.18 0.15 0.14

EuN/Eu* 0.60 0.65 0.70 0.66 0.46 0.45 0.83 0.47 0.61 0.73

SmN/NdN 0.46 0.45 0.40 0.44 0.61 0.62 0.40 0.56 0.46 0.44 La/Sm 12.08 13.20 13.67 14.28 5.71 5.38 17.75 8.36 13.05 11.44

66 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) Q MS (116) MCG (103) Mn 1640 1300 1055 1335 1323 4200 19000 763 1252 3130 Sr 280 275 418 361 263 265 212 316 267 1070 Y 2560 848 306 519 792 763 303 397 309 4160 La 3800 3840 1846 2640 3300 2950 1193 1623 1600 8120

LaN 16034 16203 7789 11139 13924 12447 5034 6848 6751 34262 Ce 7540 5610 2470 4260 5140 5280 2270 2660 2301 15500 Pr 867 473 206 380 504 500 203 251 216 1490 Nd 3780 1630 682 1286 1720 1660 692 839 732 4400

NdN 8094 3490 1460 2754 3683 3555 1482 1797 1567 9422 Sm 828 245 99 184 253 253 107 120 100 791

SmN 5412 1601 645 1203 1654 1654 702 784 652 5170 Eu 99 50 25 41 60 55 22 28 23 131

EuN 1707 864 426 703 1036 945 374 488 393 2259 Gd 827 240 90 164 227 229 94 118 95 737

GdN 4024 1168 438 800 1105 1114 455 574 464 3586 Tb 110 28 10 18 27 27 11 14 11 98 Dy 584 153 54 96 141 140 59 72 56 625 Ho 111 31 11 19 28 27 11 14 11 126 Er 270 80 29 49 70 72 30 36 29 376 Tm 30 10 3 6 9 9 4 4 4 55 Yb 161 60 22 38 56 58 24 29 22 395 Lu 22 11 4 7 10 9 4 5 4 56 Th 8 25 20 5 5 7 4 2 3 287 U ------LREE 16914 11848 5327 8791 10977 10698 4487 5521 4971 30432 HREE+Y 4673 1461 530 916 1360 1334 539 689 539 6629

LaN/SmN 2.96 10.12 12.07 9.26 8.42 7.53 7.17 8.74 10.36 6.63

LaN/YN 9.83 30.00 39.96 33.70 27.60 25.61 26.08 27.08 34.28 12.93 La/Ce 0.50 0.68 0.75 0.62 0.64 0.56 0.53 0.61 0.70 0.52 Sm/Nd 0.22 0.15 0.14 0.14 0.15 0.15 0.16 0.14 0.14 0.18

EuN/Eu* 0.37 0.63 0.80 0.72 0.77 0.70 0.66 0.73 0.71 0.52

SmN/NdN 0.67 0.46 0.44 0.44 0.45 0.47 0.47 0.44 0.42 0.55 La/Sm 4.59 15.67 18.70 14.35 13.04 11.66 11.11 13.54 16.05 10.27

67 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: MCG (103) MCG (103) MCG (103) MCG (103) MCG (103) MCG (103) MCG (103) MCG (103) MCG (103) MCG (103) MCG (103) Mn 2920 2538 2880 2704 2223 2950 2610 2327 2215 2427 2656 Sr 782 703 582 697 1196 700 865 630 809 672 690 Y 5040 3040 3529 3537 2290 2330 3840 1584 2582 2137 1690 La 8380 4740 6360 4950 4400 3630 6820 2170 4315 3550 2584

LaN 35359 20000 26835 20886 18565 15316 28776 9156 18207 14979 10903 Ce 15520 8500 11270 10190 8030 8280 11720 4810 8090 6820 5730 Pr 1631 996 1126 1188 805 944 1160 611 843 759 725 Nd 5570 3590 3810 4667 2800 3810 3940 2562 3107 3010 2993

NdN 11927 7687 8158 9994 5996 8158 8437 5486 6653 6445 6409 Sm 926 661 628 819 432 720 599 463 479 499 538

SmN 6052 4320 4105 5353 2824 4706 3915 3026 3131 3261 3516 Eu 150 112 112 138 89 124 116 117 91 92 131

EuN 2588 1936 1933 2384 1526 2138 1998 2009 1576 1581 2266 Gd 946 619 640 813 446 638 617 431 495 490 465

