The Moran Process as a Markov Chain on Leaf-labeled Trees David J. Aldous∗ University of California Department of Statistics 367 Evans Hall # 3860 Berkeley CA 94720-3860
[email protected] http://www.stat.berkeley.edu/users/aldous March 29, 1999 Abstract The Moran process in population genetics may be reinterpreted as a Markov chain on a set of trees with leaves labeled by [n]. It provides an interesting worked example in the theory of mixing times and coupling from the past for Markov chains. Mixing times are shown to be of order n2, as anticipated by the theory surrounding Kingman’s coalescent. Incomplete draft -- do not circulate AMS 1991 subject classification: 05C05,60C05,60J10 Key words and phrases. Coupling from the past, Markov chain, mixing time, phylogenetic tree. ∗Research supported by N.S.F. Grant DMS96-22859 1 1 Introduction The study of mixing times for Markov chains on combinatorial sets has attracted considerable interest over the last ten years [3, 5, 7, 14, 16, 18]. This paper provides another worked example. We must at the outset admit that the mathematics is fairly straightforward, but we do find the example instructive. Its analysis provides a simple but not quite obvious illustration of coupling from the past, reminiscent of the elementary analysis ([1] section 4) of riffle shuffle, and of the analysis of move-to-front list algorithms [12] and move-to-root algorithms for maintaining search trees [9]. The main result, Proposition 2, implies that while most combinatorial chains exhibit the cut-off phenomenon [8], this particular example has the opposite diffusive behavior.