GdN 4603 3012 3114 3956 2170 3105 3002 2097 2409 2384 2263 Tb 126 85 83 108 58 82 85 56 65 63 59 Dy 764 486 496 610 342 432 484 291 383 351 302 Ho 159 93 106 119 70 83 108 54 77 66 54 Er 456 252 303 309 202 211 320 133 248 189 149 Tm 62 33 43 40 28 26 48 16 30 24 17 Yb 412 200 290 255 181 160 329 103 221 167 105 Lu 58 30 44 34 28 23 49 13 33 24 14 Th 147 15 148 23 14 10 193 7 53 9 4 U ------LREE 32177 18599 23306 21952 16556 17508 24355 10733 16925 14730 12701 HREE+Y 8023 4838 5534 5825 3645 3985 5881 2682 4134 3510 2854

LaN/SmN 5.84 4.63 6.54 3.90 6.58 3.25 7.35 3.03 5.82 4.59 3.10

LaN/YN 11.01 10.33 11.94 9.27 12.73 10.32 11.77 9.08 11.07 11.00 10.13 La/Ce 0.54 0.56 0.56 0.49 0.55 0.44 0.58 0.45 0.53 0.52 0.45 Sm/Nd 0.17 0.18 0.16 0.18 0.15 0.19 0.15 0.18 0.15 0.17 0.18

EuN/Eu* 0.49 0.54 0.54 0.52 0.62 0.56 0.58 0.80 0.57 0.57 0.80

SmN/NdN 0.51 0.56 0.50 0.54 0.47 0.58 0.46 0.55 0.47 0.51 0.55 La/Sm 9.05 7.17 10.13 6.04 10.19 5.04 11.39 4.69 9.01 7.11 4.80

68 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: MCG (103) MCG (105) MCG (105) MCG (105) MCG (105) MCG (105) MCG (105) MCG (105) MCG (105) MCG (105) MCG (105) Mn 2750 3530 2650 2389 16760 9200 2690 35400 2710 2720 6320 Sr 680 67 82 93 93 188 138 64 135 73 75 Y 3380 4430 3560 3070 4320 1960 3370 4930 2907 3720 3310 La 6100 4610 3570 3320 4850 1280 3970 9400 3640 4450 3510

LaN 25738 19451 15063 14008 20464 5401 16751 39662 15359 18776 14810 Ce 10960 9310 7850 6890 11680 3220 8420 18400 7930 9500 8380 Pr 1097 946 842 719 1384 426 853 1930 789 958 884 Nd 3850 3410 3004 2480 5510 1780 2980 7100 2730 3230 3110

NdN 8244 7302 6433 5310 11799 3812 6381 15203 5846 6916 6660 Sm 616 639 555 447 1035 365 525 1220 466 542 579

SmN 4026 4176 3627 2922 6765 2386 3431 7974 3046 3542 3784 Eu 100 80 70 56 125 46 69 139 62 69 76

EuN 1721 1376 1200 964 2150 791 1193 2397 1060 1184 1310 Gd 571 629 530 423 847 341 507 1080 453 521 539

GdN 2779 3061 2579 2058 4122 1659 2467 5255 2204 2535 2623 Tb 82 92 79 62 106 49 76 164 67 76 78 Dy 469 552 473 375 607 292 477 1000 425 504 504 Ho 99 120 104 81 122 58 100 190 88 100 97 Er 298 363 308 249 339 162 303 525 258 304 291 Tm 39 56 45 38 47 23 45 77 38 44 42 Yb 301 390 284 248 290 143 280 457 223 274 270 Lu 46 60 41 36 40 20 39 58 32 40 37 Th 149 147 50 56 79 67 29 830 25 47 81 U - 2.18 2.25 2.38 31.60 20.00 2.94 27.54 2.43 4.12 10.60 LREE 22723 18995 15891 13912 24584 7117 16817 38189 15617 18749 16539 HREE+Y 5285 6692 5424 4581 6718 3048 5197 8481 4491 5583 5169

LaN/SmN 6.39 4.66 4.15 4.79 3.03 2.26 4.88 4.97 5.04 5.30 3.91

LaN/YN 11.96 6.89 6.64 7.16 7.44 4.33 7.80 12.63 8.29 7.92 7.02 La/Ce 0.56 0.50 0.45 0.48 0.42 0.40 0.47 0.51 0.46 0.47 0.42 Sm/Nd 0.16 0.19 0.18 0.18 0.19 0.21 0.18 0.17 0.17 0.17 0.19

EuN/Eu* 0.51 0.38 0.39 0.39 0.41 0.40 0.41 0.37 0.41 0.40 0.42

SmN/NdN 0.49 0.57 0.56 0.55 0.57 0.63 0.54 0.52 0.52 0.51 0.57 La/Sm 9.90 7.21 6.43 7.43 4.69 3.51 7.56 7.70 7.81 8.21 6.06

69 Table 6 (cont.): Trace element data of apatites from the Dr. and Finn. granites. Abbreviations as in table 3. Analyses completed by LA-ICP-MS. Sample: MCG (107) MCG (107) MCG (107) MCG (107) CG (108) CG (108) CG (108) CG (109) CG (109) CG (109) CG (109) CG (109) CG (109) Mn 1816 2160 2090 2000 3820 2644 2576 2659 2583 3730 2315 1536 1440 Sr 65 88 50 63 187 31 45 42 42 192 48 241 229 Y 702 674 844 1004 1720 2322 2258 1389 1079 1790 1595 1472 915 La 1612 2610 2440 2100 980 3380 3172 3197 2200 5180 2019 1944 1326

LaN 6802 11013 10295 8861 4135 14262 13384 13489 9283 21857 8519 8203 5595 Ce 3450 4930 5080 4750 2400 7190 6910 6370 4690 8330 4780 5140 3360 Pr 355 392 426 451 293 732 731 592 475 1039 511 693 438 Nd 1285 1190 1290 1470 1191 2545 2598 1915 1658 3580 1776 2950 1840

NdN 2752 2548 2762 3148 2550 5450 5563 4101 3550 7666 3803 6317 3940 Sm 220 147 172 237 311 461 485 284 279 549 296 606 383

SmN 1438 961 1124 1549 2033 3013 3170 1856 1824 3588 1931 3961 2503 Eu 29 19 21 28 38 43 44 34 28 81 33 72 48

EuN 500 324 366 484 648 736 753 583 474 1403 562 1243 826 Gd 205 121 155 230 314 459 454 251 264 419 264 526 338

GdN 1000 591 754 1120 1528 2234 2209 1222 1285 2039 1283 2560 1647 Tb 25 15 19 29 43 63 61 33 34 52 35 71 44 Dy 138 85 116 163 220 352 344 194 189 281 216 383 230 Ho 26 19 26 34 42 74 71 41 38 55 45 64 40 Er 66 62 78 92 111 213 200 126 106 159 133 146 91 Tm 8 9 12 12 14 29 27 18 14 23 19 15 9 Yb 51 70 79 74 86 181 174 133 92 161 140 74 47 Lu 8 13 14 11 12 27 26 22 14 23 24 9 6 Th 10 53 23 11 5 28 41 53 13 72 41 17 7 U 1.60 4.40 3.23 1.84 0.62 3.82 4.72 3.47 2.00 12.40 0.37 2.80 1.41 LREE 6951 9288 9429 9036 5213 14351 13940 12392 9330 18759 9414 11405 7395 HREE+Y 1229 1069 1342 1649 2561 3719 3614 2208 1829 2963 2471 2759 1720

LaN/SmN 4.73 11.46 9.16 5.72 2.03 4.73 4.22 7.27 5.09 6.09 4.41 2.07 2.24

LaN/YN 15.21 25.65 19.15 13.86 3.77 9.64 9.31 15.25 13.51 19.17 8.39 8.75 9.60 La/Ce 0.47 0.53 0.48 0.44 0.41 0.47 0.46 0.50 0.47 0.62 0.42 0.38 0.39 Sm/Nd 0.17 0.12 0.13 0.16 0.26 0.18 0.19 0.15 0.17 0.15 0.17 0.21 0.21

EuN/Eu* 0.42 0.43 0.40 0.37 0.37 0.28 0.28 0.39 0.31 0.52 0.36 0.39 0.41

SmN/NdN 0.52 0.38 0.41 0.49 0.80 0.55 0.57 0.45 0.51 0.47 0.51 0.63 0.64 La/Sm 7.33 17.76 14.19 8.86 3.15 7.33 6.54 11.26 7.89 9.44 6.83 3.21 3.46

70